summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
committerTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
commit3caa686662f7d937cf7eb852dde437cd66e79a6e (patch)
tree76088f5924ff9278e0a37140fce888cd89b84a7e
parent8f2e86726669b9dadb3c788e0ea681d397a2eeb7 (diff)
downloadregularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.gz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.bz2
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.xz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.zip
restructured sources
-rw-r--r--CMake/FindAnacondaEnvironment.cmake154
-rw-r--r--CMakeLists.txt4
-rw-r--r--Core/CCPiDefines.h35
-rw-r--r--Core/CMakeLists.txt151
-rw-r--r--Core/inpainters_CPU/Diffusion_Inpaint_core.c322
-rw-r--r--Core/inpainters_CPU/Diffusion_Inpaint_core.h61
-rw-r--r--Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c188
-rw-r--r--Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h54
-rw-r--r--Core/regularisers_CPU/Diffus4th_order_core.c250
-rw-r--r--Core/regularisers_CPU/Diffus4th_order_core.h55
-rw-r--r--Core/regularisers_CPU/Diffusion_core.c307
-rw-r--r--Core/regularisers_CPU/Diffusion_core.h59
-rw-r--r--Core/regularisers_CPU/FGP_TV_core.c321
-rw-r--r--Core/regularisers_CPU/FGP_TV_core.h63
-rw-r--r--Core/regularisers_CPU/FGP_dTV_core.c441
-rw-r--r--Core/regularisers_CPU/FGP_dTV_core.h72
-rw-r--r--Core/regularisers_CPU/LLT_ROF_core.c410
-rw-r--r--Core/regularisers_CPU/LLT_ROF_core.h65
-rw-r--r--Core/regularisers_CPU/Nonlocal_TV_core.c173
-rw-r--r--Core/regularisers_CPU/Nonlocal_TV_core.h61
-rw-r--r--Core/regularisers_CPU/PatchSelect_core.c345
-rw-r--r--Core/regularisers_CPU/PatchSelect_core.h63
-rw-r--r--Core/regularisers_CPU/ROF_TV_core.c289
-rw-r--r--Core/regularisers_CPU/ROF_TV_core.h57
-rwxr-xr-xCore/regularisers_CPU/SB_TV_core.c368
-rw-r--r--Core/regularisers_CPU/SB_TV_core.h61
-rw-r--r--Core/regularisers_CPU/TGV_core.c487
-rw-r--r--Core/regularisers_CPU/TGV_core.h73
-rwxr-xr-xCore/regularisers_CPU/TNV_core.c452
-rw-r--r--Core/regularisers_CPU/TNV_core.h47
-rw-r--r--Core/regularisers_CPU/utils.c117
-rw-r--r--Core/regularisers_CPU/utils.h34
-rw-r--r--Core/regularisers_GPU/Diffus_4thO_GPU_core.cu268
-rw-r--r--Core/regularisers_GPU/Diffus_4thO_GPU_core.h8
-rw-r--r--Core/regularisers_GPU/LLT_ROF_GPU_core.cu473
-rw-r--r--Core/regularisers_GPU/LLT_ROF_GPU_core.h8
-rw-r--r--Core/regularisers_GPU/NonlDiff_GPU_core.cu345
-rw-r--r--Core/regularisers_GPU/NonlDiff_GPU_core.h8
-rw-r--r--Core/regularisers_GPU/PatchSelect_GPU_core.cu460
-rw-r--r--Core/regularisers_GPU/PatchSelect_GPU_core.h8
-rw-r--r--Core/regularisers_GPU/TGV_GPU_core.cu625
-rw-r--r--Core/regularisers_GPU/TGV_GPU_core.h8
-rwxr-xr-xCore/regularisers_GPU/TV_FGP_GPU_core.cu564
-rwxr-xr-xCore/regularisers_GPU/TV_FGP_GPU_core.h9
-rwxr-xr-xCore/regularisers_GPU/TV_ROF_GPU_core.cu358
-rwxr-xr-xCore/regularisers_GPU/TV_ROF_GPU_core.h8
-rwxr-xr-xCore/regularisers_GPU/TV_SB_GPU_core.cu552
-rwxr-xr-xCore/regularisers_GPU/TV_SB_GPU_core.h10
-rw-r--r--Core/regularisers_GPU/dTV_FGP_GPU_core.cu741
-rw-r--r--Core/regularisers_GPU/dTV_FGP_GPU_core.h9
-rw-r--r--Core/regularisers_GPU/shared.h42
-rw-r--r--Wrappers/CMakeLists.txt19
-rwxr-xr-xWrappers/Matlab/CMakeLists.txt147
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m178
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m189
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_inpaint.m35
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m81
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m135
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m74
-rw-r--r--Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt0
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c77
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c97
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c114
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c82
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c89
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c103
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c84
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c88
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c92
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c77
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c91
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c83
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c74
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c72
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp77
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp97
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp113
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp83
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp92
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp74
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp91
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp79
-rw-r--r--Wrappers/Matlab/supp/RMSE.m7
-rw-r--r--Wrappers/Matlab/supp/my_red_yellowMAP.matbin1761 -> 0 bytes
-rw-r--r--Wrappers/Python/CMakeLists.txt141
-rw-r--r--Wrappers/Python/ccpi/__init__.py0
-rw-r--r--Wrappers/Python/ccpi/filters/__init__.py0
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py214
-rw-r--r--Wrappers/Python/conda-recipe/bld.bat20
-rw-r--r--Wrappers/Python/conda-recipe/build.sh17
-rw-r--r--Wrappers/Python/conda-recipe/conda_build_config.yaml9
-rw-r--r--Wrappers/Python/conda-recipe/meta.yaml40
-rwxr-xr-xWrappers/Python/conda-recipe/run_test.py819
-rw-r--r--Wrappers/Python/demos/demo_cpu_inpainters.py192
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py572
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers3D.py458
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py790
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py518
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers3D.py460
-rw-r--r--Wrappers/Python/demos/qualitymetrics.py18
-rw-r--r--Wrappers/Python/setup-regularisers.py.in75
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx685
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx640
-rw-r--r--data/SinoInpaint.matbin3335061 -> 0 bytes
-rw-r--r--data/lena_gray_512.tifbin262598 -> 0 bytes
-rw-r--r--recipes/regularisers/bld.bat21
-rw-r--r--recipes/regularisers/build.sh19
-rw-r--r--recipes/regularisers/meta.yaml27
-rw-r--r--run.sh19
109 files changed, 2 insertions, 18689 deletions
diff --git a/CMake/FindAnacondaEnvironment.cmake b/CMake/FindAnacondaEnvironment.cmake
deleted file mode 100644
index 6475128..0000000
--- a/CMake/FindAnacondaEnvironment.cmake
+++ /dev/null
@@ -1,154 +0,0 @@
-# Copyright 2017 Edoardo Pasca
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# #.rst:
-# FindAnacondaEnvironment
-# --------------
-#
-# Find Python executable and library for a specific Anaconda environment
-#
-# This module finds the Python interpreter for a specific Anaconda enviroment,
-# if installed and determines where the include files and libraries are.
-# This code sets the following variables:
-#
-# ::
-# PYTHONINTERP_FOUND - if the Python interpret has been found
-# PYTHON_EXECUTABLE - the Python interpret found
-# PYTHON_LIBRARY - path to the python library
-# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated)
-# PYTHON_INCLUDE_DIRS - path to where Python.h is found
-# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8)
-# PYTHON_VERSION_MAJOR - major Python version
-# PYTHON_VERSION_MINOR - minor Python version
-# PYTHON_VERSION_PATCH - patch Python version
-
-
-
-function (findPythonForAnacondaEnvironment env)
- if (WIN32)
- file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE)
- elseif (UNIX)
- file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE)
- endif()
-
-
- message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE})
- ####### FROM FindPythonInterpr ########
- # determine python version string
- if(PYTHON_EXECUTABLE)
- execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c
- "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))"
- OUTPUT_VARIABLE _VERSION
- RESULT_VARIABLE _PYTHON_VERSION_RESULT
- ERROR_QUIET)
- if(NOT _PYTHON_VERSION_RESULT)
- string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}")
- list(GET _VERSION 0 _PYTHON_VERSION_MAJOR)
- list(GET _VERSION 1 _PYTHON_VERSION_MINOR)
- list(GET _VERSION 2 _PYTHON_VERSION_PATCH)
- if(PYTHON_VERSION_PATCH EQUAL 0)
- # it's called "Python 2.7", not "2.7.0"
- string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}")
- endif()
- else()
- # sys.version predates sys.version_info, so use that
- execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)"
- OUTPUT_VARIABLE _VERSION
- RESULT_VARIABLE _PYTHON_VERSION_RESULT
- ERROR_QUIET)
- if(NOT _PYTHON_VERSION_RESULT)
- string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}")
- string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}")
- string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}")
- if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)")
- set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}")
- else()
- set(PYTHON_VERSION_PATCH "0")
- endif()
- else()
- # sys.version was first documented for Python 1.5, so assume
- # this is older.
- set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE)
- set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE)
- set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE)
- set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE)
- endif()
- endif()
- unset(_PYTHON_VERSION_RESULT)
- unset(_VERSION)
- endif()
- ###############################################
-
- set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE)
- set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE)
- set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE)
- set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE)
- set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
- set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
- message("My version found " ${PYTHON_VERSION_STRING})
- ## find conda executable
- if (WIN32)
- set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
- elseif(UNIX)
- set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
- endif()
-endfunction()
-
-
-
-set(Python_ADDITIONAL_VERSIONS 3.5)
-
-find_package(PythonInterp)
-if (PYTHONINTERP_FOUND)
-
- message("Found interpret " ${PYTHON_EXECUTABLE})
- message("Python Library " ${PYTHON_LIBRARY})
- message("Python Include Dir " ${PYTHON_INCLUDE_DIR})
- message("Python Include Path " ${PYTHON_INCLUDE_PATH})
-
- foreach(pv ${PYTHON_VERSION_STRING})
- message("Found interpret " ${pv})
- endforeach()
-endif()
-
-
-
-find_package(PythonLibs)
-if (PYTHONLIB_FOUND)
- message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES})
- message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH})
- message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS})
- message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} )
-else()
- message("No PythonLibs Found")
-endif()
-
-
-
-
-function(findPythonPackagesPath)
- execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())"
- RESULT_VARIABLE PYTHON_CVPY_PROCESS
- OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH
- OUTPUT_STRIP_TRAILING_WHITESPACE)
- #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH})
- if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages")
- set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages")
- endif()
-
- SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE)
-
-endfunction()
-
-
diff --git a/CMakeLists.txt b/CMakeLists.txt
index b95107a..5d3bbbd 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -55,5 +55,5 @@ endif()
message(STATUS "Python wrappers will be installed in " ${PYTHON_DEST})
-add_subdirectory(Core)
-add_subdirectory(Wrappers)
+add_subdirectory(src/Core)
+add_subdirectory(src)
diff --git a/Core/CCPiDefines.h b/Core/CCPiDefines.h
deleted file mode 100644
index d3038f9..0000000
--- a/Core/CCPiDefines.h
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Srikanth Nagella, Edoardo Pasca, Daniil Kazantsev
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
-http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-#ifndef CCPIDEFINES_H
-#define CCPIDEFINES_H
-
-#if defined(_WIN32) || defined(__WIN32__)
- #if defined(CCPiCore_EXPORTS) || defined(CCPiNexusWidget_EXPORTS) || defined(ContourTreeSegmentation_EXPORTS) || defined(ContourTree_EXPORTS)// add by CMake
- #define CCPI_EXPORT __declspec(dllexport)
- #define EXPIMP_TEMPLATE
- #else
- #define CCPI_EXPORT __declspec(dllimport)
- #define EXPIMP_TEMPLATE extern
- #endif /* CCPi_EXPORTS */
-#elif defined(linux) || defined(__linux) || defined(__APPLE__)
- #define CCPI_EXPORT
-#endif
-
-#endif
diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt
deleted file mode 100644
index b3c0dfb..0000000
--- a/Core/CMakeLists.txt
+++ /dev/null
@@ -1,151 +0,0 @@
-# Copyright 2018 Edoardo Pasca
-#cmake_minimum_required (VERSION 3.0)
-
-project(RGL_core)
-#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py
-
-# The version number.
-
-set (CIL_VERSION $ENV{CIL_VERSION} CACHE INTERNAL "Core Imaging Library version" FORCE)
-
-# conda orchestrated build
-message("CIL_VERSION ${CIL_VERSION}")
-#include (GenerateExportHeader)
-
-
-find_package(OpenMP)
-if (OPENMP_FOUND)
- set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
- set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
- set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}")
- set (CMAKE_SHARED_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_SHARED_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}")
- set (CMAKE_STATIC_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_STATIC_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}")
-
-endif()
-
-## Build the regularisers package as a library
-message("Creating Regularisers as a shared library")
-
-message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
-message("CMAKE_C_FLAGS ${CMAKE_C_FLAGS}")
-message("CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS}")
-message("CMAKE_SHARED_LINKER_FLAGS ${CMAKE_SHARED_LINKER_FLAGS}")
-message("CMAKE_STATIC_LINKER_FLAGS ${CMAKE_STATIC_LINKER_FLAGS}")
-
-set(CMAKE_BUILD_TYPE "Release")
-
-if(WIN32)
- set (FLAGS "/DWIN32 /EHsc /DCCPiCore_EXPORTS /openmp")
- set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}")
- set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}")
- set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /NODEFAULTLIB:MSVCRT.lib")
-
- set (EXTRA_LIBRARIES)
-
- message("library lib: ${LIBRARY_LIB}")
-
-elseif(UNIX)
- set (FLAGS "-O2 -funsigned-char -Wall -Wl,--no-undefined -DCCPiReconstructionIterative_EXPORTS ")
- set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}")
- set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}")
-
- set (EXTRA_LIBRARIES
- "gomp"
- "m"
- )
-
-endif()
-message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
-
-## Build the regularisers package as a library
-message("Adding regularisers as a shared library")
-
-#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc)
-#set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp")
-#set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC")
-add_library(cilreg SHARED
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_TV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/SB_TV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TGV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffusion_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffus4th_order_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/LLT_ROF_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ROF_TV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_dTV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TNV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Nonlocal_TV_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/PatchSelect_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/utils.c
- ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/Diffusion_Inpaint_core.c
- ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/NonlocalMarching_Inpaint_core.c
- )
-target_link_libraries(cilreg ${EXTRA_LIBRARIES} )
-include_directories(cilreg PUBLIC
- ${LIBRARY_INC}/include
- ${CMAKE_CURRENT_SOURCE_DIR}
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/
- ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/ )
-
-## Install
-
-if (UNIX)
-message ("I'd install into ${CMAKE_INSTALL_PREFIX}/lib")
-install(TARGETS cilreg
- LIBRARY DESTINATION lib
- CONFIGURATIONS ${CMAKE_BUILD_TYPE}
- )
-elseif(WIN32)
-message ("I'd install into ${CMAKE_INSTALL_PREFIX} lib bin")
- install(TARGETS cilreg
- RUNTIME DESTINATION bin
- ARCHIVE DESTINATION lib
- CONFIGURATIONS ${CMAKE_BUILD_TYPE}
- )
-endif()
-
-
-
-# GPU Regularisers
-if (BUILD_CUDA)
- find_package(CUDA)
- if (CUDA_FOUND)
- set(CUDA_NVCC_FLAGS "-Xcompiler -fPIC -shared -D_FORCE_INLINES")
- message("CUDA FLAGS ${CUDA_NVCC_FLAGS}")
- CUDA_ADD_LIBRARY(cilregcuda SHARED
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_ROF_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_FGP_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_SB_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/LLT_ROF_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TGV_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/dTV_FGP_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/NonlDiff_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/Diffus_4thO_GPU_core.cu
- ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/PatchSelect_GPU_core.cu
- )
- if (UNIX)
- message ("I'd install into ${CMAKE_INSTALL_PREFIX}/lib")
- install(TARGETS cilregcuda
- LIBRARY DESTINATION lib
- CONFIGURATIONS ${CMAKE_BUILD_TYPE}
- )
- elseif(WIN32)
- message ("I'd install into ${CMAKE_INSTALL_PREFIX} lib bin")
- install(TARGETS cilregcuda
- RUNTIME DESTINATION bin
- ARCHIVE DESTINATION lib
- CONFIGURATIONS ${CMAKE_BUILD_TYPE}
- )
- endif()
- else()
- message("CUDA NOT FOUND")
- endif()
-endif()
-
-if (${BUILD_MATLAB_WRAPPER})
- if (WIN32)
- install(TARGETS cilreg DESTINATION ${MATLAB_DEST})
- if (CUDA_FOUND)
- install(TARGETS cilregcuda DESTINATION ${MATLAB_DEST})
- endif()
- endif()
-endif()
diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.c b/Core/inpainters_CPU/Diffusion_Inpaint_core.c
deleted file mode 100644
index 08b168a..0000000
--- a/Core/inpainters_CPU/Diffusion_Inpaint_core.c
+++ /dev/null
@@ -1,322 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "Diffusion_Inpaint_core.h"
-#include "utils.h"
-
-/*sign function*/
-int signNDF_inc(float x) {
- return (x > 0) - (x < 0);
-}
-
-/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Image/volume to inpaint
- * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data)
- * 3. lambda - regularization parameter
- * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 5. Number of iterations, for explicit scheme >= 150 is recommended
- * 6. tau - time-marching step for explicit scheme
- * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Inpainted image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ)
-{
- long i, pointsone;
- float sigmaPar2;
- sigmaPar2 = sigmaPar/sqrt(2.0f);
-
- /* copy into output */
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- pointsone = 0;
- for (i=0; i<dimY*dimX*dimZ; i++) if (Mask[i] == 1) pointsone++;
-
- if (pointsone == 0) printf("%s \n", "Nothing to inpaint, zero mask!");
- else {
-
- if (dimZ == 1) {
- /* running 2D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- if (sigmaPar == 0.0f) LinearDiff_Inp_2D(Input, Mask, Output, lambdaPar, tau, (long)(dimX), (long)(dimY)); /* linear diffusion (heat equation) */
- else NonLinearDiff_Inp_2D(Input, Mask, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY)); /* nonlinear diffusion */
- }
- }
- else {
- /* running 3D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- if (sigmaPar == 0.0f) LinearDiff_Inp_3D(Input, Mask, Output, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
- else NonLinearDiff_Inp_3D(Input, Mask, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY), (long)(dimZ));
- }
- }
- }
- return *Output;
-}
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-/* linear diffusion (heat equation) */
-float LinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float e,w,n,s,e1,w1,n1,s1;
-
-#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- if (Mask[index] > 0) {
- /*inpainting process*/
- e = Output[j*dimX+i1];
- w = Output[j*dimX+i2];
- n = Output[j1*dimX+i];
- s = Output[j2*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }
- }}
- return *Output;
-}
-
-/* nonlinear diffusion */
-float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float e,w,n,s,e1,w1,n1,s1;
-
-#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- if (Mask[index] > 0) {
- /*inpainting process*/
- e = Output[j*dimX+i1];
- w = Output[j*dimX+i2];
- n = Output[j1*dimX+i];
- s = Output[j2*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1);
- else e1 = e1/sigmaPar;
-
- if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1);
- else w1 = w1/sigmaPar;
-
- if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1);
- else n1 = n1/sigmaPar;
-
- if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1);
- else s1 = s1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + powf((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + powf((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + powf((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + powf((s1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- }
- else {
- printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
- break;
- }
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }
- }}
- return *Output;
-}
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-/* linear diffusion (heat equation) */
-float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,i2,j1,j2,k1,k2,index;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
-
-#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)
-for(k=0; k<dimZ; k++) {
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (Mask[index] > 0) {
- /*inpainting process*/
-
- e = Output[(dimX*dimY)*k + j*dimX+i1];
- w = Output[(dimX*dimY)*k + j*dimX+i2];
- n = Output[(dimX*dimY)*k + j1*dimX+i];
- s = Output[(dimX*dimY)*k + j2*dimX+i];
- u = Output[(dimX*dimY)*k1 + j*dimX+i];
- d = Output[(dimX*dimY)*k2 + j*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }
- }}}
- return *Output;
-}
-
-float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,i2,j1,j2,k1,k2,index;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
-
-#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)
-for(k=0; k<dimZ; k++) {
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (Mask[index] > 0) {
- /*inpainting process*/
- e = Output[(dimX*dimY)*k + j*dimX+i1];
- w = Output[(dimX*dimY)*k + j*dimX+i2];
- n = Output[(dimX*dimY)*k + j1*dimX+i];
- s = Output[(dimX*dimY)*k + j2*dimX+i];
- u = Output[(dimX*dimY)*k1 + j*dimX+i];
- d = Output[(dimX*dimY)*k2 + j*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1);
- else e1 = e1/sigmaPar;
-
- if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1);
- else w1 = w1/sigmaPar;
-
- if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1);
- else n1 = n1/sigmaPar;
-
- if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1);
- else s1 = s1/sigmaPar;
-
- if (fabs(u1) > sigmaPar) u1 = signNDF_inc(u1);
- else u1 = u1/sigmaPar;
-
- if (fabs(d1) > sigmaPar) d1 = signNDF_inc(d1);
- else d1 = d1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + powf((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + powf((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + powf((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + powf((s1/sigmaPar),2));
- u1 = (u1)/(1.0f + powf((u1/sigmaPar),2));
- d1 = (d1)/(1.0f + powf((d1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- if (fabs(u1) <= sigmaPar) u1 = u1*powf((1.0f - powf((u1/sigmaPar),2)), 2);
- else u1 = 0.0f;
- if (fabs(d1) <= sigmaPar) d1 = d1*powf((1.0f - powf((d1/sigmaPar),2)), 2);
- else d1 = 0.0f;
- }
- else {
- printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
- break;
- }
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }
- }}}
- return *Output;
-}
diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.h b/Core/inpainters_CPU/Diffusion_Inpaint_core.h
deleted file mode 100644
index a96fe79..0000000
--- a/Core/inpainters_CPU/Diffusion_Inpaint_core.h
+++ /dev/null
@@ -1,61 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-
-/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Image/volume to inpaint
- * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data)
- * 3. lambda - regularization parameter
- * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 5. Number of iterations, for explicit scheme >= 150 is recommended
- * 6. tau - time-marching step for explicit scheme
- * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Inpainted image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float LinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY);
-CCPI_EXPORT float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY);
-CCPI_EXPORT float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
deleted file mode 100644
index b488ca4..0000000
--- a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
+++ /dev/null
@@ -1,188 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "NonlocalMarching_Inpaint_core.h"
-#include "utils.h"
-
-
-/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case)
- * The method is heuristic but computationally efficent (especially for larger images).
- * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms
- * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data
- *
- * Input:
- * 1. 2D image or sinogram with horizontal or inclined regions of missing data
- * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data)
- * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice
- *
- * Output:
- * 1. Inpainted image or a sinogram
- * 2. updated mask
- *
- * Reference: D. Kazantsev (paper in preparation)
- */
-
-float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ)
-{
- int i, j, i_m, j_m, counter, iter, iterations_number, W_fullsize, switchmask, switchcurr, counterElements;
- float *Gauss_weights;
-
- /* copying M to M_upd */
- copyIm_unchar(M, M_upd, dimX, dimY, 1);
-
- /* Copying the image */
- copyIm(Input, Output, dimX, dimY, 1);
-
- /* Find how many inpainting iterations (equal to the number of ones) required based on a mask */
- if (iterationsNumb == 0) {
- iterations_number = 0;
- for (i=0; i<dimY*dimX; i++) {
- if (M[i] == 1) iterations_number++;
- }
- if ((int)(iterations_number/dimY) > dimX) iterations_number = dimX;
- }
- else iterations_number = iterationsNumb;
-
- if (iterations_number == 0) printf("%s \n", "Nothing to inpaint, zero mask!");
- else {
-
- printf("%s %i \n", "Max iteration number equals to:", iterations_number);
-
- /* Inpainting iterations run here*/
- int W_halfsize = 1;
- for(iter=0; iter < iterations_number; iter++) {
-
- //if (mod (iter, 2) == 0) {W_halfsize += 1;}
- // printf("%i \n", W_halfsize);
-
- /* pre-calculation of Gaussian distance weights */
- W_fullsize = (int)(2*W_halfsize + 1); /*full size of similarity window */
- Gauss_weights = (float*)calloc(W_fullsize*W_fullsize,sizeof(float ));
- counter = 0;
- for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) {
- for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) {
- Gauss_weights[counter] = exp(-(pow((i_m), 2) + pow((j_m), 2))/(2*W_halfsize*W_halfsize));
- counter++;
- }
- }
-
- if (trigger == 0) {
- /*Matlab*/
-#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr)
- for(j=0; j<dimY; j++) {
- switchmask = 0;
- for(i=0; i<dimX; i++) {
- switchcurr = 0;
- if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) {
- /* perform inpainting of the current pixel */
- inpaint_func(Output, M_upd, Gauss_weights, i, j, dimX, dimY, W_halfsize, W_fullsize);
- /* add value to the mask*/
- M_upd[j*dimX + i] = 0;
- switchmask = 1; switchcurr = 1;
- }
- if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) {
- /* perform inpainting of the previous (i-1) pixel */
- inpaint_func(Output, M_upd, Gauss_weights, i-1, j, dimX, dimY, W_halfsize, W_fullsize);
- /* add value to the mask*/
- M_upd[(j)*dimX + i-1] = 0;
- switchmask = 0;
- }
- }
- }
- }
- else {
- /*Python*/
- /* find a point in the mask to inpaint */
-#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr)
- for(i=0; i<dimX; i++) {
- switchmask = 0;
- for(j=0; j<dimY; j++) {
- switchcurr = 0;
- if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) {
- /* perform inpainting of the current pixel */
- inpaint_func(Output, M_upd, Gauss_weights, i, j, dimX, dimY, W_halfsize, W_fullsize);
- /* add value to the mask*/
- M_upd[j*dimX + i] = 0;
- switchmask = 1; switchcurr = 1;
- }
- if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) {
- /* perform inpainting of the previous (j-1) pixel */
- inpaint_func(Output, M_upd, Gauss_weights, i, j-1, dimX, dimY, W_halfsize, W_fullsize);
- /* add value to the mask*/
- M_upd[(j-1)*dimX + i] = 0;
- switchmask = 0;
- }
- }
- }
- }
- free(Gauss_weights);
-
- /* check if possible to terminate iterations earlier */
- counterElements = 0;
- for(i=0; i<dimX*dimY; i++) if (M_upd[i] == 0) counterElements++;
-
- if (counterElements == dimX*dimY) {
- printf("%s \n", "Padding completed!");
- break;
- }
- W_halfsize += SW_increment;
- }
- printf("%s %i \n", "Iterations stopped at:", iter);
- }
- return *Output;
-}
-
-float inpaint_func(float *U, unsigned char *M_upd, float *Gauss_weights, int i, int j, int dimX, int dimY, int W_halfsize, int W_fullsize)
-{
- int i1, j1, i_m, j_m, counter;
- float sum_val, sumweight;
-
- /*method 1: inpainting based on Euclidian weights */
- sumweight = 0.0f;
- counter = 0; sum_val = 0.0f;
- for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) {
- i1 = i+i_m;
- for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) {
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) {
- if (M_upd[j1*dimX + i1] == 0) {
- sumweight += Gauss_weights[counter];
- }
- }
- counter++;
- }
- }
- counter = 0; sum_val = 0.0f;
- for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) {
- i1 = i+i_m;
- for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) {
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) {
- if ((M_upd[j1*dimX + i1] == 0) && (sumweight != 0.0f)) {
- /* we have data so add it with Euc weight */
- sum_val += (Gauss_weights[counter]/sumweight)*U[j1*dimX + i1];
- }
- }
- counter++;
- }
- }
- U[j*dimX + i] = sum_val;
- return *U;
-}
-
diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h
deleted file mode 100644
index 0f99ed4..0000000
--- a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-
-/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case)
- * The method is heuristic but computationally efficent (especially for larger images).
- * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms
- * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data
- *
- * Inputs:
- * 1. 2D image or sinogram with horizontal or inclined regions of missing data
- * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data)
- * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice
-
- * Output:
- * 1. Inpainted image or a sinogram
- * 2. updated mask
- *
- * Reference: TBA
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float inpaint_func(float *U, unsigned char *M_upd, float *Gauss_weights, int i, int j, int dimX, int dimY, int W_halfsize, int W_fullsize);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/Diffus4th_order_core.c b/Core/regularisers_CPU/Diffus4th_order_core.c
deleted file mode 100644
index 01f4f64..0000000
--- a/Core/regularisers_CPU/Diffus4th_order_core.c
+++ /dev/null
@@ -1,250 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "Diffus4th_order_core.h"
-#include "utils.h"
-
-#define EPS 1.0e-7
-
-/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma)
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for the explicit scheme
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.
- */
-
-float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ)
-{
- int i,DimTotal;
- float sigmaPar2;
- float *W_Lapl=NULL;
- sigmaPar2 = sigmaPar*sigmaPar;
- DimTotal = dimX*dimY*dimZ;
-
- W_Lapl = calloc(DimTotal, sizeof(float));
-
- /* copy into output */
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- if (dimZ == 1) {
- /* running 2D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- /* Calculating weighted Laplacian */
- Weighted_Laplc2D(W_Lapl, Output, sigmaPar2, dimX, dimY);
- /* Perform iteration step */
- Diffusion_update_step2D(Output, Input, W_Lapl, lambdaPar, sigmaPar2, tau, (long)(dimX), (long)(dimY));
- }
- }
- else {
- /* running 3D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- /* Calculating weighted Laplacian */
- Weighted_Laplc3D(W_Lapl, Output, sigmaPar2, dimX, dimY, dimZ);
- /* Perform iteration step */
- Diffusion_update_step3D(Output, Input, W_Lapl, lambdaPar, sigmaPar2, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
- }
- }
- free(W_Lapl);
- return *Output;
-}
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-float Weighted_Laplc2D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq;
-
- #pragma omp parallel for shared(W_Lapl) private(i,j,i1,i2,j1,j2,index,gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- index = j*dimX+i;
-
- gradX = 0.5f*(U0[j*dimX+i2] - U0[j*dimX+i1]);
- gradX_sq = pow(gradX,2);
-
- gradY = 0.5f*(U0[j2*dimX+i] - U0[j1*dimX+i]);
- gradY_sq = pow(gradY,2);
-
- gradXX = U0[j*dimX+i2] + U0[j*dimX+i1] - 2*U0[index];
- gradYY = U0[j2*dimX+i] + U0[j1*dimX+i] - 2*U0[index];
-
- gradXY = 0.25f*(U0[j2*dimX+i2] + U0[j1*dimX+i1] - U0[j1*dimX+i2] - U0[j2*dimX+i1]);
- xy_2 = 2.0f*gradX*gradY*gradXY;
-
- denom = gradX_sq + gradY_sq;
-
- if (denom <= EPS) {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/EPS;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/EPS;
- }
- else {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/denom;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/denom;
- }
-
- c = 1.0f/(1.0f + denom/sigma);
- c_sq = c*c;
-
- W_Lapl[index] = c_sq*V_norm + c*V_orth;
- }
- }
- return *W_Lapl;
-}
-
-float Diffusion_update_step2D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float gradXXc, gradYYc;
-
- #pragma omp parallel for shared(Output, Input, W_Lapl) private(i,j,i1,i2,j1,j2,index,gradXXc,gradYYc)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- gradXXc = W_Lapl[j*dimX+i2] + W_Lapl[j*dimX+i1] - 2*W_Lapl[index];
- gradYYc = W_Lapl[j2*dimX+i] + W_Lapl[j1*dimX+i] - 2*W_Lapl[index];
-
- Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc) - (Output[index] - Input[index]));
- }
- }
- return *Output;
-}
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-float Weighted_Laplc3D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,i2,j1,j2,k1,k2,index;
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq, gradZ, gradZ_sq, gradZZ, gradXZ, gradYZ, xyz_1, xyz_2;
-
- #pragma omp parallel for shared(W_Lapl) private(i,j,k,i1,i2,j1,j2,k1,k2,index,gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq, gradZ, gradZ_sq, gradZZ, gradXZ, gradYZ, xyz_1, xyz_2)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions */
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- gradX = 0.5f*(U0[(dimX*dimY)*k + j*dimX+i2] - U0[(dimX*dimY)*k + j*dimX+i1]);
- gradX_sq = pow(gradX,2);
-
- gradY = 0.5f*(U0[(dimX*dimY)*k + j2*dimX+i] - U0[(dimX*dimY)*k + j1*dimX+i]);
- gradY_sq = pow(gradY,2);
-
- gradZ = 0.5f*(U0[(dimX*dimY)*k2 + j*dimX+i] - U0[(dimX*dimY)*k1 + j*dimX+i]);
- gradZ_sq = pow(gradZ,2);
-
- gradXX = U0[(dimX*dimY)*k + j*dimX+i2] + U0[(dimX*dimY)*k + j*dimX+i1] - 2*U0[index];
- gradYY = U0[(dimX*dimY)*k + j2*dimX+i] + U0[(dimX*dimY)*k + j1*dimX+i] - 2*U0[index];
- gradZZ = U0[(dimX*dimY)*k2 + j*dimX+i] + U0[(dimX*dimY)*k1 + j*dimX+i] - 2*U0[index];
-
- gradXY = 0.25f*(U0[(dimX*dimY)*k + j2*dimX+i2] + U0[(dimX*dimY)*k + j1*dimX+i1] - U0[(dimX*dimY)*k + j1*dimX+i2] - U0[(dimX*dimY)*k + j2*dimX+i1]);
- gradXZ = 0.25f*(U0[(dimX*dimY)*k2 + j*dimX+i2] - U0[(dimX*dimY)*k2+j*dimX+i1] - U0[(dimX*dimY)*k1+j*dimX+i2] + U0[(dimX*dimY)*k1+j*dimX+i1]);
- gradYZ = 0.25f*(U0[(dimX*dimY)*k2 +j2*dimX+i] - U0[(dimX*dimY)*k2+j1*dimX+i] - U0[(dimX*dimY)*k1+j2*dimX+i] + U0[(dimX*dimY)*k1+j1*dimX+i]);
-
- xy_2 = 2.0f*gradX*gradY*gradXY;
- xyz_1 = 2.0f*gradX*gradZ*gradXZ;
- xyz_2 = 2.0f*gradY*gradZ*gradYZ;
-
- denom = gradX_sq + gradY_sq + gradZ_sq;
-
- if (denom <= EPS) {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/EPS;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/EPS;
- }
- else {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/denom;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/denom;
- }
-
- c = 1.0f/(1.0f + denom/sigma);
- c_sq = c*c;
-
- W_Lapl[index] = c_sq*V_norm + c*V_orth;
- }
- }
- }
- return *W_Lapl;
-}
-
-float Diffusion_update_step3D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY, long dimZ)
-{
- long i,j,i1,i2,j1,j2,index,k,k1,k2;
- float gradXXc, gradYYc, gradZZc;
-
- #pragma omp parallel for shared(Output, Input, W_Lapl) private(i,j,i1,i2,j1,j2,k,k1,k2,index,gradXXc,gradYYc,gradZZc)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions */
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- gradXXc = W_Lapl[(dimX*dimY)*k + j*dimX+i2] + W_Lapl[(dimX*dimY)*k + j*dimX+i1] - 2*W_Lapl[index];
- gradYYc = W_Lapl[(dimX*dimY)*k + j2*dimX+i] + W_Lapl[(dimX*dimY)*k + j1*dimX+i] - 2*W_Lapl[index];
- gradZZc = W_Lapl[(dimX*dimY)*k2 + j*dimX+i] + W_Lapl[(dimX*dimY)*k1 + j*dimX+i] - 2*W_Lapl[index];
-
- Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc + gradZZc) - (Output[index] - Input[index]));
- }
- }
- }
- return *Output;
-}
diff --git a/Core/regularisers_CPU/Diffus4th_order_core.h b/Core/regularisers_CPU/Diffus4th_order_core.h
deleted file mode 100644
index d81afcb..0000000
--- a/Core/regularisers_CPU/Diffus4th_order_core.h
+++ /dev/null
@@ -1,55 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma)
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float Weighted_Laplc2D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY);
-CCPI_EXPORT float Diffusion_update_step2D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY);
-CCPI_EXPORT float Weighted_Laplc3D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Diffusion_update_step3D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/Diffusion_core.c b/Core/regularisers_CPU/Diffusion_core.c
deleted file mode 100644
index b765796..0000000
--- a/Core/regularisers_CPU/Diffusion_core.c
+++ /dev/null
@@ -1,307 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "Diffusion_core.h"
-#include "utils.h"
-
-#define EPS 1.0e-5
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-/*sign function*/
-int signNDFc(float x) {
- return (x > 0) - (x < 0);
-}
-
-/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ)
-{
- int i;
- float sigmaPar2;
- sigmaPar2 = sigmaPar/sqrt(2.0f);
-
- /* copy into output */
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- if (dimZ == 1) {
- /* running 2D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- if (sigmaPar == 0.0f) LinearDiff2D(Input, Output, lambdaPar, tau, (long)(dimX), (long)(dimY)); /* linear diffusion (heat equation) */
- else NonLinearDiff2D(Input, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY)); /* nonlinear diffusion */
- }
- }
- else {
- /* running 3D diffusion iterations */
- for(i=0; i < iterationsNumb; i++) {
- if (sigmaPar == 0.0f) LinearDiff3D(Input, Output, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
- else NonLinearDiff3D(Input, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY), (long)(dimZ));
- }
- }
- return *Output;
-}
-
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-/* linear diffusion (heat equation) */
-float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float e,w,n,s,e1,w1,n1,s1;
-
-#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- e = Output[j*dimX+i1];
- w = Output[j*dimX+i2];
- n = Output[j1*dimX+i];
- s = Output[j2*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }}
- return *Output;
-}
-
-/* nonlinear diffusion */
-float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY)
-{
- long i,j,i1,i2,j1,j2,index;
- float e,w,n,s,e1,w1,n1,s1;
-
-#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- e = Output[j*dimX+i1];
- w = Output[j*dimX+i2];
- n = Output[j1*dimX+i];
- s = Output[j2*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (fabs(e1) > sigmaPar) e1 = signNDFc(e1);
- else e1 = e1/sigmaPar;
-
- if (fabs(w1) > sigmaPar) w1 = signNDFc(w1);
- else w1 = w1/sigmaPar;
-
- if (fabs(n1) > sigmaPar) n1 = signNDFc(n1);
- else n1 = n1/sigmaPar;
-
- if (fabs(s1) > sigmaPar) s1 = signNDFc(s1);
- else s1 = s1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + powf((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + powf((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + powf((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + powf((s1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- }
- else {
- printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
- break;
- }
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }}
- return *Output;
-}
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-/* linear diffusion (heat equation) */
-float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,i2,j1,j2,k1,k2,index;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
-
-#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)
-for(k=0; k<dimZ; k++) {
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = (dimX*dimY)*k + j*dimX+i;
-
- e = Output[(dimX*dimY)*k + j*dimX+i1];
- w = Output[(dimX*dimY)*k + j*dimX+i2];
- n = Output[(dimX*dimY)*k + j1*dimX+i];
- s = Output[(dimX*dimY)*k + j2*dimX+i];
- u = Output[(dimX*dimY)*k1 + j*dimX+i];
- d = Output[(dimX*dimY)*k2 + j*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }}}
- return *Output;
-}
-
-float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,i2,j1,j2,k1,k2,index;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
-
-#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d)
-for(k=0; k<dimZ; k++) {
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = (dimX*dimY)*k + j*dimX+i;
-
- e = Output[(dimX*dimY)*k + j*dimX+i1];
- w = Output[(dimX*dimY)*k + j*dimX+i2];
- n = Output[(dimX*dimY)*k + j1*dimX+i];
- s = Output[(dimX*dimY)*k + j2*dimX+i];
- u = Output[(dimX*dimY)*k1 + j*dimX+i];
- d = Output[(dimX*dimY)*k2 + j*dimX+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (fabs(e1) > sigmaPar) e1 = signNDFc(e1);
- else e1 = e1/sigmaPar;
-
- if (fabs(w1) > sigmaPar) w1 = signNDFc(w1);
- else w1 = w1/sigmaPar;
-
- if (fabs(n1) > sigmaPar) n1 = signNDFc(n1);
- else n1 = n1/sigmaPar;
-
- if (fabs(s1) > sigmaPar) s1 = signNDFc(s1);
- else s1 = s1/sigmaPar;
-
- if (fabs(u1) > sigmaPar) u1 = signNDFc(u1);
- else u1 = u1/sigmaPar;
-
- if (fabs(d1) > sigmaPar) d1 = signNDFc(d1);
- else d1 = d1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + powf((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + powf((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + powf((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + powf((s1/sigmaPar),2));
- u1 = (u1)/(1.0f + powf((u1/sigmaPar),2));
- d1 = (d1)/(1.0f + powf((d1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- if (fabs(u1) <= sigmaPar) u1 = u1*powf((1.0f - powf((u1/sigmaPar),2)), 2);
- else u1 = 0.0f;
- if (fabs(d1) <= sigmaPar) d1 = d1*powf((1.0f - powf((d1/sigmaPar),2)), 2);
- else d1 = 0.0f;
- }
- else {
- printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
- break;
- }
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }}}
- return *Output;
-}
diff --git a/Core/regularisers_CPU/Diffusion_core.h b/Core/regularisers_CPU/Diffusion_core.h
deleted file mode 100644
index cc36dad..0000000
--- a/Core/regularisers_CPU/Diffusion_core.h
+++ /dev/null
@@ -1,59 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-
-/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY);
-CCPI_EXPORT float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY);
-CCPI_EXPORT float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/FGP_TV_core.c b/Core/regularisers_CPU/FGP_TV_core.c
deleted file mode 100644
index 68d58b7..0000000
--- a/Core/regularisers_CPU/FGP_TV_core.c
+++ /dev/null
@@ -1,321 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ)
-{
- int ll;
- long j, DimTotal;
- float re, re1;
- float tk = 1.0f;
- float tkp1=1.0f;
- int count = 0;
-
- if (dimZ <= 1) {
- /*2D case */
- float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL;
- DimTotal = (long)(dimX*dimY);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- P1 = calloc(DimTotal, sizeof(float));
- P2 = calloc(DimTotal, sizeof(float));
- P1_prev = calloc(DimTotal, sizeof(float));
- P2_prev = calloc(DimTotal, sizeof(float));
- R1 = calloc(DimTotal, sizeof(float));
- R2 = calloc(DimTotal, sizeof(float));
-
- /* begin iterations */
- for(ll=0; ll<iterationsNumb; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func2D(Input, Output, R1, R2, lambdaPar, (long)(dimX), (long)(dimY));
-
- /* apply nonnegativity */
- if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;}
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, Output, R1, R2, lambdaPar, (long)(dimX), (long)(dimY));
-
- /* projection step */
- Proj_func2D(P1, P2, methodTV, DimTotal);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, DimTotal);
-
- /* check early stopping criteria */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++)
- {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /*storing old values*/
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l);
- copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), 1l);
- copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), 1l);
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(P1); free(P2); free(P1_prev); free(P2_prev); free(R1); free(R2);
- }
- else {
- /*3D case*/
- float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL;
- DimTotal = (long)(dimX*dimY*dimZ);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- P1 = calloc(DimTotal, sizeof(float));
- P2 = calloc(DimTotal, sizeof(float));
- P3 = calloc(DimTotal, sizeof(float));
- P1_prev = calloc(DimTotal, sizeof(float));
- P2_prev = calloc(DimTotal, sizeof(float));
- P3_prev = calloc(DimTotal, sizeof(float));
- R1 = calloc(DimTotal, sizeof(float));
- R2 = calloc(DimTotal, sizeof(float));
- R3 = calloc(DimTotal, sizeof(float));
-
- /* begin iterations */
- for(ll=0; ll<iterationsNumb; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func3D(Input, Output, R1, R2, R3, lambdaPar, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* apply nonnegativity */
- if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;}
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, Output, R1, R2, R3, lambdaPar, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* projection step */
- Proj_func3D(P1, P2, P3, methodTV, DimTotal);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, DimTotal);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++)
- {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 4) break;
-
- /*storing old values*/
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P3, P3_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(P1); free(P2); free(P3); free(P1_prev); free(P2_prev); free(P3_prev); free(R1); free(R2); free(R3);
- }
- return *Output;
-}
-
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY)
-{
- float val1, val2;
- long i,j,index;
-#pragma omp parallel for shared(A,D,R1,R2) private(index,i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[j*dimX + (i-1)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(j-1)*dimX + i];}
- D[index] = A[index] - lambda*(R1[index] + R2[index] - val1 - val2);
- }}
- return *D;
-}
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, long dimX, long dimY)
-{
- float val1, val2, multip;
- long i,j,index;
- multip = (1.0f/(8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(index,i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[index] - D[j*dimX + (i+1)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[index] - D[(j+1)*dimX + i];
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- }}
- return 1;
-}
-float Proj_func2D(float *P1, float *P2, int methTV, long DimTotal)
-{
- float val1, val2, denom, sq_denom;
- long i;
- if (methTV == 0) {
- /* isotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,denom,sq_denom)
- for(i=0; i<DimTotal; i++) {
- denom = powf(P1[i],2) + powf(P2[i],2);
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrtf(denom);
- P1[i] = P1[i]*sq_denom;
- P2[i] = P2[i]*sq_denom;
- }
- }
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,val1,val2)
- for(i=0; i<DimTotal; i++) {
- val1 = fabs(P1[i]);
- val2 = fabs(P2[i]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- P1[i] = P1[i]/val1;
- P2[i] = P2[i]/val2;
- }
- }
- return 1;
-}
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal)
-{
- long i;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i)
- for(i=0; i<DimTotal; i++) {
- R1[i] = P1[i] + multip*(P1[i] - P1_old[i]);
- R2[i] = P2[i] + multip*(P2[i] - P2_old[i]);
- }
- return 1;
-}
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ)
-{
- float val1, val2, val3;
- long i,j,k,index;
-#pragma omp parallel for shared(A,D,R1,R2,R3) private(index,i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[(dimX*dimY)*k + j*dimX + (i-1)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(dimX*dimY)*k + (j-1)*dimX + i];}
- if (k == 0) {val3 = 0.0f;} else {val3 = R3[(dimX*dimY)*(k-1) + j*dimX + i];}
- D[index] = A[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3);
- }}}
- return *D;
-}
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ)
-{
- float val1, val2, val3, multip;
- long i,j,k, index;
- multip = (1.0f/(26.0f*lambda));
-#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(index,i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[index] - D[(dimX*dimY)*k + j*dimX + (i+1)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[index] - D[(dimX*dimY)*k + (j+1)*dimX + i];
- if (k == dimZ-1) val3 = 0.0f; else val3 = D[index] - D[(dimX*dimY)*(k+1) + j*dimX + i];
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- P3[index] = R3[index] + multip*val3;
- }}}
- return 1;
-}
-float Proj_func3D(float *P1, float *P2, float *P3, int methTV, long DimTotal)
-{
- float val1, val2, val3, denom, sq_denom;
- long i;
- if (methTV == 0) {
- /* isotropic TV*/
- #pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3,sq_denom)
- for(i=0; i<DimTotal; i++) {
- denom = powf(P1[i],2) + powf(P2[i],2) + powf(P3[i],2);
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrtf(denom);
- P1[i] = P1[i]*sq_denom;
- P2[i] = P2[i]*sq_denom;
- P3[i] = P3[i]*sq_denom;
- }
- }
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3)
- for(i=0; i<DimTotal; i++) {
- val1 = fabs(P1[i]);
- val2 = fabs(P2[i]);
- val3 = fabs(P3[i]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
- P1[i] = P1[i]/val1;
- P2[i] = P2[i]/val2;
- P3[i] = P3[i]/val3;
- }
- }
- return 1;
-}
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal)
-{
- long i;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i)
- for(i=0; i<DimTotal; i++) {
- R1[i] = P1[i] + multip*(P1[i] - P1_old[i]);
- R2[i] = P2[i] + multip*(P2[i] - P2_old[i]);
- R3[i] = P3[i] + multip*(P3[i] - P3_old[i]);
- }
- return 1;
-}
diff --git a/Core/regularisers_CPU/FGP_TV_core.h b/Core/regularisers_CPU/FGP_TV_core.h
deleted file mode 100644
index 3418604..0000000
--- a/Core/regularisers_CPU/FGP_TV_core.h
+++ /dev/null
@@ -1,63 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY);
-CCPI_EXPORT float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, long dimX, long dimY);
-CCPI_EXPORT float Proj_func2D(float *P1, float *P2, int methTV, long DimTotal);
-CCPI_EXPORT float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal);
-
-CCPI_EXPORT float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Proj_func3D(float *P1, float *P2, float *P3, int methTV, long DimTotal);
-CCPI_EXPORT float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/FGP_dTV_core.c b/Core/regularisers_CPU/FGP_dTV_core.c
deleted file mode 100644
index 17b75ff..0000000
--- a/Core/regularisers_CPU/FGP_dTV_core.c
+++ /dev/null
@@ -1,441 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "FGP_dTV_core.h"
-
-/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
- * which employs structural similarity of the level sets of two images/volumes, see [1,2]
- * The current implementation updates image 1 while image 2 is being fixed.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
- * 3. lambdaPar - regularization parameter [REQUIRED]
- * 4. Number of iterations [OPTIONAL]
- * 5. eplsilon: tolerance constant [OPTIONAL]
- * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
- * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
- * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
- * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
- *
- * Output:
- * [1] Filtered/regularized image/volume
- *
- * This function is based on the Matlab's codes and papers by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
- */
-
-float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ)
-{
- int ll;
- long j, DimTotal;
- float re, re1;
- float tk = 1.0f;
- float tkp1=1.0f;
- int count = 0;
-
- if (dimZ <= 1) {
- /*2D case */
- float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL, *InputRef_x=NULL, *InputRef_y=NULL;
- DimTotal = (long)(dimX*dimY);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- P1 = calloc(DimTotal, sizeof(float));
- P2 = calloc(DimTotal, sizeof(float));
- P1_prev = calloc(DimTotal, sizeof(float));
- P2_prev = calloc(DimTotal, sizeof(float));
- R1 = calloc(DimTotal, sizeof(float));
- R2 = calloc(DimTotal, sizeof(float));
- InputRef_x = calloc(DimTotal, sizeof(float));
- InputRef_y = calloc(DimTotal, sizeof(float));
-
- /* calculate gradient field (smoothed) for the reference image */
- GradNorm_func2D(InputRef, InputRef_x, InputRef_y, eta, (long)(dimX), (long)(dimY));
-
- /* begin iterations */
- for(ll=0; ll<iterationsNumb; ll++) {
-
- /*projects a 2D vector field R-1,2 onto the orthogonal complement of another 2D vector field InputRef_xy*/
- ProjectVect_func2D(R1, R2, InputRef_x, InputRef_y, (long)(dimX), (long)(dimY));
-
- /* computing the gradient of the objective function */
- Obj_dfunc2D(Input, Output, R1, R2, lambdaPar, (long)(dimX), (long)(dimY));
-
- /* apply nonnegativity */
- if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;}
-
- /*Taking a step towards minus of the gradient*/
- Grad_dfunc2D(P1, P2, Output, R1, R2, InputRef_x, InputRef_y, lambdaPar, (long)(dimX), (long)(dimY));
-
- /* projection step */
- Proj_dfunc2D(P1, P2, methodTV, DimTotal);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_dfunc2D(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, DimTotal);
-
- /* check early stopping criteria */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++)
- {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /*storing old values*/
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l);
- copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), 1l);
- copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), 1l);
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(P1); free(P2); free(P1_prev); free(P2_prev); free(R1); free(R2); free(InputRef_x); free(InputRef_y);
- }
- else {
- /*3D case*/
- float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *InputRef_z=NULL;
- DimTotal = (long)(dimX*dimY*dimZ);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- P1 = calloc(DimTotal, sizeof(float));
- P2 = calloc(DimTotal, sizeof(float));
- P3 = calloc(DimTotal, sizeof(float));
- P1_prev = calloc(DimTotal, sizeof(float));
- P2_prev = calloc(DimTotal, sizeof(float));
- P3_prev = calloc(DimTotal, sizeof(float));
- R1 = calloc(DimTotal, sizeof(float));
- R2 = calloc(DimTotal, sizeof(float));
- R3 = calloc(DimTotal, sizeof(float));
- InputRef_x = calloc(DimTotal, sizeof(float));
- InputRef_y = calloc(DimTotal, sizeof(float));
- InputRef_z = calloc(DimTotal, sizeof(float));
-
- /* calculate gradient field (smoothed) for the reference volume */
- GradNorm_func3D(InputRef, InputRef_x, InputRef_y, InputRef_z, eta, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* begin iterations */
- for(ll=0; ll<iterationsNumb; ll++) {
-
- /*projects a 3D vector field R-1,2,3 onto the orthogonal complement of another 3D vector field InputRef_xyz*/
- ProjectVect_func3D(R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* computing the gradient of the objective function */
- Obj_dfunc3D(Input, Output, R1, R2, R3, lambdaPar, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* apply nonnegativity */
- if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;}
-
- /*Taking a step towards minus of the gradient*/
- Grad_dfunc3D(P1, P2, P3, Output, R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, lambdaPar, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* projection step */
- Proj_dfunc3D(P1, P2, P3, methodTV, DimTotal);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_dfunc3D(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, DimTotal);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++)
- {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 4) break;
-
- /*storing old values*/
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(P3, P3_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(P1); free(P2); free(P3); free(P1_prev); free(P2_prev); free(P3_prev); free(R1); free(R2); free(R3); free(InputRef_x); free(InputRef_y); free(InputRef_z);
- }
- return *Output;
-}
-
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-
-float GradNorm_func2D(float *B, float *B_x, float *B_y, float eta, long dimX, long dimY)
-{
- long i,j,index;
- float val1, val2, gradX, gradY, magn;
-#pragma omp parallel for shared(B, B_x, B_y) private(i,j,index,val1,val2,gradX,gradY,magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* zero boundary conditions */
- if (i == dimX-1) {val1 = 0.0f;} else {val1 = B[j*dimX + (i+1)];}
- if (j == dimY-1) {val2 = 0.0f;} else {val2 = B[(j+1)*dimX + i];}
- gradX = val1 - B[index];
- gradY = val2 - B[index];
- magn = pow(gradX,2) + pow(gradY,2);
- magn = sqrt(magn + pow(eta,2)); /* the eta-smoothed gradients magnitude */
- B_x[index] = gradX/magn;
- B_y[index] = gradY/magn;
- }}
- return 1;
-}
-
-float ProjectVect_func2D(float *R1, float *R2, float *B_x, float *B_y, long dimX, long dimY)
-{
- long i,j,index;
- float in_prod;
-#pragma omp parallel for shared(R1, R2, B_x, B_y) private(index,i,j,in_prod)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- in_prod = R1[index]*B_x[index] + R2[index]*B_y[index]; /* calculate inner product */
- R1[index] = R1[index] - in_prod*B_x[index];
- R2[index] = R2[index] - in_prod*B_y[index];
- }}
- return 1;
-}
-
-float Obj_dfunc2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY)
-{
- float val1, val2;
- long i,j,index;
-#pragma omp parallel for shared(A,D,R1,R2) private(index,i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[j*dimX + (i-1)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(j-1)*dimX + i];}
- D[index] = A[index] - lambda*(R1[index] + R2[index] - val1 - val2);
- }}
- return *D;
-}
-float Grad_dfunc2D(float *P1, float *P2, float *D, float *R1, float *R2, float *B_x, float *B_y, float lambda, long dimX, long dimY)
-{
- float val1, val2, multip, in_prod;
- long i,j,index;
- multip = (1.0f/(8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,D,R1,R2,B_x,B_y,multip) private(i,j,index,val1,val2,in_prod)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[index] - D[j*dimX + (i+1)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[index] - D[(j+1)*dimX + i];
-
- in_prod = val1*B_x[index] + val2*B_y[index]; /* calculate inner product */
- val1 = val1 - in_prod*B_x[index];
- val2 = val2 - in_prod*B_y[index];
-
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
-
- }}
- return 1;
-}
-float Proj_dfunc2D(float *P1, float *P2, int methTV, long DimTotal)
-{
- float val1, val2, denom, sq_denom;
- long i;
- if (methTV == 0) {
- /* isotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,denom,sq_denom)
- for(i=0; i<DimTotal; i++) {
- denom = powf(P1[i],2) + powf(P2[i],2);
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrtf(denom);
- P1[i] = P1[i]*sq_denom;
- P2[i] = P2[i]*sq_denom;
- }
- }
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,val1,val2)
- for(i=0; i<DimTotal; i++) {
- val1 = fabs(P1[i]);
- val2 = fabs(P2[i]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- P1[i] = P1[i]/val1;
- P2[i] = P2[i]/val2;
- }
- }
- return 1;
-}
-float Rupd_dfunc2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal)
-{
- long i;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i)
- for(i=0; i<DimTotal; i++) {
- R1[i] = P1[i] + multip*(P1[i] - P1_old[i]);
- R2[i] = P2[i] + multip*(P2[i] - P2_old[i]);
- }
- return 1;
-}
-
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-float GradNorm_func3D(float *B, float *B_x, float *B_y, float *B_z, float eta, long dimX, long dimY, long dimZ)
-{
- long i, j, k, index;
- float val1, val2, val3, gradX, gradY, gradZ, magn;
-#pragma omp parallel for shared(B, B_x, B_y, B_z) private(i,j,k,index,val1,val2,val3,gradX,gradY,gradZ,magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
-
- /* zero boundary conditions */
- if (i == dimX-1) {val1 = 0.0f;} else {val1 = B[(dimX*dimY)*k + j*dimX+(i+1)];}
- if (j == dimY-1) {val2 = 0.0f;} else {val2 = B[(dimX*dimY)*k + (j+1)*dimX+i];}
- if (k == dimZ-1) {val3 = 0.0f;} else {val3 = B[(dimX*dimY)*(k+1) + (j)*dimX+i];}
-
- gradX = val1 - B[index];
- gradY = val2 - B[index];
- gradZ = val3 - B[index];
- magn = pow(gradX,2) + pow(gradY,2) + pow(gradZ,2);
- magn = sqrt(magn + pow(eta,2)); /* the eta-smoothed gradients magnitude */
- B_x[index] = gradX/magn;
- B_y[index] = gradY/magn;
- B_z[index] = gradZ/magn;
- }}}
- return 1;
-}
-
-float ProjectVect_func3D(float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, long dimX, long dimY, long dimZ)
-{
- long i,j,k,index;
- float in_prod;
-#pragma omp parallel for shared(R1, R2, R3, B_x, B_y, B_z) private(index,i,j,k,in_prod)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- in_prod = R1[index]*B_x[index] + R2[index]*B_y[index] + R3[index]*B_z[index]; /* calculate inner product */
- R1[index] = R1[index] - in_prod*B_x[index];
- R2[index] = R2[index] - in_prod*B_y[index];
- R3[index] = R3[index] - in_prod*B_z[index];
- }}}
- return 1;
-}
-
-float Obj_dfunc3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ)
-{
- float val1, val2, val3;
- long i,j,k,index;
-#pragma omp parallel for shared(A,D,R1,R2,R3) private(index,i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[(dimX*dimY)*k + j*dimX + (i-1)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(dimX*dimY)*k + (j-1)*dimX + i];}
- if (k == 0) {val3 = 0.0f;} else {val3 = R3[(dimX*dimY)*(k-1) + j*dimX + i];}
- D[index] = A[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3);
- }}}
- return *D;
-}
-float Grad_dfunc3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, float lambda, long dimX, long dimY, long dimZ)
-{
- float val1, val2, val3, multip, in_prod;
- long i,j,k, index;
- multip = (1.0f/(26.0f*lambda));
-#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(index,i,j,k,val1,val2,val3,in_prod)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[index] - D[(dimX*dimY)*k + j*dimX + (i+1)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[index] - D[(dimX*dimY)*k + (j+1)*dimX + i];
- if (k == dimZ-1) val3 = 0.0f; else val3 = D[index] - D[(dimX*dimY)*(k+1) + j*dimX + i];
-
- in_prod = val1*B_x[index] + val2*B_y[index] + val3*B_z[index]; /* calculate inner product */
- val1 = val1 - in_prod*B_x[index];
- val2 = val2 - in_prod*B_y[index];
- val3 = val3 - in_prod*B_z[index];
-
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- P3[index] = R3[index] + multip*val3;
- }}}
- return 1;
-}
-float Proj_dfunc3D(float *P1, float *P2, float *P3, int methTV, long DimTotal)
-{
- float val1, val2, val3, denom, sq_denom;
- long i;
- if (methTV == 0) {
- /* isotropic TV*/
- #pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3,sq_denom)
- for(i=0; i<DimTotal; i++) {
- denom = powf(P1[i],2) + powf(P2[i],2) + powf(P3[i],2);
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrtf(denom);
- P1[i] = P1[i]*sq_denom;
- P2[i] = P2[i]*sq_denom;
- P3[i] = P3[i]*sq_denom;
- }
- }
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3)
- for(i=0; i<DimTotal; i++) {
- val1 = fabs(P1[i]);
- val2 = fabs(P2[i]);
- val3 = fabs(P3[i]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
- P1[i] = P1[i]/val1;
- P2[i] = P2[i]/val2;
- P3[i] = P3[i]/val3;
- }
- }
- return 1;
-}
-float Rupd_dfunc3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal)
-{
- long i;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i)
- for(i=0; i<DimTotal; i++) {
- R1[i] = P1[i] + multip*(P1[i] - P1_old[i]);
- R2[i] = P2[i] + multip*(P2[i] - P2_old[i]);
- R3[i] = P3[i] + multip*(P3[i] - P3_old[i]);
- }
- return 1;
-}
diff --git a/Core/regularisers_CPU/FGP_dTV_core.h b/Core/regularisers_CPU/FGP_dTV_core.h
deleted file mode 100644
index 442dd30..0000000
--- a/Core/regularisers_CPU/FGP_dTV_core.h
+++ /dev/null
@@ -1,72 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
- * which employs structural similarity of the level sets of two images/volumes, see [1,2]
- * The current implementation updates image 1 while image 2 is being fixed.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
- * 3. lambdaPar - regularization parameter [REQUIRED]
- * 4. Number of iterations [OPTIONAL]
- * 5. eplsilon: tolerance constant [OPTIONAL]
- * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
- * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
- * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
- * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
- *
- * Output:
- * [1] Filtered/regularized image/volume
- *
- * This function is based on the Matlab's codes and papers by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float GradNorm_func2D(float *B, float *B_x, float *B_y, float eta, long dimX, long dimY);
-CCPI_EXPORT float ProjectVect_func2D(float *R1, float *R2, float *B_x, float *B_y, long dimX, long dimY);
-CCPI_EXPORT float Obj_dfunc2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY);
-CCPI_EXPORT float Grad_dfunc2D(float *P1, float *P2, float *D, float *R1, float *R2, float *B_x, float *B_y, float lambda, long dimX, long dimY);
-CCPI_EXPORT float Proj_dfunc2D(float *P1, float *P2, int methTV, long DimTotal);
-CCPI_EXPORT float Rupd_dfunc2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal);
-
-CCPI_EXPORT float GradNorm_func3D(float *B, float *B_x, float *B_y, float *B_z, float eta, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float ProjectVect_func3D(float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Obj_dfunc3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Grad_dfunc3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, float lambda, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Proj_dfunc3D(float *P1, float *P2, float *P3, int methTV, long DimTotal);
-CCPI_EXPORT float Rupd_dfunc3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/LLT_ROF_core.c b/Core/regularisers_CPU/LLT_ROF_core.c
deleted file mode 100644
index 8416a14..0000000
--- a/Core/regularisers_CPU/LLT_ROF_core.c
+++ /dev/null
@@ -1,410 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "LLT_ROF_core.h"
-#define EPS_LLT 0.01
-#define EPS_ROF 1.0e-12
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-/*sign function*/
-int signLLT(float x) {
- return (x > 0) - (x < 0);
-}
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
- *
-* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
-* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
-* lambdaLLT starting with smaller values.
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambdaROF - ROF-related regularisation parameter
-* 3. lambdaLLT - LLT-related regularisation parameter
-* 4. tau - time-marching step
-* 5. iter - iterations number (for both models)
-*
-* Output:
-* Filtered/regularised image
-*
-* References:
-* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*/
-
-float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ)
-{
- long DimTotal;
- int ll;
- float *D1_LLT=NULL, *D2_LLT=NULL, *D3_LLT=NULL, *D1_ROF=NULL, *D2_ROF=NULL, *D3_ROF=NULL;
-
- DimTotal = (long)(dimX*dimY*dimZ);
-
- D1_ROF = calloc(DimTotal, sizeof(float));
- D2_ROF = calloc(DimTotal, sizeof(float));
- D3_ROF = calloc(DimTotal, sizeof(float));
-
- D1_LLT = calloc(DimTotal, sizeof(float));
- D2_LLT = calloc(DimTotal, sizeof(float));
- D3_LLT = calloc(DimTotal, sizeof(float));
-
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize */
-
- for(ll = 0; ll < iterationsNumb; ll++) {
- if (dimZ == 1) {
- /* 2D case */
- /****************ROF******************/
- /* calculate first-order differences */
- D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), 1l);
- D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), 1l);
- /****************LLT******************/
- /* estimate second-order derrivatives */
- der2D_LLT(Output, D1_LLT, D2_LLT, (long)(dimX), (long)(dimY), 1l);
- /* Joint update for ROF and LLT models */
- Update2D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D1_ROF, D2_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), 1l);
- }
- else {
- /* 3D case */
- /* calculate first-order differences */
- D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
- D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
- D3_func_ROF(Output, D3_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
- /****************LLT******************/
- /* estimate second-order derrivatives */
- der3D_LLT(Output, D1_LLT, D2_LLT, D3_LLT,(long)(dimX), (long)(dimY), (long)(dimZ));
- /* Joint update for ROF and LLT models */
- Update3D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D3_LLT, D1_ROF, D2_ROF, D3_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
- }
- } /*end of iterations*/
- free(D1_LLT);free(D2_LLT);free(D3_LLT);
- free(D1_ROF);free(D2_ROF);free(D3_ROF);
- return *Output;
-}
-
-/*************************************************************************/
-/**********************LLT-related functions *****************************/
-/*************************************************************************/
-float der2D_LLT(float *U, float *D1, float *D2, long dimX, long dimY, long dimZ)
-{
- long i, j, index, i_p, i_m, j_m, j_p;
- float dxx, dyy, denom_xx, denom_yy;
-#pragma omp parallel for shared(U,D1,D2) private(i, j, index, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = U[j*dimX+i_p] - 2.0f*U[index] + U[j*dimX+i_m];
- dyy = U[j_p*dimX+i] - 2.0f*U[index] + U[j_m*dimX+i];
-
- denom_xx = fabs(dxx) + EPS_LLT;
- denom_yy = fabs(dyy) + EPS_LLT;
-
- D1[index] = dxx / denom_xx;
- D2[index] = dyy / denom_yy;
- }
- }
- return 1;
-}
-
-float der3D_LLT(float *U, float *D1, float *D2, float *D3, long dimX, long dimY, long dimZ)
- {
- long i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, index;
- float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
- #pragma omp parallel for shared(U,D1,D2,D3) private(i, j, index, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- dxx = U[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*U[index] + U[(dimX*dimY)*k + j*dimX+i_m];
- dyy = U[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k + j_m*dimX+i];
- dzz = U[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k_m + j*dimX+i];
-
- denom_xx = fabs(dxx) + EPS_LLT;
- denom_yy = fabs(dyy) + EPS_LLT;
- denom_zz = fabs(dzz) + EPS_LLT;
-
- D1[index] = dxx / denom_xx;
- D2[index] = dyy / denom_yy;
- D3[index] = dzz / denom_zz;
- }
- }
- }
- return 1;
- }
-
-/*************************************************************************/
-/**********************ROF-related functions *****************************/
-/*************************************************************************/
-
-/* calculate differences 1 */
-float D1_func_ROF(float *A, float *D1, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1;
- long i,j,k,i1,i2,k1,j1,j2,k2,index;
-
- if (dimZ > 1) {
-#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + j*dimX + i1] - A[index]; /* y+ */
- /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */
- NOMy_0 = A[index] - A[(dimX*dimY)*k + j*dimX + i2]; /* y- */
-
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- NOMz_0 = A[index] - A[(dimX*dimY)*k2 + j*dimX + i]; /* z- */
-
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
- denom3 = denom3*denom3;
- T1 = sqrt(denom1 + denom2 + denom3 + EPS_ROF);
- D1[index] = NOMx_1/T1;
- }}}
- }
- else {
-#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1,index)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
- /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */
- NOMy_0 = A[index] - A[(j)*dimX + i2]; /* y- */
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom2 = denom2*denom2;
- T1 = sqrtf(denom1 + denom2 + EPS_ROF);
- D1[index] = NOMx_1/T1;
- }}
- }
- return *D1;
-}
-/* calculate differences 2 */
-float D2_func_ROF(float *A, float *D2, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2;
- long i,j,k,i1,i2,k1,j1,j2,k2,index;
-
- if (dimZ > 1) {
-#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
- NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- NOMz_0 = A[index] - A[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */
-
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
- denom3 = denom3*denom3;
- T2 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF);
- D2[index] = NOMy_1/T2;
- }}}
- }
- else {
-#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2,index)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
- NOMx_0 = A[index] - A[j2*dimX + i]; /* x- */
- /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */ /* y- */
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- T2 = sqrtf(denom1 + denom2 + EPS_ROF);
- D2[index] = NOMy_1/T2;
- }}
- }
- return *D2;
-}
-
-/* calculate differences 3 */
-float D3_func_ROF(float *A, float *D3, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3;
- long index,i,j,k,i1,i2,k1,j1,j2,k2;
-
-#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
- NOMy_0 = A[index] - A[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */
- NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */
-
- denom1 = NOMz_1*NOMz_1;
- denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom3 = denom3*denom3;
- T3 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF);
- D3[index] = NOMz_1/T3;
- }}}
- return *D3;
-}
-
-/*************************************************************************/
-/**********************ROF-LLT-related functions *************************/
-/*************************************************************************/
-
-float Update2D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ)
-{
- long i, j, index, i_p, i_m, j_m, j_p;
- float div, laplc, dxx, dyy, dv1, dv2;
-#pragma omp parallel for shared(U,U0) private(i, j, index, i_p, i_m, j_m, j_p, laplc, div, dxx, dyy, dv1, dv2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- /*LLT-related part*/
- dxx = D1_LLT[j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[j*dimX+i_m];
- dyy = D2_LLT[j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[j_m*dimX+i];
- laplc = dxx + dyy; /*build Laplacian*/
-
- /*ROF-related part*/
- dv1 = D1_ROF[index] - D1_ROF[j_m*dimX + i];
- dv2 = D2_ROF[index] - D2_ROF[j*dimX + i_m];
- div = dv1 + dv2; /*build Divirgent*/
-
- /*combine all into one cost function to minimise */
- U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
- }
- }
- return *U;
-}
-
-float Update3D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ)
-{
- long i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, index;
- float div, laplc, dxx, dyy, dzz, dv1, dv2, dv3;
-#pragma omp parallel for shared(U,U0) private(i, j, k, index, i_p, i_m, j_m, j_p, k_p, k_m, laplc, div, dxx, dyy, dzz, dv1, dv2, dv3)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- /*LLT-related part*/
- dxx = D1_LLT[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[(dimX*dimY)*k + j*dimX+i_m];
- dyy = D2_LLT[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[(dimX*dimY)*k + j_m*dimX+i];
- dzz = D3_LLT[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*D3_LLT[index] + D3_LLT[(dimX*dimY)*k_m + j*dimX+i];
- laplc = dxx + dyy + dzz; /*build Laplacian*/
-
- /*ROF-related part*/
- dv1 = D1_ROF[index] - D1_ROF[(dimX*dimY)*k + j_m*dimX+i];
- dv2 = D2_ROF[index] - D2_ROF[(dimX*dimY)*k + j*dimX+i_m];
- dv3 = D3_ROF[index] - D3_ROF[(dimX*dimY)*k_m + j*dimX+i];
- div = dv1 + dv2 + dv3; /*build Divirgent*/
-
- /*combine all into one cost function to minimise */
- U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
- }
- }
- }
- return *U;
-}
-
diff --git a/Core/regularisers_CPU/LLT_ROF_core.h b/Core/regularisers_CPU/LLT_ROF_core.h
deleted file mode 100644
index 8e6591e..0000000
--- a/Core/regularisers_CPU/LLT_ROF_core.h
+++ /dev/null
@@ -1,65 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
- *
-* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
-* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
-* lambdaLLT starting with smaller values.
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambdaROF - ROF-related regularisation parameter
-* 3. lambdaLLT - LLT-related regularisation parameter
-* 4. tau - time-marching step
-* 5. iter - iterations number (for both models)
-*
-* Output:
-* Filtered/regularised image
-*
-* References:
-* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*/
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float der2D_LLT(float *U, float *D1, float *D2, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float der3D_LLT(float *U, float *D1, float *D2, float *D3, long dimX, long dimY, long dimZ);
-
-CCPI_EXPORT float D1_func_ROF(float *A, float *D1, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float D2_func_ROF(float *A, float *D2, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float D3_func_ROF(float *A, float *D3, long dimX, long dimY, long dimZ);
-
-CCPI_EXPORT float Update2D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float Update3D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/Nonlocal_TV_core.c b/Core/regularisers_CPU/Nonlocal_TV_core.c
deleted file mode 100644
index c4c9118..0000000
--- a/Core/regularisers_CPU/Nonlocal_TV_core.c
+++ /dev/null
@@ -1,173 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "Nonlocal_TV_core.h"
-
-/* C-OMP implementation of non-local regulariser
- * Weights and associated indices must be given as an input.
- * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort
- * goes in pre-calculation of weights and selection of patches
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. AR_i - indeces of i neighbours
- * 3. AR_j - indeces of j neighbours
- * 4. AR_k - indeces of k neighbours (0 - for 2D case)
- * 5. Weights_ij(k) - associated weights
- * 6. regularisation parameter
- * 7. iterations number
-
- * Output:
- * 1. denoised image/volume
- * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060.
-
- */
-/*****************************************************************************/
-
-float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb)
-{
-
- long i, j, k;
- int iter;
- lambdaReg = 1.0f/lambdaReg;
-
- /*****2D INPUT *****/
- if (dimZ == 0) {
- copyIm(A_orig, Output, (long)(dimX), (long)(dimY), 1l);
- /* for each pixel store indeces of the most similar neighbours (patches) */
- for(iter=0; iter<IterNumb; iter++) {
-#pragma omp parallel for shared (A_orig, Output, Weights, H_i, H_j, iter) private(i,j)
- for(i=0; i<(long)(dimX); i++) {
- for(j=0; j<(long)(dimY); j++) {
- /*NLM_H1_2D(Output, A_orig, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), NumNeighb, lambdaReg);*/ /* NLM - H1 penalty */
- NLM_TV_2D(Output, A_orig, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), NumNeighb, lambdaReg); /* NLM - TV penalty */
- }}
- }
- }
- else {
- /*****3D INPUT *****/
- copyIm(A_orig, Output, (long)(dimX), (long)(dimY), (long)(dimZ));
- /* for each pixel store indeces of the most similar neighbours (patches) */
- for(iter=0; iter<IterNumb; iter++) {
-#pragma omp parallel for shared (A_orig, Output, Weights, H_i, H_j, H_k, iter) private(i,j,k)
- for(i=0; i<(long)(dimX); i++) {
- for(j=0; j<(long)(dimY); j++) {
- for(k=0; k<(long)(dimZ); k++) {
- /* NLM_H1_3D(Output, A_orig, H_i, H_j, H_k, Weights, i, j, k, dimX, dimY, dimZ, NumNeighb, lambdaReg); */ /* NLM - H1 penalty */
- NLM_TV_3D(Output, A_orig, H_i, H_j, H_k, Weights, i, j, k, (long)(dimX), (long)(dimY), (long)(dimZ), NumNeighb, lambdaReg); /* NLM - TV penalty */
- }}}
- }
- }
- return *Output;
-}
-
-/***********<<<<Main Function for NLM - H1 penalty>>>>**********/
-float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg)
-{
- long x, i1, j1, index, index_m;
- float value = 0.0f, normweight = 0.0f;
-
- index_m = j*dimX+i;
- for(x=0; x < NumNeighb; x++) {
- index = (dimX*dimY*x) + j*dimX+i;
- i1 = H_i[index];
- j1 = H_j[index];
- value += A[j1*dimX+i1]*Weights[index];
- normweight += Weights[index];
- }
- A[index_m] = (lambdaReg*A_orig[index_m] + value)/(lambdaReg + normweight);
- return *A;
-}
-/*3D version*/
-float NLM_H1_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg)
-{
- long x, i1, j1, k1, index;
- float value = 0.0f, normweight = 0.0f;
-
- for(x=0; x < NumNeighb; x++) {
- index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i;
- i1 = H_i[index];
- j1 = H_j[index];
- k1 = H_k[index];
- value += A[(dimX*dimY*k1) + j1*dimX+i1]*Weights[index];
- normweight += Weights[index];
- }
- A[(dimX*dimY*k) + j*dimX+i] = (lambdaReg*A_orig[(dimX*dimY*k) + j*dimX+i] + value)/(lambdaReg + normweight);
- return *A;
-}
-
-
-/***********<<<<Main Function for NLM - TV penalty>>>>**********/
-float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg)
-{
- long x, i1, j1, index, index_m;
- float value = 0.0f, normweight = 0.0f, NLgrad_magn = 0.0f, NLCoeff;
-
- index_m = j*dimX+i;
-
- for(x=0; x < NumNeighb; x++) {
- index = (dimX*dimY*x) + j*dimX+i; /*c*/
- i1 = H_i[index];
- j1 = H_j[index];
- NLgrad_magn += powf((A[j1*dimX+i1] - A[index_m]),2)*Weights[index];
- }
-
- NLgrad_magn = sqrtf(NLgrad_magn); /*Non Local Gradients Magnitude */
- NLCoeff = 2.0f*(1.0f/(NLgrad_magn + EPS));
-
- for(x=0; x < NumNeighb; x++) {
- index = (dimX*dimY*x) + j*dimX+i; /*c*/
- i1 = H_i[index];
- j1 = H_j[index];
- value += A[j1*dimX+i1]*NLCoeff*Weights[index];
- normweight += Weights[index]*NLCoeff;
- }
- A[index_m] = (lambdaReg*A_orig[index_m] + value)/(lambdaReg + normweight);
- return *A;
-}
-/*3D version*/
-float NLM_TV_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg)
-{
- long x, i1, j1, k1, index;
- float value = 0.0f, normweight = 0.0f, NLgrad_magn = 0.0f, NLCoeff;
-
- for(x=0; x < NumNeighb; x++) {
- index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i;
- i1 = H_i[index];
- j1 = H_j[index];
- k1 = H_k[index];
- NLgrad_magn += powf((A[(dimX*dimY*k1) + j1*dimX+i1] - A[(dimX*dimY*k1) + j*dimX+i]),2)*Weights[index];
- }
-
- NLgrad_magn = sqrtf(NLgrad_magn); /*Non Local Gradients Magnitude */
- NLCoeff = 2.0f*(1.0f/(NLgrad_magn + EPS));
-
- for(x=0; x < NumNeighb; x++) {
- index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i;
- i1 = H_i[index];
- j1 = H_j[index];
- k1 = H_k[index];
- value += A[(dimX*dimY*k1) + j1*dimX+i1]*NLCoeff*Weights[index];
- normweight += Weights[index]*NLCoeff;
- }
- A[(dimX*dimY*k) + j*dimX+i] = (lambdaReg*A_orig[(dimX*dimY*k) + j*dimX+i] + value)/(lambdaReg + normweight);
- return *A;
-}
diff --git a/Core/regularisers_CPU/Nonlocal_TV_core.h b/Core/regularisers_CPU/Nonlocal_TV_core.h
deleted file mode 100644
index 6d55101..0000000
--- a/Core/regularisers_CPU/Nonlocal_TV_core.h
+++ /dev/null
@@ -1,61 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-#define EPS 1.0000e-9
-
-/* C-OMP implementation of non-local regulariser
- * Weights and associated indices must be given as an input.
- * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort
- * goes in pre-calculation of weights and selection of patches
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. AR_i - indeces of i neighbours
- * 3. AR_j - indeces of j neighbours
- * 4. AR_k - indeces of k neighbours (0 - for 2D case)
- * 5. Weights_ij(k) - associated weights
- * 6. regularisation parameter
- * 7. iterations number
-
- * Output:
- * 1. denoised image/volume
- * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060.
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb);
-CCPI_EXPORT float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg);
-CCPI_EXPORT float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg);
-CCPI_EXPORT float NLM_H1_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg);
-CCPI_EXPORT float NLM_TV_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/PatchSelect_core.c b/Core/regularisers_CPU/PatchSelect_core.c
deleted file mode 100644
index cf5cdc7..0000000
--- a/Core/regularisers_CPU/PatchSelect_core.c
+++ /dev/null
@@ -1,345 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "PatchSelect_core.h"
-
-/* C-OMP implementation of non-local weight pre-calculation for non-local priors
- * Weights and associated indices are stored into pre-allocated arrays and passed
- * to the regulariser
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. Searching window (half-size of the main bigger searching window, e.g. 11)
- * 3. Similarity window (half-size of the patch window, e.g. 2)
- * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken)
- * 5. noise-related parameter to calculate non-local weights
- *
- * Output [2D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. Weights_ij - associated weights
- *
- * Output [3D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. AR_k - indeces of j neighbours
- * 4. Weights_ijk - associated weights
- */
-
-void swap(float *xp, float *yp)
-{
- float temp = *xp;
- *xp = *yp;
- *yp = temp;
-}
-
-void swapUS(unsigned short *xp, unsigned short *yp)
-{
- unsigned short temp = *xp;
- *xp = *yp;
- *yp = temp;
-}
-/**************************************************/
-
-float PatchSelect_CPU_main(float *A, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM)
-{
- int counterG;
- long i, j, k;
- float *Eucl_Vec, h2;
- h2 = h*h;
- /****************2D INPUT ***************/
- if (dimZ == 0) {
- /* generate a 2D Gaussian kernel for NLM procedure */
- Eucl_Vec = (float*) calloc ((2*SimilarWin+1)*(2*SimilarWin+1),sizeof(float));
- counterG = 0;
- for(i=-SimilarWin; i<=SimilarWin; i++) {
- for(j=-SimilarWin; j<=SimilarWin; j++) {
- Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2))/(2*SimilarWin*SimilarWin));
- counterG++;
- }} /*main neighb loop */
- /* for each pixel store indeces of the most similar neighbours (patches) */
- if (switchM == 1) {
-#pragma omp parallel for shared (A, Weights, H_i, H_j) private(i,j)
- for(i=0; i<(long)(dimX); i++) {
- for(j=0; j<(long)(dimY); j++) {
- Indeces2D_p(A, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2);
- }}
- }
- else {
-#pragma omp parallel for shared (A, Weights, H_i, H_j) private(i,j)
- for(i=0; i<(long)(dimX); i++) {
- for(j=0; j<(long)(dimY); j++) {
- Indeces2D(A, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2);
- }}
- }
- }
- else {
- /****************3D INPUT ***************/
- /* generate a 3D Gaussian kernel for NLM procedure */
- Eucl_Vec = (float*) calloc ((2*SimilarWin+1)*(2*SimilarWin+1)*(2*SimilarWin+1),sizeof(float));
- counterG = 0;
- for(i=-SimilarWin; i<=SimilarWin; i++) {
- for(j=-SimilarWin; j<=SimilarWin; j++) {
- for(k=-SimilarWin; k<=SimilarWin; k++) {
- Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2) + pow(((float) k), 2))/(2*SimilarWin*SimilarWin*SimilarWin));
- counterG++;
- }}} /*main neighb loop */
-
- /* for each voxel store indeces of the most similar neighbours (patches) */
- if (switchM == 1) {
-#pragma omp parallel for shared (A, Weights, H_i, H_j, H_k) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- Indeces3D(A, H_i, H_j, H_k, Weights, j, i, (k), (dimX), (dimY), (dimZ), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2);
- }}}
- }
- else {
-#pragma omp parallel for shared (A, Weights, H_i, H_j, H_k) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- Indeces3D(A, H_i, H_j, H_k, Weights, (i), (j), (k), (dimX), (dimY), (dimZ), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2);
- }}}
- }
- }
- free(Eucl_Vec);
- return 1;
-}
-
-float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2)
-{
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, index, sizeWin_tot, counterG;
- float *Weight_Vec, normsum;
- unsigned short *ind_i, *ind_j;
-
- sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1);
-
- Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float));
- ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
- ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) {
- if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) {
- normsum += Eucl_Vec[counterG]*pow(Aorig[j3*dimX + (i3)] - Aorig[j2*dimX + (i2)], 2);
- counterG++;
- }}
-
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into pre-allocated arrays */
- for(x=0; x < NumNeighb; x++) {
- index = (dimX*dimY*x) + j*dimX+i;
- H_i[index] = ind_i[x];
- H_j[index] = ind_j[x];
- Weights[index] = Weight_Vec[x];
- }
- free(ind_i);
- free(ind_j);
- free(Weight_Vec);
- return 1;
-}
-float Indeces2D_p(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2)
-{
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, index, sizeWin_tot, counterG;
- float *Weight_Vec, normsum;
- unsigned short *ind_i, *ind_j;
-
- sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1);
-
- Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float));
- ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
- ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) {
- if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) {
- //normsum += Eucl_Vec[counterG]*pow(Aorig[j3*dimX + (i3)] - Aorig[j2*dimX + (i2)], 2);
- normsum += Eucl_Vec[counterG]*pow(Aorig[i3*dimY + (j3)] - Aorig[i2*dimY + (j2)], 2);
- counterG++;
- }}
-
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
-
- /*now select the NumNeighb more prominent weights and store into pre-allocated arrays */
- for(x=0; x < NumNeighb; x++) {
- index = (dimX*dimY*x) + i*dimY+j;
- H_i[index] = ind_i[x];
- H_j[index] = ind_j[x];
- Weights[index] = Weight_Vec[x];
- }
- free(ind_i);
- free(ind_j);
- free(Weight_Vec);
- return 1;
-}
-
-float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2)
-{
- long i1, j1, k1, i_m, j_m, k_m, i_c, j_c, k_c, i2, j2, k2, i3, j3, k3, counter, x, y, index, sizeWin_tot, counterG;
- float *Weight_Vec, normsum, temp;
- unsigned short *ind_i, *ind_j, *ind_k, temp_i, temp_j, temp_k;
-
- sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1)*(2*SearchWindow + 1);
-
- Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float));
- ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
- ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
- ind_k = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short));
-
- counter = 0l;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- for(k_m=-SearchWindow; k_m<=SearchWindow; k_m++) {
- k1 = k+k_m;
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY)) && ((k1 >= 0) && (k1 < dimZ))) {
- normsum = 0.0f; counterG = 0l;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- for(k_c=-SimilarWin; k_c<=SimilarWin; k_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- k2 = k1 + k_c;
- i3 = i + i_c;
- j3 = j + j_c;
- k3 = k + k_c;
- if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY)) && ((k2 >= 0) && (k2 < dimZ))) {
- if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY)) && ((k3 >= 0) && (k3 < dimZ))) {
- normsum += Eucl_Vec[counterG]*pow(Aorig[(dimX*dimY*k3) + j3*dimX + (i3)] - Aorig[(dimX*dimY*k2) + j2*dimX + (i2)], 2);
- counterG++;
- }}
- }}}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- ind_k[counter] = k1;
- counter ++;
- }
- }
- }}}
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter; x++) {
- for (y = 0; y < counter; y++) {
- if (Weight_Vec[y] < Weight_Vec[x]) {
- temp = Weight_Vec[y+1];
- temp_i = ind_i[y+1];
- temp_j = ind_j[y+1];
- temp_k = ind_k[y+1];
- Weight_Vec[y+1] = Weight_Vec[y];
- Weight_Vec[y] = temp;
- ind_i[y+1] = ind_i[y];
- ind_i[y] = temp_i;
- ind_j[y+1] = ind_j[y];
- ind_j[y] = temp_j;
- ind_k[y+1] = ind_k[y];
- ind_k[y] = temp_k;
- }}}
- /*sorting loop finished*/
-
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i;
-
- H_i[index] = ind_i[x];
- H_j[index] = ind_j[x];
- H_k[index] = ind_k[x];
-
- Weights[index] = Weight_Vec[x];
- }
-
- free(ind_i);
- free(ind_j);
- free(ind_k);
- free(Weight_Vec);
- return 1;
-}
-
diff --git a/Core/regularisers_CPU/PatchSelect_core.h b/Core/regularisers_CPU/PatchSelect_core.h
deleted file mode 100644
index ddaa428..0000000
--- a/Core/regularisers_CPU/PatchSelect_core.h
+++ /dev/null
@@ -1,63 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-#define EPS 1.0000e-12
-
-/* C-OMP implementation of non-local weight pre-calculation for non-local priors
- * Weights and associated indices are stored into pre-allocated arrays and passed
- * to the regulariser
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. Searching window (half-size of the main bigger searching window, e.g. 11)
- * 3. Similarity window (half-size of the patch window, e.g. 2)
- * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken)
- * 5. noise-related parameter to calculate non-local weights
- *
- * Output [2D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. Weights_ij - associated weights
- *
- * Output [3D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. AR_k - indeces of j neighbours
- * 4. Weights_ijk - associated weights
- */
-/*****************************************************************************/
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float PatchSelect_CPU_main(float *A, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM);
-CCPI_EXPORT float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2);
-CCPI_EXPORT float Indeces2D_p(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2);
-CCPI_EXPORT float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/ROF_TV_core.c b/Core/regularisers_CPU/ROF_TV_core.c
deleted file mode 100644
index 1858442..0000000
--- a/Core/regularisers_CPU/ROF_TV_core.c
+++ /dev/null
@@ -1,289 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "ROF_TV_core.h"
-
-#define EPS 1.0e-12
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-/*sign function*/
-int sign(float x) {
- return (x > 0) - (x < 0);
-}
-
-
-/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case)
- *
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- */
-
-/* Running iterations of TV-ROF function */
-float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ)
-{
- float *D1, *D2, *D3;
- int i;
- long DimTotal;
- DimTotal = (long)(dimX*dimY*dimZ);
-
- D1 = calloc(DimTotal, sizeof(float));
- D2 = calloc(DimTotal, sizeof(float));
- D3 = calloc(DimTotal, sizeof(float));
-
- /* copy into output */
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* start TV iterations */
- for(i=0; i < iterationsNumb; i++) {
- /* calculate differences */
- D1_func(Output, D1, (long)(dimX), (long)(dimY), (long)(dimZ));
- D2_func(Output, D2, (long)(dimX), (long)(dimY), (long)(dimZ));
- if (dimZ > 1) D3_func(Output, D3, (long)(dimX), (long)(dimY), (long)(dimZ));
- TV_kernel(D1, D2, D3, Output, Input, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
- }
- free(D1);free(D2); free(D3);
- return *Output;
-}
-
-/* calculate differences 1 */
-float D1_func(float *A, float *D1, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1;
- long i,j,k,i1,i2,k1,j1,j2,k2,index;
-
- if (dimZ > 1) {
-#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + j*dimX + i1] - A[index]; /* y+ */
- /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */
- NOMy_0 = A[index] - A[(dimX*dimY)*k + j*dimX + i2]; /* y- */
-
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- NOMz_0 = A[index] - A[(dimX*dimY)*k2 + j*dimX + i]; /* z- */
-
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
- denom3 = denom3*denom3;
- T1 = sqrt(denom1 + denom2 + denom3 + EPS);
- D1[index] = NOMx_1/T1;
- }}}
- }
- else {
-#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1,index)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
- /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */
- NOMy_0 = A[index] - A[(j)*dimX + i2]; /* y- */
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom2 = denom2*denom2;
- T1 = sqrtf(denom1 + denom2 + EPS);
- D1[index] = NOMx_1/T1;
- }}
- }
- return *D1;
-}
-/* calculate differences 2 */
-float D2_func(float *A, float *D2, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2;
- long i,j,k,i1,i2,k1,j1,j2,k2,index;
-
- if (dimZ > 1) {
-#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
- NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- NOMz_0 = A[index] - A[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */
-
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
- denom3 = denom3*denom3;
- T2 = sqrtf(denom1 + denom2 + denom3 + EPS);
- D2[index] = NOMy_1/T2;
- }}}
- }
- else {
-#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2,index)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
- NOMx_0 = A[index] - A[j2*dimX + i]; /* x- */
- /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */ /* y- */
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- T2 = sqrtf(denom1 + denom2 + EPS);
- D2[index] = NOMy_1/T2;
- }}
- }
- return *D2;
-}
-
-/* calculate differences 3 */
-float D3_func(float *A, float *D3, long dimX, long dimY, long dimZ)
-{
- float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3;
- long index,i,j,k,i1,i2,k1,j1,j2,k2;
-
-#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
- NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
- NOMy_0 = A[index] - A[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */
- NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
- /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */
-
- denom1 = NOMz_1*NOMz_1;
- denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
- denom3 = denom3*denom3;
- T3 = sqrtf(denom1 + denom2 + denom3 + EPS);
- D3[index] = NOMz_1/T3;
- }}}
- return *D3;
-}
-
-/* calculate divergence */
-float TV_kernel(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, long dimX, long dimY, long dimZ)
-{
- float dv1, dv2, dv3;
- long index,i,j,k,i1,i2,k1,j1,j2,k2;
-
- if (dimZ > 1) {
-#pragma omp parallel for shared (D1, D2, D3, B, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, dv1,dv2,dv3)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /*divergence components */
- dv1 = D1[index] - D1[(dimX*dimY)*k + j2*dimX+i];
- dv2 = D2[index] - D2[(dimX*dimY)*k + j*dimX+i2];
- dv3 = D3[index] - D3[(dimX*dimY)*k2 + j*dimX+i];
-
- B[index] += tau*(2.0f*lambda*(dv1 + dv2 + dv3) - (B[index] - A[index]));
- }}}
- }
- else {
-#pragma omp parallel for shared (D1, D2, B, dimX, dimY) private(index, i, j, i1, j1, i2, j2,dv1,dv2)
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* divergence components */
- dv1 = D1[index] - D1[j2*dimX + i];
- dv2 = D2[index] - D2[j*dimX + i2];
-
- B[index] += tau*(2.0f*lambda*(dv1 + dv2) - (B[index] - A[index]));
- }}
- }
- return *B;
-}
diff --git a/Core/regularisers_CPU/ROF_TV_core.h b/Core/regularisers_CPU/ROF_TV_core.h
deleted file mode 100644
index 4e320e9..0000000
--- a/Core/regularisers_CPU/ROF_TV_core.h
+++ /dev/null
@@ -1,57 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case)
- *
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
- * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- *
- * D. Kazantsev, 2016-18
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float TV_kernel(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float D1_func(float *A, float *D1, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float D2_func(float *A, float *D2, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float D3_func(float *A, float *D3, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/Core/regularisers_CPU/SB_TV_core.c b/Core/regularisers_CPU/SB_TV_core.c
deleted file mode 100755
index 769ea67..0000000
--- a/Core/regularisers_CPU/SB_TV_core.c
+++ /dev/null
@@ -1,368 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "SB_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1]
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularisation parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
-*
-* Output:
-* 1. Filtered/regularized image
-*
-* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-*/
-
-float SB_TV_CPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ)
-{
- int ll;
- long j, DimTotal;
- float re, re1, lambda;
- int count = 0;
- mu = 1.0f/mu;
- lambda = 2.0f*mu;
-
- if (dimZ <= 1) {
- /* 2D case */
- float *Output_prev=NULL, *Dx=NULL, *Dy=NULL, *Bx=NULL, *By=NULL;
- DimTotal = (long)(dimX*dimY);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- Dx = calloc(DimTotal, sizeof(float));
- Dy = calloc(DimTotal, sizeof(float));
- Bx = calloc(DimTotal, sizeof(float));
- By = calloc(DimTotal, sizeof(float));
-
- copyIm(Input, Output, (long)(dimX), (long)(dimY), 1l); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* storing old estimate */
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l);
-
- /* perform two GS iterations (normally 2 is enough for the convergence) */
- gauss_seidel2D(Output, Input, Output_prev, Dx, Dy, Bx, By, (long)(dimX), (long)(dimY), lambda, mu);
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l);
- /*GS iteration */
- gauss_seidel2D(Output, Input, Output_prev, Dx, Dy, Bx, By, (long)(dimX), (long)(dimY), lambda, mu);
-
- /* TV-related step */
- if (methodTV == 1) updDxDy_shrinkAniso2D(Output, Dx, Dy, Bx, By, (long)(dimX), (long)(dimY), lambda);
- else updDxDy_shrinkIso2D(Output, Dx, Dy, Bx, By, (long)(dimX), (long)(dimY), lambda);
-
- /* update for Bregman variables */
- updBxBy2D(Output, Dx, Dy, Bx, By, (long)(dimX), (long)(dimY));
-
- /* check early stopping criteria if epsilon not equal zero */
- if (epsil != 0) {
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++) {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
- }
- /*printf("%f %i %i \n", re, ll, count); */
- }
- if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(Dx); free(Dy); free(Bx); free(By);
- }
- else {
- /* 3D case */
- float *Output_prev=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL;
- DimTotal = (long)(dimX*dimY*dimZ);
-
- Output_prev = calloc(DimTotal, sizeof(float));
- Dx = calloc(DimTotal, sizeof(float));
- Dy = calloc(DimTotal, sizeof(float));
- Dz = calloc(DimTotal, sizeof(float));
- Bx = calloc(DimTotal, sizeof(float));
- By = calloc(DimTotal, sizeof(float));
- Bz = calloc(DimTotal, sizeof(float));
-
- copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* storing old estimate */
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* perform two GS iterations (normally 2 is enough for the convergence) */
- gauss_seidel3D(Output, Input, Output_prev, Dx, Dy, Dz, Bx, By, Bz, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, mu);
- copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
- /*GS iteration */
- gauss_seidel3D(Output, Input, Output_prev, Dx, Dy, Dz, Bx, By, Bz, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, mu);
-
- /* TV-related step */
- if (methodTV == 1) updDxDyDz_shrinkAniso3D(Output, Dx, Dy, Dz, Bx, By, Bz, (long)(dimX), (long)(dimY), (long)(dimZ), lambda);
- else updDxDyDz_shrinkIso3D(Output, Dx, Dy, Dz, Bx, By, Bz, (long)(dimX), (long)(dimY), (long)(dimZ), lambda);
-
- /* update for Bregman variables */
- updBxByBz3D(Output, Dx, Dy, Dz, Bx, By, Bz, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* check early stopping criteria if epsilon not equal zero */
- if (epsil != 0) {
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<DimTotal; j++) {
- re += pow(Output[j] - Output_prev[j],2);
- re1 += pow(Output[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
- }
- /*printf("%f %i %i \n", re, ll, count); */
- }
- if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll);
- free(Output_prev); free(Dx); free(Dy); free(Dz); free(Bx); free(By); free(Bz);
- }
- return *Output;
-}
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-float gauss_seidel2D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda, float mu)
-{
- float sum, normConst;
- long i,j,i1,i2,j1,j2,index;
- normConst = 1.0f/(mu + 4.0f*lambda);
-
-#pragma omp parallel for shared(U) private(index,i,j,i1,i2,j1,j2,sum)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- index = j*dimX+i;
-
- sum = Dx[j*dimX+i2] - Dx[index] + Dy[j2*dimX+i] - Dy[index] - Bx[j*dimX+i2] + Bx[index] - By[j2*dimX+i] + By[index];
- sum += U_prev[j*dimX+i1] + U_prev[j*dimX+i2] + U_prev[j1*dimX+i] + U_prev[j2*dimX+i];
- sum *= lambda;
- sum += mu*A[index];
- U[index] = normConst*sum;
- }}
- return *U;
-}
-
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda)
-{
- long i,j,i1,j1,index;
- float val1, val11, val2, val22, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,val1,val11,val2,val22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- index = j*dimX+i;
-
- val1 = (U[j*dimX+i1] - U[index]) + Bx[index];
- val2 = (U[j1*dimX+i] - U[index]) + By[index];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
-
- if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
- if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
-
- }}
- return 1;
-}
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda)
-{
- long i,j,i1,j1,index;
- float val1, val11, val2, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,val1,val11,val2,denom)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- index = j*dimX+i;
-
- val1 = (U[j*dimX+i1] - U[index]) + Bx[index];
- val2 = (U[j1*dimX+i] - U[index]) + By[index];
-
- denom = sqrt(val1*val1 + val2*val2);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- }
- }}
- return 1;
-}
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY)
-{
- long i,j,i1,j1,index;
-#pragma omp parallel for shared(U) private(index,i,j,i1,j1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- index = j*dimX+i;
-
- Bx[index] += (U[j*dimX+i1] - U[index]) - Dx[index];
- By[index] += (U[j1*dimX+i] - U[index]) - Dy[index];
- }}
- return 1;
-}
-
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-/*****************************************************************/
-float gauss_seidel3D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda, float mu)
-{
- float normConst, d_val, b_val, sum;
- long i,j,i1,i2,j1,j2,k,k1,k2,index;
- normConst = 1.0f/(mu + 6.0f*lambda);
-#pragma omp parallel for shared(U) private(index,i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
- index = (dimX*dimY)*k + j*dimX+i;
-
- d_val = Dx[(dimX*dimY)*k + j*dimX+i2] - Dx[index] + Dy[(dimX*dimY)*k + j2*dimX+i] - Dy[index] + Dz[(dimX*dimY)*k2 + j*dimX+i] - Dz[index];
- b_val = -Bx[(dimX*dimY)*k + j*dimX+i2] + Bx[index] - By[(dimX*dimY)*k + j2*dimX+i] + By[index] - Bz[(dimX*dimY)*k2 + j*dimX+i] + Bz[index];
- sum = d_val + b_val;
- sum += U_prev[(dimX*dimY)*k + j*dimX+i1] + U_prev[(dimX*dimY)*k + j*dimX+i2] + U_prev[(dimX*dimY)*k + j1*dimX+i] + U_prev[(dimX*dimY)*k + j2*dimX+i] + U_prev[(dimX*dimY)*k1 + j*dimX+i] + U_prev[(dimX*dimY)*k2 + j*dimX+i];
- sum *= lambda;
- sum += mu*A[index];
- U[index] = normConst*sum;
- }}}
- return *U;
-}
-
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda)
-{
- long i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val22, val3, val33, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + j*dimX+i1] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + j1*dimX+i] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + j*dimX+i] - U[index]) + Bz[index];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0.0f) val11 = 0.0f;
- val22 = fabs(val2) - denom_lam; if (val22 < 0.0f) val22 = 0.0f;
- val33 = fabs(val3) - denom_lam; if (val33 < 0.0f) val33 = 0.0f;
-
- if (val1 !=0.0f) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0.0f;
- if (val2 !=0.0f) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0.0f;
- if (val3 !=0.0f) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0.0f;
-
- }}}
- return 1;
-}
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda)
-{
- long i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val3, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + j*dimX+i1] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + j1*dimX+i] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + j*dimX+i] - U[index]) + Bz[index];
-
- denom = sqrt(val1*val1 + val2*val2 + val3*val3);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- Dz[index] = val11*(val3/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- Dz[index] = 0;
- }
- }}}
- return 1;
-}
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ)
-{
- long i,j,k,i1,j1,k1,index;
-#pragma omp parallel for shared(U) private(index,i,j,k,i1,j1,k1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- Bx[index] += (U[(dimX*dimY)*k + j*dimX+i1] - U[index]) - Dx[index];
- By[index] += (U[(dimX*dimY)*k + j1*dimX+i] - U[index]) - Dy[index];
- Bz[index] += (U[(dimX*dimY)*k1 + j*dimX+i] - U[index]) - Dz[index];
- }}}
- return 1;
-}
diff --git a/Core/regularisers_CPU/SB_TV_core.h b/Core/regularisers_CPU/SB_TV_core.h
deleted file mode 100644
index 7485e3b..0000000
--- a/Core/regularisers_CPU/SB_TV_core.h
+++ /dev/null
@@ -1,61 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1]
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularisation parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
-*
-* Output:
-* 1. Filtered/regularized image
-*
-* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-*/
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float SB_TV_CPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
-
-CCPI_EXPORT float gauss_seidel2D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda, float mu);
-CCPI_EXPORT float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda);
-CCPI_EXPORT float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda);
-CCPI_EXPORT float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY);
-
-CCPI_EXPORT float gauss_seidel3D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda, float mu);
-CCPI_EXPORT float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda);
-CCPI_EXPORT float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda);
-CCPI_EXPORT float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/TGV_core.c b/Core/regularisers_CPU/TGV_core.c
deleted file mode 100644
index 805c3d4..0000000
--- a/Core/regularisers_CPU/TGV_core.c
+++ /dev/null
@@ -1,487 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_core.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D/3D)
- * 2. lambda - regularisation parameter
- * 3. parameter to control the first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations
- * 6. Lipshitz constant (default is 12)
- *
- * Output:
- * Filtered/regularised image/volume
- *
- * References:
- * [1] K. Bredies "Total Generalized Variation"
- *
- */
-
-float TGV_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iter, float L2, int dimX, int dimY, int dimZ)
-{
- long DimTotal;
- int ll;
- float *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma;
-
- DimTotal = (long)(dimX*dimY*dimZ);
- copyIm(U0, U, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize */
- tau = pow(L2,-0.5);
- sigma = pow(L2,-0.5);
-
- /* dual variables */
- P1 = calloc(DimTotal, sizeof(float));
- P2 = calloc(DimTotal, sizeof(float));
-
- Q1 = calloc(DimTotal, sizeof(float));
- Q2 = calloc(DimTotal, sizeof(float));
- Q3 = calloc(DimTotal, sizeof(float));
-
- U_old = calloc(DimTotal, sizeof(float));
-
- V1 = calloc(DimTotal, sizeof(float));
- V1_old = calloc(DimTotal, sizeof(float));
- V2 = calloc(DimTotal, sizeof(float));
- V2_old = calloc(DimTotal, sizeof(float));
-
- if (dimZ == 1) {
- /*2D case*/
-
- /* Primal-dual iterations begin here */
- for(ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_2D(U, V1, V2, P1, P2, (long)(dimX), (long)(dimY), sigma);
-
- /*Projection onto convex set for P*/
- ProjP_2D(P1, P2, (long)(dimX), (long)(dimY), alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_2D(V1, V2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_2D(Q1, Q2, Q3, (long)(dimX), (long)(dimY), alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, (long)(dimX), (long)(dimY), 1l);
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D(U, U0, P1, P2, (long)(dimX), (long)(dimY), lambda, tau);
-
- /*get updated solution U*/
- newU(U, U_old, (long)(dimX), (long)(dimY));
-
- /*saving V into V_old*/
- copyIm(V1, V1_old, (long)(dimX), (long)(dimY), 1l);
- copyIm(V2, V2_old, (long)(dimX), (long)(dimY), 1l);
-
- /* upd V*/
- UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), tau);
-
- /*get new V*/
- newU(V1, V1_old, (long)(dimX), (long)(dimY));
- newU(V2, V2_old, (long)(dimX), (long)(dimY));
- } /*end of iterations*/
- }
- else {
- /*3D case*/
- float *P3, *Q4, *Q5, *Q6, *V3, *V3_old;
-
- P3 = calloc(DimTotal, sizeof(float));
- Q4 = calloc(DimTotal, sizeof(float));
- Q5 = calloc(DimTotal, sizeof(float));
- Q6 = calloc(DimTotal, sizeof(float));
- V3 = calloc(DimTotal, sizeof(float));
- V3_old = calloc(DimTotal, sizeof(float));
-
- /* Primal-dual iterations begin here */
- for(ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_3D(U, V1, V2, V3, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), sigma);
-
- /*Projection onto convex set for P*/
- ProjP_3D(P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_3D(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_3D(Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_3D(U, U0, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, tau);
-
- /*get updated solution U*/
- newU3D(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /*saving V into V_old*/
- copyIm_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ));
-
- /* upd V*/
- UpdV_3D(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), tau);
-
- /*get new V*/
- newU3D_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ));
- } /*end of iterations*/
- free(P3);free(Q4);free(Q5);free(Q6);free(V3);free(V3_old);
- }
-
- /*freeing*/
- free(P1);free(P2);free(Q1);free(Q2);free(Q3);free(U_old);
- free(V1);free(V2);free(V1_old);free(V2_old);
- return *U;
-}
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma)
-{
- long i,j, index;
-#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j,index)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[index] += sigma*((U[j*dimX+(i-1)] - U[index]) - V1[index]);
- else P1[index] += sigma*((U[j*dimX+(i+1)] - U[index]) - V1[index]);
- if (j == dimY-1) P2[index] += sigma*((U[(j-1)*dimX+i] - U[index]) - V2[index]);
- else P2[index] += sigma*((U[(j+1)*dimX+i] - U[index]) - V2[index]);
- }}
- return 1;
-}
-/*Projection onto convex set for P*/
-float ProjP_2D(float *P1, float *P2, long dimX, long dimY, float alpha1)
-{
- float grad_magn;
- long i,j,index;
-#pragma omp parallel for shared(P1,P2) private(i,j,index,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2)))/alpha1;
- if (grad_magn > 1.0f) {
- P1[index] /= grad_magn;
- P2[index] /= grad_magn;
- }
- }}
- return 1;
-}
-/*Calculating dual variable Q (using forward differences)*/
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma)
-{
- long i,j,index;
- float q1, q2, q11, q22;
-#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,index,q1,q2,q11,q22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- q1 = 0.0f; q11 = 0.0f; q2 = 0.0f; q22 = 0.0f;
- /* boundary conditions (Neuman) */
- if (i != dimX-1){
- q1 = V1[j*dimX+(i+1)] - V1[index];
- q11 = V2[j*dimX+(i+1)] - V2[index];
- }
- if (j != dimY-1) {
- q2 = V2[(j+1)*dimX+i] - V2[index];
- q22 = V1[(j+1)*dimX+i] - V1[index];
- }
- Q1[index] += sigma*(q1);
- Q2[index] += sigma*(q2);
- Q3[index] += sigma*(0.5f*(q11 + q22));
- }}
- return 1;
-}
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, long dimX, long dimY, float alpha0)
-{
- float grad_magn;
- long i,j,index;
-#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,index,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0f) {
- Q1[index] /= grad_magn;
- Q2[index] /= grad_magn;
- Q3[index] /= grad_magn;
- }
- }}
- return 1;
-}
-/* Divergence and projection for P*/
-float DivProjP_2D(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau)
-{
- long i,j,index;
- float P_v1, P_v2, div;
-#pragma omp parallel for shared(U,U0,P1,P2) private(i,j,index,P_v1,P_v2,div)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- if (i == 0) P_v1 = P1[index];
- else P_v1 = P1[index] - P1[j*dimX+(i-1)];
- if (j == 0) P_v2 = P2[index];
- else P_v2 = P2[index] - P2[(j-1)*dimX+i];
- div = P_v1 + P_v2;
- U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
- }}
- return *U;
-}
-/*get updated solution U*/
-float newU(float *U, float *U_old, long dimX, long dimY)
-{
- long i;
-#pragma omp parallel for shared(U,U_old) private(i)
- for(i=0; i<dimX*dimY; i++) U[i] = 2*U[i] - U_old[i];
- return *U;
-}
-/*get update for V*/
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float tau)
-{
- long i, j, index;
- float q1, q3_x, q3_y, q2, div1, div2;
-#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i, j, index, q1, q3_x, q3_y, q2, div1, div2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- index = j*dimX+i;
- q2 = 0.0f; q3_y = 0.0f; q1 = 0.0f; q3_x = 0.0;
- /* boundary conditions (Neuman) */
- if (i != 0) {
- q1 = Q1[index] - Q1[j*dimX+(i-1)];
- q3_x = Q3[index] - Q3[j*dimX+(i-1)];
- }
- if (j != 0) {
- q2 = Q2[index] - Q2[(j-1)*dimX+i];
- q3_y = Q3[index] - Q3[(j-1)*dimX+i];
- }
- div1 = q1 + q3_y;
- div2 = q3_x + q2;
- V1[index] += tau*(P1[index] + div1);
- V2[index] += tau*(P2[index] + div2);
- }}
- return 1;
-}
-
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-/*Calculating dual variable P (using forward differences)*/
-float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float sigma)
-{
- long i,j,k, index;
-#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k,index)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i-1)] - U[index]) - V1[index]);
- else P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i+1)] - U[index]) - V1[index]);
- if (j == dimY-1) P2[index] += sigma*((U[(dimX*dimY)*k + (j-1)*dimX+i] - U[index]) - V2[index]);
- else P2[index] += sigma*((U[(dimX*dimY)*k + (j+1)*dimX+i] - U[index]) - V2[index]);
- if (k == dimZ-1) P3[index] += sigma*((U[(dimX*dimY)*(k-1) + j*dimX+i] - U[index]) - V3[index]);
- else P3[index] += sigma*((U[(dimX*dimY)*(k+1) + j*dimX+i] - U[index]) - V3[index]);
- }}}
- return 1;
-}
-/*Projection onto convex set for P*/
-float ProjP_3D(float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float alpha1)
-{
- float grad_magn;
- long i,j,k,index;
-#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,index,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1;
- if (grad_magn > 1.0f) {
- P1[index] /= grad_magn;
- P2[index] /= grad_magn;
- P3[index] /= grad_magn;
- }
- }}}
- return 1;
-}
-/*Calculating dual variable Q (using forward differences)*/
-float DualQ_3D(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma)
-{
- long i,j,k,index;
- float q1, q2, q3, q11, q22, q33, q44, q55, q66;
-#pragma omp parallel for shared(Q1,Q2,Q3,Q4,Q5,Q6,V1,V2,V3) private(i,j,k,index,q1,q2,q3,q11,q22,q33,q44,q55,q66)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f;
- /* symmetric boundary conditions (Neuman) */
- if (i != dimX-1){
- q1 = V1[(dimX*dimY)*k + j*dimX+(i+1)] - V1[index];
- q11 = V2[(dimX*dimY)*k + j*dimX+(i+1)] - V2[index];
- q33 = V3[(dimX*dimY)*k + j*dimX+(i+1)] - V3[index];
- }
- if (j != dimY-1) {
- q2 = V2[(dimX*dimY)*k + (j+1)*dimX+i] - V2[index];
- q22 = V1[(dimX*dimY)*k + (j+1)*dimX+i] - V1[index];
- q55 = V3[(dimX*dimY)*k + (j+1)*dimX+i] - V3[index];
- }
- if (k != dimZ-1) {
- q3 = V3[(dimX*dimY)*(k+1) + j*dimX+i] - V3[index];
- q44 = V1[(dimX*dimY)*(k+1) + j*dimX+i] - V1[index];
- q66 = V2[(dimX*dimY)*(k+1) + j*dimX+i] - V2[index];
- }
-
- Q1[index] += sigma*(q1); /*Q11*/
- Q2[index] += sigma*(q2); /*Q22*/
- Q3[index] += sigma*(q3); /*Q33*/
- Q4[index] += sigma*(0.5f*(q11 + q22)); /* Q21 / Q12 */
- Q5[index] += sigma*(0.5f*(q33 + q44)); /* Q31 / Q13 */
- Q6[index] += sigma*(0.5f*(q55 + q66)); /* Q32 / Q23 */
- }}}
- return 1;
-}
-float ProjQ_3D(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float alpha0)
-{
- float grad_magn;
- long i,j,k,index;
-#pragma omp parallel for shared(Q1,Q2,Q3,Q4,Q5,Q6) private(i,j,k,index,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0f) {
- Q1[index] /= grad_magn;
- Q2[index] /= grad_magn;
- Q3[index] /= grad_magn;
- Q4[index] /= grad_magn;
- Q5[index] /= grad_magn;
- Q6[index] /= grad_magn;
- }
- }}}
- return 1;
-}
-/* Divergence and projection for P*/
-float DivProjP_3D(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau)
-{
- long i,j,k,index;
- float P_v1, P_v2, P_v3, div;
-#pragma omp parallel for shared(U,U0,P1,P2,P3) private(i,j,k,index,P_v1,P_v2,P_v3,div)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- if (i == 0) P_v1 = P1[index];
- else P_v1 = P1[index] - P1[(dimX*dimY)*k + j*dimX+(i-1)];
- if (j == 0) P_v2 = P2[index];
- else P_v2 = P2[index] - P2[(dimX*dimY)*k + (j-1)*dimX+i];
- if (k == 0) P_v3 = P3[index];
- else P_v3 = P3[index] - P3[(dimX*dimY)*(k-1) + (j)*dimX+i];
-
- div = P_v1 + P_v2 + P_v3;
- U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
- }}}
- return *U;
-}
-/*get update for V*/
-float UpdV_3D(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float tau)
-{
- long i,j,k,index;
- float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3;
-#pragma omp parallel for shared(V1,V2,V3,P1,P2,P3,Q1,Q2,Q3,Q4,Q5,Q6) private(i,j,k,index,q1,q4x,q5x,q2,q4y,q6y,q6z,q5z,q3,div1,div2,div3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- q1 = 0.0f; q4x= 0.0f; q5x= 0.0f; q2= 0.0f; q4y= 0.0f; q6y= 0.0f; q6z= 0.0f; q5z= 0.0f; q3= 0.0f;
- /* Q1 - Q11, Q2 - Q22, Q3 - Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/
- /* symmetric boundary conditions (Neuman) */
- if (i != 0) {
- q1 = Q1[index] - Q1[(dimX*dimY)*k + j*dimX+(i-1)];
- q4x = Q4[index] - Q4[(dimX*dimY)*k + j*dimX+(i-1)];
- q5x = Q5[index] - Q5[(dimX*dimY)*k + j*dimX+(i-1)];
- }
- if (j != 0) {
- q2 = Q2[index] - Q2[(dimX*dimY)*k + (j-1)*dimX+i];
- q4y = Q4[index] - Q4[(dimX*dimY)*k + (j-1)*dimX+i];
- q6y = Q6[index] - Q6[(dimX*dimY)*k + (j-1)*dimX+i];
- }
- if (k != 0) {
- q6z = Q6[index] - Q6[(dimX*dimY)*(k-1) + (j)*dimX+i];
- q5z = Q5[index] - Q5[(dimX*dimY)*(k-1) + (j)*dimX+i];
- q3 = Q3[index] - Q3[(dimX*dimY)*(k-1) + (j)*dimX+i];
- }
- div1 = q1 + q4y + q5z;
- div2 = q4x + q2 + q6z;
- div3 = q5x + q6y + q3;
-
- V1[index] += tau*(P1[index] + div1);
- V2[index] += tau*(P2[index] + div2);
- V3[index] += tau*(P3[index] + div3);
- }}}
- return 1;
-}
-
-float copyIm_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ)
-{
- long j;
-#pragma omp parallel for shared(V1, V2, V3, V1_old, V2_old, V3_old) private(j)
- for (j = 0; j<dimX*dimY*dimZ; j++) {
- V1_old[j] = V1[j];
- V2_old[j] = V2[j];
- V3_old[j] = V3[j];
- }
- return 1;
-}
-
-/*get updated solution U*/
-float newU3D(float *U, float *U_old, long dimX, long dimY, long dimZ)
-{
- long i;
-#pragma omp parallel for shared(U, U_old) private(i)
- for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2.0f*U[i] - U_old[i];
- return *U;
-}
-
-
-/*get updated solution U*/
-float newU3D_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ)
-{
- long i;
-#pragma omp parallel for shared(V1, V2, V3, V1_old, V2_old, V3_old) private(i)
- for(i=0; i<dimX*dimY*dimZ; i++) {
- V1[i] = 2.0f*V1[i] - V1_old[i];
- V2[i] = 2.0f*V2[i] - V2_old[i];
- V3[i] = 2.0f*V3[i] - V3_old[i];
- }
- return 1;
-}
-
diff --git a/Core/regularisers_CPU/TGV_core.h b/Core/regularisers_CPU/TGV_core.h
deleted file mode 100644
index 11b12c1..0000000
--- a/Core/regularisers_CPU/TGV_core.h
+++ /dev/null
@@ -1,73 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D/3D)
- * 2. lambda - regularisation parameter
- * 3. parameter to control the first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations
- * 6. Lipshitz constant (default is 12)
- *
- * Output:
- * Filtered/regularised image/volume
- *
- * References:
- * [1] K. Bredies "Total Generalized Variation"
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-CCPI_EXPORT float TGV_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iter, float L2, int dimX, int dimY, int dimZ);
-
-/* 2D functions */
-CCPI_EXPORT float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma);
-CCPI_EXPORT float ProjP_2D(float *P1, float *P2, long dimX, long dimY, float alpha1);
-CCPI_EXPORT float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma);
-CCPI_EXPORT float ProjQ_2D(float *Q1, float *Q2, float *Q3, long dimX, long dimY, float alpha0);
-CCPI_EXPORT float DivProjP_2D(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau);
-CCPI_EXPORT float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float tau);
-CCPI_EXPORT float newU(float *U, float *U_old, long dimX, long dimY);
-/* 3D functions */
-CCPI_EXPORT float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float sigma);
-CCPI_EXPORT float ProjP_3D(float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float alpha1);
-CCPI_EXPORT float DualQ_3D(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma);
-CCPI_EXPORT float ProjQ_3D(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float alpha0);
-CCPI_EXPORT float DivProjP_3D(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau);
-CCPI_EXPORT float UpdV_3D(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float tau);
-CCPI_EXPORT float newU3D(float *U, float *U_old, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float copyIm_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float newU3D_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_CPU/TNV_core.c b/Core/regularisers_CPU/TNV_core.c
deleted file mode 100755
index 753cc5f..0000000
--- a/Core/regularisers_CPU/TNV_core.c
+++ /dev/null
@@ -1,452 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "TNV_core.h"
-
-/*
- * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1]
- * The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see
- * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package
- *
- * Input Parameters:
- * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume
- * 2. lambda - regularisation parameter
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon - tolerance constant [OPTIONAL parameter]
- * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
- *
- * Output:
- * 1. Filtered/regularized image
- *
- * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
- */
-
-float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ)
-{
- long k, p, q, r, DimTotal;
- float taulambda;
- float *u_upd, *gx, *gy, *gx_upd, *gy_upd, *qx, *qy, *qx_upd, *qy_upd, *v, *vx, *vy, *gradx, *grady, *gradx_upd, *grady_upd, *gradx_ubar, *grady_ubar, *div, *div_upd;
-
- p = 1l;
- q = 1l;
- r = 0l;
-
- lambda = 1.0f/(2.0f*lambda);
- DimTotal = (long)(dimX*dimY*dimZ);
- /* PDHG algorithm parameters*/
- float tau = 0.5f;
- float sigma = 0.5f;
- float theta = 1.0f;
-
- // Auxiliar vectors
- u_upd = calloc(DimTotal, sizeof(float));
- gx = calloc(DimTotal, sizeof(float));
- gy = calloc(DimTotal, sizeof(float));
- gx_upd = calloc(DimTotal, sizeof(float));
- gy_upd = calloc(DimTotal, sizeof(float));
- qx = calloc(DimTotal, sizeof(float));
- qy = calloc(DimTotal, sizeof(float));
- qx_upd = calloc(DimTotal, sizeof(float));
- qy_upd = calloc(DimTotal, sizeof(float));
- v = calloc(DimTotal, sizeof(float));
- vx = calloc(DimTotal, sizeof(float));
- vy = calloc(DimTotal, sizeof(float));
- gradx = calloc(DimTotal, sizeof(float));
- grady = calloc(DimTotal, sizeof(float));
- gradx_upd = calloc(DimTotal, sizeof(float));
- grady_upd = calloc(DimTotal, sizeof(float));
- gradx_ubar = calloc(DimTotal, sizeof(float));
- grady_ubar = calloc(DimTotal, sizeof(float));
- div = calloc(DimTotal, sizeof(float));
- div_upd = calloc(DimTotal, sizeof(float));
-
- // Backtracking parameters
- float s = 1.0f;
- float gamma = 0.75f;
- float beta = 0.95f;
- float alpha0 = 0.2f;
- float alpha = alpha0;
- float delta = 1.5f;
- float eta = 0.95f;
-
- // PDHG algorithm parameters
- taulambda = tau * lambda;
- float divtau = 1.0f / tau;
- float divsigma = 1.0f / sigma;
- float theta1 = 1.0f + theta;
-
- /*allocate memory for taulambda */
- //taulambda = (float*) calloc(dimZ, sizeof(float));
- //for(k=0; k < dimZ; k++) {taulambda[k] = tau*lambda[k];}
-
- // Apply Primal-Dual Hybrid Gradient scheme
- int iter = 0;
- float residual = fLarge;
- float ubarx, ubary;
-
- for(iter = 0; iter < maxIter; iter++) {
- // Argument of proximal mapping of fidelity term
-#pragma omp parallel for shared(v, u) private(k)
- for(k=0; k<dimX*dimY*dimZ; k++) {v[k] = u[k] + tau*div[k];}
-
-// Proximal solution of fidelity term
-proxG(u_upd, v, Input, taulambda, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Gradient of updated primal variable
-gradient(u_upd, gradx_upd, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Argument of proximal mapping of regularization term
-#pragma omp parallel for shared(gradx_upd, grady_upd, gradx, grady) private(k, ubarx, ubary)
-for(k=0; k<dimX*dimY*dimZ; k++) {
- ubarx = theta1 * gradx_upd[k] - theta * gradx[k];
- ubary = theta1 * grady_upd[k] - theta * grady[k];
- vx[k] = ubarx + divsigma * qx[k];
- vy[k] = ubary + divsigma * qy[k];
- gradx_ubar[k] = ubarx;
- grady_ubar[k] = ubary;
-}
-
-proxF(gx_upd, gy_upd, vx, vy, sigma, p, q, r, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Update dual variable
-#pragma omp parallel for shared(qx_upd, qy_upd) private(k)
-for(k=0; k<dimX*dimY*dimZ; k++) {
- qx_upd[k] = qx[k] + sigma * (gradx_ubar[k] - gx_upd[k]);
- qy_upd[k] = qy[k] + sigma * (grady_ubar[k] - gy_upd[k]);
-}
-
-// Divergence of updated dual variable
-#pragma omp parallel for shared(div_upd) private(k)
-for(k=0; k<dimX*dimY*dimZ; k++) {div_upd[k] = 0.0f;}
-divergence(qx_upd, qy_upd, div_upd, dimX, dimY, dimZ);
-
-// Compute primal residual, dual residual, and backtracking condition
-float resprimal = 0.0f;
-float resdual = 0.0f;
-float product = 0.0f;
-float unorm = 0.0f;
-float qnorm = 0.0f;
-
-for(k=0; k<dimX*dimY*dimZ; k++) {
- float udiff = u[k] - u_upd[k];
- float qxdiff = qx[k] - qx_upd[k];
- float qydiff = qy[k] - qy_upd[k];
- float divdiff = div[k] - div_upd[k];
- float gradxdiff = gradx[k] - gradx_upd[k];
- float gradydiff = grady[k] - grady_upd[k];
-
- resprimal += fabs(divtau*udiff + divdiff);
- resdual += fabs(divsigma*qxdiff - gradxdiff);
- resdual += fabs(divsigma*qydiff - gradydiff);
-
- unorm += (udiff * udiff);
- qnorm += (qxdiff * qxdiff + qydiff * qydiff);
- product += (gradxdiff * qxdiff + gradydiff * qydiff);
-}
-
-float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm +
- gamma * tau * qnorm);
-
-// Adapt step-size parameters
-float dual_dot_delta = resdual * s * delta;
-float dual_div_delta = (resdual * s) / delta;
-
-if(b > 1)
-{
- // Decrease step-sizes to fit balancing principle
- tau = (beta * tau) / b;
- sigma = (beta * sigma) / b;
- alpha = alpha0;
-
- copyIm(u, u_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gx, gx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gy, gy_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(qx, qx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(qy, qy_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(gradx, gradx_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(grady, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
- copyIm(div, div_upd, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-} else if(resprimal > dual_dot_delta)
-{
- // Increase primal step-size and decrease dual step-size
- tau = tau / (1.0f - alpha);
- sigma = sigma * (1.0f - alpha);
- alpha = alpha * eta;
-
-} else if(resprimal < dual_div_delta)
-{
- // Decrease primal step-size and increase dual step-size
- tau = tau * (1.0f - alpha);
- sigma = sigma / (1.0f - alpha);
- alpha = alpha * eta;
-}
-
-// Update variables
-taulambda = tau * lambda;
-//for(k=0; k < dimZ; k++) taulambda[k] = tau*lambda[k];
-
-divsigma = 1.0f / sigma;
-divtau = 1.0f / tau;
-
-copyIm(u_upd, u, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gx_upd, gx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gy_upd, gy, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(qx_upd, qx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(qy_upd, qy, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(gradx_upd, gradx, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(grady_upd, grady, (long)(dimX), (long)(dimY), (long)(dimZ));
-copyIm(div_upd, div, (long)(dimX), (long)(dimY), (long)(dimZ));
-
-// Compute residual at current iteration
-residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ));
-
-// printf("%f \n", residual);
-if (residual < tol) {
- printf("Iterations stopped at %i with the residual %f \n", iter, residual);
- break; }
-
- }
- printf("Iterations stopped at %i with the residual %f \n", iter, residual);
- free (u_upd); free(gx); free(gy); free(gx_upd); free(gy_upd);
- free(qx); free(qy); free(qx_upd); free(qy_upd); free(v); free(vx); free(vy);
- free(gradx); free(grady); free(gradx_upd); free(grady_upd); free(gradx_ubar);
- free(grady_ubar); free(div); free(div_upd);
- return *u;
-}
-
-float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ)
-{
- float constant;
- long k;
- constant = 1.0f + taulambda;
-#pragma omp parallel for shared(v, f, u_upd) private(k)
- for(k=0; k<dimZ*dimX*dimY; k++) {
- u_upd[k] = (v[k] + taulambda * f[k])/constant;
- //u_upd[(dimX*dimY)*k + l] = (v[(dimX*dimY)*k + l] + taulambda * f[(dimX*dimY)*k + l])/constant;
- }
- return *u_upd;
-}
-
-float gradient(float *u_upd, float *gradx_upd, float *grady_upd, long dimX, long dimY, long dimZ)
-{
- long i, j, k, l;
- // Compute discrete gradient using forward differences
-#pragma omp parallel for shared(gradx_upd,grady_upd,u_upd) private(i, j, k, l)
- for(k = 0; k < dimZ; k++) {
- for(j = 0; j < dimY; j++) {
- l = j * dimX;
- for(i = 0; i < dimX; i++) {
- // Derivatives in the x-direction
- if(i != dimX-1)
- gradx_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+1+l] - u_upd[(dimX*dimY)*k + i+l];
- else
- gradx_upd[(dimX*dimY)*k + i+l] = 0.0f;
-
- // Derivatives in the y-direction
- if(j != dimY-1)
- //grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+dimY+l] -u_upd[(dimX*dimY)*k + i+l];
- grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+(j+1)*dimX] -u_upd[(dimX*dimY)*k + i+l];
- else
- grady_upd[(dimX*dimY)*k + i+l] = 0.0f;
- }}}
- return 1;
-}
-
-float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int q, int r, long dimX, long dimY, long dimZ)
-{
- // (S^p, \ell^1) norm decouples at each pixel
-// Spl1(gx, gy, vx, vy, sigma, p, num_channels, dim);
- float divsigma = 1.0f / sigma;
-
- // $\ell^{1,1,1}$-TV regularization
-// int i,j,k;
-// #pragma omp parallel for shared (gx,gy,vx,vy) private(i,j,k)
-// for(k = 0; k < dimZ; k++) {
-// for(i=0; i<dimX; i++) {
-// for(j=0; j<dimY; j++) {
-// gx[(dimX*dimY)*k + (i)*dimY + (j)] = SIGN(vx[(dimX*dimY)*k + (i)*dimY + (j)]) * MAX(fabs(vx[(dimX*dimY)*k + (i)*dimY + (j)]) - divsigma, 0.0f);
-// gy[(dimX*dimY)*k + (i)*dimY + (j)] = SIGN(vy[(dimX*dimY)*k + (i)*dimY + (j)]) * MAX(fabs(vy[(dimX*dimY)*k + (i)*dimY + (j)]) - divsigma, 0.0f);
-// }}}
-
- // Auxiliar vector
- float *proj, sum, shrinkfactor ;
- float M1,M2,M3,valuex,valuey,T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd,t1,t2,t3;
- long i,j,k, ii, num;
-#pragma omp parallel for shared (gx,gy,vx,vy,p) private(i,ii,j,k,proj,num, sum, shrinkfactor, M1,M2,M3,valuex,valuey,T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4,v0,v1,v2,mu1,mu2,sig1_upd,sig2_upd,t1,t2,t3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
-
- proj = (float*) calloc (2,sizeof(float));
- // Compute matrix $M\in\R^{2\times 2}$
- M1 = 0.0f;
- M2 = 0.0f;
- M3 = 0.0f;
-
- for(k = 0; k < dimZ; k++)
- {
- valuex = vx[(dimX*dimY)*k + (j)*dimX + (i)];
- valuey = vy[(dimX*dimY)*k + (j)*dimX + (i)];
-
- M1 += (valuex * valuex);
- M2 += (valuex * valuey);
- M3 += (valuey * valuey);
- }
-
- // Compute eigenvalues of M
- T = M1 + M3;
- D = M1 * M3 - M2 * M2;
- det = sqrt(MAX((T * T / 4.0f) - D, 0.0f));
- eig1 = MAX((T / 2.0f) + det, 0.0f);
- eig2 = MAX((T / 2.0f) - det, 0.0f);
- sig1 = sqrt(eig1);
- sig2 = sqrt(eig2);
-
- // Compute normalized eigenvectors
- V1 = V2 = V3 = V4 = 0.0f;
-
- if(M2 != 0.0f)
- {
- v0 = M2;
- v1 = eig1 - M3;
- v2 = eig2 - M3;
-
- mu1 = sqrtf(v0 * v0 + v1 * v1);
- mu2 = sqrtf(v0 * v0 + v2 * v2);
-
- if(mu1 > fTiny)
- {
- V1 = v1 / mu1;
- V3 = v0 / mu1;
- }
-
- if(mu2 > fTiny)
- {
- V2 = v2 / mu2;
- V4 = v0 / mu2;
- }
-
- } else
- {
- if(M1 > M3)
- {
- V1 = V4 = 1.0f;
- V2 = V3 = 0.0f;
-
- } else
- {
- V1 = V4 = 0.0f;
- V2 = V3 = 1.0f;
- }
- }
-
- // Compute prox_p of the diagonal entries
- sig1_upd = sig2_upd = 0.0f;
-
- if(p == 1)
- {
- sig1_upd = MAX(sig1 - divsigma, 0.0f);
- sig2_upd = MAX(sig2 - divsigma, 0.0f);
-
- } else if(p == INFNORM)
- {
- proj[0] = sigma * fabs(sig1);
- proj[1] = sigma * fabs(sig2);
-
- /*l1 projection part */
- sum = fLarge;
- num = 0l;
- shrinkfactor = 0.0f;
- while(sum > 1.0f)
- {
- sum = 0.0f;
- num = 0;
-
- for(ii = 0; ii < 2; ii++)
- {
- proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f);
-
- sum += fabs(proj[ii]);
- if(proj[ii]!= 0.0f)
- num++;
- }
-
- if(num > 0)
- shrinkfactor = (sum - 1.0f) / num;
- else
- break;
- }
- /*l1 proj ends*/
-
- sig1_upd = sig1 - divsigma * proj[0];
- sig2_upd = sig2 - divsigma * proj[1];
- }
-
- // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$
- if(sig1 > fTiny)
- sig1_upd /= sig1;
-
- if(sig2 > fTiny)
- sig2_upd /= sig2;
-
- // Compute solution
- t1 = sig1_upd * V1 * V1 + sig2_upd * V2 * V2;
- t2 = sig1_upd * V1 * V3 + sig2_upd * V2 * V4;
- t3 = sig1_upd * V3 * V3 + sig2_upd * V4 * V4;
-
- for(k = 0; k < dimZ; k++)
- {
- gx[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t1 + vy[(dimX*dimY)*k + j*dimX + i] * t2;
- gy[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t2 + vy[(dimX*dimY)*k + j*dimX + i] * t3;
- }
-
- // Delete allocated memory
- free(proj);
- }}
-
- return 1;
-}
-
-float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ)
-{
- long i, j, k, l;
-#pragma omp parallel for shared(qx_upd,qy_upd,div_upd) private(i, j, k, l)
- for(k = 0; k < dimZ; k++) {
- for(j = 0; j < dimY; j++) {
- l = j * dimX;
- for(i = 0; i < dimX; i++) {
- if(i != dimX-1)
- {
- // ux[k][i+l] = u[k][i+1+l] - u[k][i+l]
- div_upd[(dimX*dimY)*k + i+1+l] -= qx_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+l] += qx_upd[(dimX*dimY)*k + i+l];
- }
-
- if(j != dimY-1)
- {
- // uy[k][i+l] = u[k][i+width+l] - u[k][i+l]
- //div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+(j+1)*dimX] -= qy_upd[(dimX*dimY)*k + i+l];
- div_upd[(dimX*dimY)*k + i+l] += qy_upd[(dimX*dimY)*k + i+l];
- }
- }
- }
- }
- return *div_upd;
-}
diff --git a/Core/regularisers_CPU/TNV_core.h b/Core/regularisers_CPU/TNV_core.h
deleted file mode 100644
index aa050a4..0000000
--- a/Core/regularisers_CPU/TNV_core.h
+++ /dev/null
@@ -1,47 +0,0 @@
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-#define fTiny 0.00000001f
-#define fLarge 100000000.0f
-#define INFNORM -1
-
-#define MAX(i,j) ((i)<(j) ? (j):(i))
-#define MIN(i,j) ((i)<(j) ? (i):(j))
-
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ);
-
-/*float PDHG(float *A, float *B, float tau, float sigma, float theta, float lambda, int p, int q, int r, float tol, int maxIter, int d_c, int d_w, int d_h);*/
-CCPI_EXPORT float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float gradient(float *u_upd, float *gradx_upd, float *grady_upd, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int q, int r, long dimX, long dimY, long dimZ);
-CCPI_EXPORT float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/Core/regularisers_CPU/utils.c b/Core/regularisers_CPU/utils.c
deleted file mode 100644
index 7a4e80b..0000000
--- a/Core/regularisers_CPU/utils.c
+++ /dev/null
@@ -1,117 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "utils.h"
-#include <math.h>
-
-/* Copy Image (float) */
-float copyIm(float *A, float *U, long dimX, long dimY, long dimZ)
-{
- long j;
-#pragma omp parallel for shared(A, U) private(j)
- for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
- return *U;
-}
-
-/* Copy Image */
-unsigned char copyIm_unchar(unsigned char *A, unsigned char *U, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, U) private(j)
- for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
- return *U;
-}
-
-/*Roll image symmetrically from top to bottom*/
-float copyIm_roll(float *A, float *U, int dimX, int dimY, int roll_value, int switcher)
-{
- int i, j;
-#pragma omp parallel for shared(U, A) private(i,j)
- for (i=0; i<dimX; i++) {
- for (j=0; j<dimY; j++) {
- if (switcher == 0) {
- if (j < (dimY - roll_value)) U[j*dimX + i] = A[(j+roll_value)*dimX + i];
- else U[j*dimX + i] = A[(j - (dimY - roll_value))*dimX + i];
- }
- else {
- if (j < roll_value) U[j*dimX + i] = A[(j+(dimY - roll_value))*dimX + i];
- else U[j*dimX + i] = A[(j - roll_value)*dimX + i];
- }
- }}
- return *U;
-}
-
-/* function that calculates TV energy
- * type - 1: 2*lambda*min||\nabla u|| + ||u -u0||^2
- * type - 2: 2*lambda*min||\nabla u||
- * */
-float TV_energy2D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY)
-{
- int i, j, i1, j1, index;
- float NOMx_2, NOMy_2, E_Grad=0.0f, E_Data=0.0f;
-
- /* first calculate \grad U_xy*/
- for(j=0; j<dimY; j++) {
- for(i=0; i<dimX; i++) {
- index = j*dimX+i;
- /* boundary conditions */
- i1 = i + 1; if (i == dimX-1) i1 = i;
- j1 = j + 1; if (j == dimY-1) j1 = j;
-
- /* Forward differences */
- NOMx_2 = powf((float)(U[j1*dimX + i] - U[index]),2); /* x+ */
- NOMy_2 = powf((float)(U[j*dimX + i1] - U[index]),2); /* y+ */
- E_Grad += 2.0f*lambda*sqrtf((float)(NOMx_2) + (float)(NOMy_2)); /* gradient term energy */
- E_Data += powf((float)(U[index]-U0[index]),2); /* fidelity term energy */
- }
- }
- if (type == 1) E_val[0] = E_Grad + E_Data;
- if (type == 2) E_val[0] = E_Grad;
- return *E_val;
-}
-
-float TV_energy3D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY, int dimZ)
-{
- long i, j, k, i1, j1, k1, index;
- float NOMx_2, NOMy_2, NOMz_2, E_Grad=0.0f, E_Data=0.0f;
-
- /* first calculate \grad U_xy*/
- for(j=0; j<(long)(dimY); j++) {
- for(i=0; i<(long)(dimX); i++) {
- for(k=0; k<(long)(dimZ); k++) {
- index = (dimX*dimY)*k + j*dimX+i;
- /* boundary conditions */
- i1 = i + 1; if (i == (long)(dimX-1)) i1 = i;
- j1 = j + 1; if (j == (long)(dimY-1)) j1 = j;
- k1 = k + 1; if (k == (long)(dimZ-1)) k1 = k;
-
- /* Forward differences */
- NOMx_2 = powf((float)(U[(dimX*dimY)*k + j1*dimX+i] - U[index]),2); /* x+ */
- NOMy_2 = powf((float)(U[(dimX*dimY)*k + j*dimX+i1] - U[index]),2); /* y+ */
- NOMz_2 = powf((float)(U[(dimX*dimY)*k1 + j*dimX+i] - U[index]),2); /* z+ */
-
- E_Grad += 2.0f*lambda*sqrtf((float)(NOMx_2) + (float)(NOMy_2) + (float)(NOMz_2)); /* gradient term energy */
- E_Data += (powf((float)(U[index]-U0[index]),2)); /* fidelity term energy */
- }
- }
- }
- if (type == 1) E_val[0] = E_Grad + E_Data;
- if (type == 2) E_val[0] = E_Grad;
- return *E_val;
-}
diff --git a/Core/regularisers_CPU/utils.h b/Core/regularisers_CPU/utils.h
deleted file mode 100644
index cfaf6d7..0000000
--- a/Core/regularisers_CPU/utils.h
+++ /dev/null
@@ -1,34 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include <stdlib.h>
-#include <memory.h>
-#include "CCPiDefines.h"
-#include "omp.h"
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float copyIm(float *A, float *U, long dimX, long dimY, long dimZ);
-CCPI_EXPORT unsigned char copyIm_unchar(unsigned char *A, unsigned char *U, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float copyIm_roll(float *A, float *U, int dimX, int dimY, int roll_value, int switcher);
-CCPI_EXPORT float TV_energy2D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY);
-CCPI_EXPORT float TV_energy3D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu b/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu
deleted file mode 100644
index a4dbe70..0000000
--- a/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu
+++ /dev/null
@@ -1,268 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "Diffus_4thO_GPU_core.h"
-#include "shared.h"
-
-/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma)
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.
- */
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-#define EPS 1.0e-7
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-__global__ void Weighted_Laplc2D_kernel(float *W_Lapl, float *U0, float sigma, int dimX, int dimY)
-{
- int i1,i2,j1,j2;
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- gradX = 0.5f*(U0[j*dimX+i2] - U0[j*dimX+i1]);
- gradX_sq = powf(gradX,2);
-
- gradY = 0.5f*(U0[j2*dimX+i] - U0[j1*dimX+i]);
- gradY_sq = powf(gradY,2);
-
- gradXX = U0[j*dimX+i2] + U0[j*dimX+i1] - 2*U0[index];
- gradYY = U0[j2*dimX+i] + U0[j1*dimX+i] - 2*U0[index];
-
- gradXY = 0.25f*(U0[j2*dimX+i2] + U0[j1*dimX+i1] - U0[j1*dimX+i2] - U0[j2*dimX+i1]);
- xy_2 = 2.0f*gradX*gradY*gradXY;
-
- denom = gradX_sq + gradY_sq;
-
- if (denom <= EPS) {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/EPS;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/EPS;
- }
- else {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/denom;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/denom;
- }
-
- c = 1.0f/(1.0f + denom/sigma);
- c_sq = c*c;
-
- W_Lapl[index] = c_sq*V_norm + c*V_orth;
- }
- return;
-}
-
-__global__ void Diffusion_update_step2D_kernel(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, int dimX, int dimY)
-{
- int i1,i2,j1,j2;
- float gradXXc, gradYYc;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- gradXXc = W_Lapl[j*dimX+i2] + W_Lapl[j*dimX+i1] - 2*W_Lapl[index];
- gradYYc = W_Lapl[j2*dimX+i] + W_Lapl[j1*dimX+i] - 2*W_Lapl[index];
-
- Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc) - (Output[index] - Input[index]));
- }
- return;
-}
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-__global__ void Weighted_Laplc3D_kernel(float *W_Lapl, float *U0, float sigma, int dimX, int dimY, int dimZ)
-{
- int i1,i2,j1,j2,k1,k2;
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq, gradZ, gradZ_sq, gradZZ, gradXZ, gradYZ, xyz_1, xyz_2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- gradX = 0.5f*(U0[(dimX*dimY)*k + j*dimX+i2] - U0[(dimX*dimY)*k + j*dimX+i1]);
- gradX_sq = pow(gradX,2);
-
- gradY = 0.5f*(U0[(dimX*dimY)*k + j2*dimX+i] - U0[(dimX*dimY)*k + j1*dimX+i]);
- gradY_sq = pow(gradY,2);
-
- gradZ = 0.5f*(U0[(dimX*dimY)*k2 + j*dimX+i] - U0[(dimX*dimY)*k1 + j*dimX+i]);
- gradZ_sq = pow(gradZ,2);
-
- gradXX = U0[(dimX*dimY)*k + j*dimX+i2] + U0[(dimX*dimY)*k + j*dimX+i1] - 2*U0[index];
- gradYY = U0[(dimX*dimY)*k + j2*dimX+i] + U0[(dimX*dimY)*k + j1*dimX+i] - 2*U0[index];
- gradZZ = U0[(dimX*dimY)*k2 + j*dimX+i] + U0[(dimX*dimY)*k1 + j*dimX+i] - 2*U0[index];
-
- gradXY = 0.25f*(U0[(dimX*dimY)*k + j2*dimX+i2] + U0[(dimX*dimY)*k + j1*dimX+i1] - U0[(dimX*dimY)*k + j1*dimX+i2] - U0[(dimX*dimY)*k + j2*dimX+i1]);
- gradXZ = 0.25f*(U0[(dimX*dimY)*k2 + j*dimX+i2] - U0[(dimX*dimY)*k2+j*dimX+i1] - U0[(dimX*dimY)*k1+j*dimX+i2] + U0[(dimX*dimY)*k1+j*dimX+i1]);
- gradYZ = 0.25f*(U0[(dimX*dimY)*k2 +j2*dimX+i] - U0[(dimX*dimY)*k2+j1*dimX+i] - U0[(dimX*dimY)*k1+j2*dimX+i] + U0[(dimX*dimY)*k1+j1*dimX+i]);
-
- xy_2 = 2.0f*gradX*gradY*gradXY;
- xyz_1 = 2.0f*gradX*gradZ*gradXZ;
- xyz_2 = 2.0f*gradY*gradZ*gradYZ;
-
- denom = gradX_sq + gradY_sq + gradZ_sq;
-
- if (denom <= EPS) {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/EPS;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/EPS;
- }
- else {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/denom;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/denom;
- }
-
- c = 1.0f/(1.0f + denom/sigma);
- c_sq = c*c;
-
- W_Lapl[index] = c_sq*V_norm + c*V_orth;
- }
- return;
-}
-__global__ void Diffusion_update_step3D_kernel(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, int dimX, int dimY, int dimZ)
-{
- int i1,i2,j1,j2,k1,k2;
- float gradXXc, gradYYc, gradZZc;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- gradXXc = W_Lapl[(dimX*dimY)*k + j*dimX+i2] + W_Lapl[(dimX*dimY)*k + j*dimX+i1] - 2*W_Lapl[index];
- gradYYc = W_Lapl[(dimX*dimY)*k + j2*dimX+i] + W_Lapl[(dimX*dimY)*k + j1*dimX+i] - 2*W_Lapl[index];
- gradZZc = W_Lapl[(dimX*dimY)*k2 + j*dimX+i] + W_Lapl[(dimX*dimY)*k1 + j*dimX+i] - 2*W_Lapl[index];
-
- Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc + gradZZc) - (Output[index] - Input[index]));
- }
- return;
-}
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-/********************* MAIN HOST FUNCTION ******************/
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-extern "C" int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z)
-{
- int dimTotal, dev = 0;
- CHECK(cudaSetDevice(dev));
- float *d_input, *d_output, *d_W_Lapl;
- float sigmaPar2;
- sigmaPar2 = sigmaPar*sigmaPar;
- dimTotal = N*M*Z;
-
- CHECK(cudaMalloc((void**)&d_input,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_output,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_W_Lapl,dimTotal*sizeof(float)));
-
- CHECK(cudaMemcpy(d_input,Input,dimTotal*sizeof(float),cudaMemcpyHostToDevice));
- CHECK(cudaMemcpy(d_output,Input,dimTotal*sizeof(float),cudaMemcpyHostToDevice));
-
- if (Z == 1) {
- /*2D case */
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D));
-
- for(int n=0; n < iterationsNumb; n++) {
- /* Calculating weighted Laplacian */
- Weighted_Laplc2D_kernel<<<dimGrid,dimBlock>>>(d_W_Lapl, d_output, sigmaPar2, N, M);
- CHECK(cudaDeviceSynchronize());
- /* Perform iteration step */
- Diffusion_update_step2D_kernel<<<dimGrid,dimBlock>>>(d_output, d_input, d_W_Lapl, lambdaPar, sigmaPar2, tau, N, M);
- CHECK(cudaDeviceSynchronize());
- }
- }
- else {
- /*3D case*/
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKZSIZE));
- for(int n=0; n < iterationsNumb; n++) {
- /* Calculating weighted Laplacian */
- Weighted_Laplc3D_kernel<<<dimGrid,dimBlock>>>(d_W_Lapl, d_output, sigmaPar2, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- /* Perform iteration step */
- Diffusion_update_step3D_kernel<<<dimGrid,dimBlock>>>(d_output, d_input, d_W_Lapl, lambdaPar, sigmaPar2, tau, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- }
- }
- CHECK(cudaMemcpy(Output,d_output,dimTotal*sizeof(float),cudaMemcpyDeviceToHost));
- CHECK(cudaFree(d_input));
- CHECK(cudaFree(d_output));
- CHECK(cudaFree(d_W_Lapl));
- return 0;
-}
diff --git a/Core/regularisers_GPU/Diffus_4thO_GPU_core.h b/Core/regularisers_GPU/Diffus_4thO_GPU_core.h
deleted file mode 100644
index 77d5d79..0000000
--- a/Core/regularisers_GPU/Diffus_4thO_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __Diff_4thO_GPU_H__
-#define __Diff_4thO_GPU_H__
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
-
-#endif
diff --git a/Core/regularisers_GPU/LLT_ROF_GPU_core.cu b/Core/regularisers_GPU/LLT_ROF_GPU_core.cu
deleted file mode 100644
index 87871be..0000000
--- a/Core/regularisers_GPU/LLT_ROF_GPU_core.cu
+++ /dev/null
@@ -1,473 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "LLT_ROF_GPU_core.h"
-#include "shared.h"
-
-/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
- *
-* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
-* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
-* lambdaLLT starting with smaller values.
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambdaROF - ROF-related regularisation parameter
-* 3. lambdaLLT - LLT-related regularisation parameter
-* 4. tau - time-marching step
-* 5. iter - iterations number (for both models)
-*
-* Output:
-* Filtered/regularised image
-*
-* References:
-* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*/
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-
-
-#define EPS_LLT 0.01
-#define EPS_ROF 1.0e-12
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-__host__ __device__ int signLLT (float x)
-{
- return (x > 0) - (x < 0);
-}
-
-/*************************************************************************/
-/**********************LLT-related functions *****************************/
-/*************************************************************************/
-__global__ void der2D_LLT_kernel(float *U, float *D1, float *D2, int dimX, int dimY)
- {
- int i_p, i_m, j_m, j_p;
- float dxx, dyy, denom_xx, denom_yy;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = U[j*dimX+i_p] - 2.0f*U[index] + U[j*dimX+i_m];
- dyy = U[j_p*dimX+i] - 2.0f*U[index] + U[j_m*dimX+i];
-
- denom_xx = abs(dxx) + EPS_LLT;
- denom_yy = abs(dyy) + EPS_LLT;
-
- D1[index] = dxx / denom_xx;
- D2[index] = dyy / denom_yy;
- }
- }
-
-__global__ void der3D_LLT_kernel(float* U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
- {
- int i_p, i_m, j_m, j_p, k_p, k_m;
- float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- dxx = U[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*U[index] + U[(dimX*dimY)*k + j*dimX+i_m];
- dyy = U[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k + j_m*dimX+i];
- dzz = U[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k_m + j*dimX+i];
-
- denom_xx = abs(dxx) + EPS_LLT;
- denom_yy = abs(dyy) + EPS_LLT;
- denom_zz = abs(dzz) + EPS_LLT;
-
- D1[index] = dxx / denom_xx;
- D2[index] = dyy / denom_yy;
- D3[index] = dzz / denom_zz;
- }
- }
-
-/*************************************************************************/
-/**********************ROF-related functions *****************************/
-/*************************************************************************/
-
-/* first-order differences 1 */
-__global__ void D1_func2D_ROF_kernel(float* Input, float* D1, int N, int M)
- {
- int i1, j1, i2;
- float NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i + 1; if (i1 >= N) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= M) j1 = j-1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */
- NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[j*N + i2]; /* y- */
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(signLLT((float)NOMy_1) + signLLT((float)NOMy_0))*(MIN(abs((float)NOMy_1),abs((float)NOMy_0)));
- denom2 = denom2*denom2;
- T1 = sqrt(denom1 + denom2 + EPS_ROF);
- D1[index] = NOMx_1/T1;
- }
- }
-
-/* differences 2 */
-__global__ void D2_func2D_ROF_kernel(float* Input, float* D2, int N, int M)
- {
- int i1, j1, j2;
- float NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i + 1; if (i1 >= N) i1 = i-1;
- j1 = j + 1; if (j1 >= M) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */
- NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */
- NOMx_0 = Input[index] - Input[j2*N + i]; /* x- */
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(signLLT((float)NOMx_1) + signLLT((float)NOMx_0))*(MIN(abs((float)NOMx_1),abs((float)NOMx_0)));
- denom2 = denom2*denom2;
- T2 = sqrt(denom1 + denom2 + EPS_ROF);
- D2[index] = NOMy_1/T2;
- }
- }
-
-
- /* differences 1 */
-__global__ void D1_func3D_ROF_kernel(float* Input, float* D1, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + j1*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + j*dimX + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[(dimX*dimY)*k + j*dimX + i2]; /* y- */
-
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
- NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + j*dimX + i]; /* z- */
-
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0)));
- denom3 = denom3*denom3;
- T1 = sqrt(denom1 + denom2 + denom3 + EPS_ROF);
- D1[index] = NOMx_1/T1;
- }
- }
-
- /* differences 2 */
- __global__ void D2_func3D_ROF_kernel(float* Input, float* D2, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */
- NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
- NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */
-
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0)));
- denom3 = denom3*denom3;
- T2 = sqrt(denom1 + denom2 + denom3 + EPS_ROF);
- D2[index] = NOMy_1/T2;
- }
- }
-
- /* differences 3 */
- __global__ void D3_func3D_ROF_kernel(float* Input, float* D3, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */
- NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
-
- denom1 = NOMz_1*NOMz_1;
- denom2 = 0.5*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0)));
- denom3 = denom3*denom3;
- T3 = sqrt(denom1 + denom2 + denom3 + EPS_ROF);
- D3[index] = NOMz_1/T3;
- }
- }
-/*************************************************************************/
-/**********************ROF-LLT-related functions *************************/
-/*************************************************************************/
-
-__global__ void Update2D_LLT_ROF_kernel(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, int dimX, int dimY)
-{
-
- int i_p, i_m, j_m, j_p;
- float div, laplc, dxx, dyy, dv1, dv2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- index = j*dimX+i;
-
- /*LLT-related part*/
- dxx = D1_LLT[j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[j*dimX+i_m];
- dyy = D2_LLT[j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[j_m*dimX+i];
- laplc = dxx + dyy; /*build Laplacian*/
- /*ROF-related part*/
- dv1 = D1_ROF[index] - D1_ROF[j_m*dimX + i];
- dv2 = D2_ROF[index] - D2_ROF[j*dimX + i_m];
- div = dv1 + dv2; /*build Divirgent*/
-
- /*combine all into one cost function to minimise */
- U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
- }
-}
-
-__global__ void Update3D_LLT_ROF_kernel(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, int dimX, int dimY, int dimZ)
-{
- int i_p, i_m, j_m, j_p, k_p, k_m;
- float div, laplc, dxx, dyy, dzz, dv1, dv2, dv3;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- /*LLT-related part*/
- dxx = D1_LLT[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[(dimX*dimY)*k + j*dimX+i_m];
- dyy = D2_LLT[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[(dimX*dimY)*k + j_m*dimX+i];
- dzz = D3_LLT[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*D3_LLT[index] + D3_LLT[(dimX*dimY)*k_m + j*dimX+i];
- laplc = dxx + dyy + dzz; /*build Laplacian*/
-
- /*ROF-related part*/
- dv1 = D1_ROF[index] - D1_ROF[(dimX*dimY)*k + j_m*dimX+i];
- dv2 = D2_ROF[index] - D2_ROF[(dimX*dimY)*k + j*dimX+i_m];
- dv3 = D3_ROF[index] - D3_ROF[(dimX*dimY)*k_m + j*dimX+i];
- div = dv1 + dv2 + dv3; /*build Divirgent*/
-
- /*combine all into one cost function to minimise */
- U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
- }
-}
-
-/*******************************************************************/
-/************************ HOST FUNCTION ****************************/
-/*******************************************************************/
-
-extern "C" int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z)
-{
- // set up device
- int dev = 0;
- int DimTotal;
- DimTotal = N*M*Z;
- CHECK(cudaSetDevice(dev));
- float *d_input, *d_update;
- float *D1_LLT=NULL, *D2_LLT=NULL, *D3_LLT=NULL, *D1_ROF=NULL, *D2_ROF=NULL, *D3_ROF=NULL;
-
- if (Z == 0) {Z = 1;}
-
- CHECK(cudaMalloc((void**)&d_input,DimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_update,DimTotal*sizeof(float)));
-
- CHECK(cudaMalloc((void**)&D1_LLT,DimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&D2_LLT,DimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&D3_LLT,DimTotal*sizeof(float)));
-
- CHECK(cudaMalloc((void**)&D1_ROF,DimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&D2_ROF,DimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&D3_ROF,DimTotal*sizeof(float)));
-
- CHECK(cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
- CHECK(cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
-
- if (Z == 1) {
- // TV - 2D case
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D));
-
- for(int n=0; n < iterationsNumb; n++) {
- /****************ROF******************/
- /* calculate first-order differences */
- D1_func2D_ROF_kernel<<<dimGrid,dimBlock>>>(d_update, D1_ROF, N, M);
- CHECK(cudaDeviceSynchronize());
- D2_func2D_ROF_kernel<<<dimGrid,dimBlock>>>(d_update, D2_ROF, N, M);
- CHECK(cudaDeviceSynchronize());
- /****************LLT******************/
- /* estimate second-order derrivatives */
- der2D_LLT_kernel<<<dimGrid,dimBlock>>>(d_update, D1_LLT, D2_LLT, N, M);
- /* Joint update for ROF and LLT models */
- Update2D_LLT_ROF_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, D1_LLT, D2_LLT, D1_ROF, D2_ROF, lambdaROF, lambdaLLT, tau, N, M);
- CHECK(cudaDeviceSynchronize());
- }
- }
- else {
- // 3D case
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
-
- for(int n=0; n < iterationsNumb; n++) {
- /****************ROF******************/
- /* calculate first-order differences */
- D1_func3D_ROF_kernel<<<dimGrid,dimBlock>>>(d_update, D1_ROF, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- D2_func3D_ROF_kernel<<<dimGrid,dimBlock>>>(d_update, D2_ROF, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- D3_func3D_ROF_kernel<<<dimGrid,dimBlock>>>(d_update, D3_ROF, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- /****************LLT******************/
- /* estimate second-order derrivatives */
- der3D_LLT_kernel<<<dimGrid,dimBlock>>>(d_update, D1_LLT, D2_LLT, D3_LLT, N, M, Z);
- /* Joint update for ROF and LLT models */
- Update3D_LLT_ROF_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, D1_LLT, D2_LLT, D3_LLT, D1_ROF, D2_ROF, D3_ROF, lambdaROF, lambdaLLT, tau, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- }
- }
- CHECK(cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost));
- CHECK(cudaFree(d_input));
- CHECK(cudaFree(d_update));
- CHECK(cudaFree(D1_LLT));
- CHECK(cudaFree(D2_LLT));
- CHECK(cudaFree(D3_LLT));
- CHECK(cudaFree(D1_ROF));
- CHECK(cudaFree(D2_ROF));
- CHECK(cudaFree(D3_ROF));
- return 0;
-}
diff --git a/Core/regularisers_GPU/LLT_ROF_GPU_core.h b/Core/regularisers_GPU/LLT_ROF_GPU_core.h
deleted file mode 100644
index a6bfcc7..0000000
--- a/Core/regularisers_GPU/LLT_ROF_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __ROFLLTGPU_H__
-#define __ROFLLTGPU_H__
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
-
-#endif
diff --git a/Core/regularisers_GPU/NonlDiff_GPU_core.cu b/Core/regularisers_GPU/NonlDiff_GPU_core.cu
deleted file mode 100644
index ff7ce4d..0000000
--- a/Core/regularisers_GPU/NonlDiff_GPU_core.cu
+++ /dev/null
@@ -1,345 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "NonlDiff_GPU_core.h"
-#include "shared.h"
-
-/* CUDA implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-#define EPS 1.0e-5
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-__host__ __device__ int signNDF (float x)
-{
- return (x > 0) - (x < 0);
-}
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-__global__ void LinearDiff2D_kernel(float *Input, float *Output, float lambdaPar, float tau, int N, int M)
- {
- int i1,i2,j1,j2;
- float e,w,n,s,e1,w1,n1,s1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- e = Output[j*N+i1];
- w = Output[j*N+i2];
- n = Output[j1*N+i];
- s = Output[j2*N+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }
- }
-
- __global__ void NonLinearDiff2D_kernel(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int N, int M)
- {
- int i1,i2,j1,j2;
- float e,w,n,s,e1,w1,n1,s1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- e = Output[j*N+i1];
- w = Output[j*N+i2];
- n = Output[j1*N+i];
- s = Output[j2*N+i];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (abs(e1) > sigmaPar) e1 = signNDF(e1);
- else e1 = e1/sigmaPar;
-
- if (abs(w1) > sigmaPar) w1 = signNDF(w1);
- else w1 = w1/sigmaPar;
-
- if (abs(n1) > sigmaPar) n1 = signNDF(n1);
- else n1 = n1/sigmaPar;
-
- if (abs(s1) > sigmaPar) s1 = signNDF(s1);
- else s1 = s1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + pow((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + pow((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + pow((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + pow((s1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (abs(e1) <= sigmaPar) e1 = e1*pow((1.0f - pow((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (abs(w1) <= sigmaPar) w1 = w1*pow((1.0f - pow((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (abs(n1) <= sigmaPar) n1 = n1*pow((1.0f - pow((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (abs(s1) <= sigmaPar) s1 = s1*pow((1.0f - pow((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- }
- else printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index]));
- }
- }
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-
-__global__ void LinearDiff3D_kernel(float *Input, float *Output, float lambdaPar, float tau, int N, int M, int Z)
- {
- int i1,i2,j1,j2,k1,k2;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M) && (k >= 0) && (k < Z)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- e = Output[(N*M)*k + i1 + N*j];
- w = Output[(N*M)*k + i2 + N*j];
- n = Output[(N*M)*k + i + N*j1];
- s = Output[(N*M)*k + i + N*j2];
- u = Output[(N*M)*k1 + i + N*j];
- d = Output[(N*M)*k2 + i + N*j];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }
- }
-
-__global__ void NonLinearDiff3D_kernel(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int N, int M, int Z)
- {
- int i1,i2,j1,j2,k1,k2;
- float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M) && (k >= 0) && (k < Z)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- e = Output[(N*M)*k + i1 + N*j];
- w = Output[(N*M)*k + i2 + N*j];
- n = Output[(N*M)*k + i + N*j1];
- s = Output[(N*M)*k + i + N*j2];
- u = Output[(N*M)*k1 + i + N*j];
- d = Output[(N*M)*k2 + i + N*j];
-
- e1 = e - Output[index];
- w1 = w - Output[index];
- n1 = n - Output[index];
- s1 = s - Output[index];
- u1 = u - Output[index];
- d1 = d - Output[index];
-
-
- if (penaltytype == 1){
- /* Huber penalty */
- if (abs(e1) > sigmaPar) e1 = signNDF(e1);
- else e1 = e1/sigmaPar;
-
- if (abs(w1) > sigmaPar) w1 = signNDF(w1);
- else w1 = w1/sigmaPar;
-
- if (abs(n1) > sigmaPar) n1 = signNDF(n1);
- else n1 = n1/sigmaPar;
-
- if (abs(s1) > sigmaPar) s1 = signNDF(s1);
- else s1 = s1/sigmaPar;
-
- if (abs(u1) > sigmaPar) u1 = signNDF(u1);
- else u1 = u1/sigmaPar;
-
- if (abs(d1) > sigmaPar) d1 = signNDF(d1);
- else d1 = d1/sigmaPar;
- }
- else if (penaltytype == 2) {
- /* Perona-Malik */
- e1 = (e1)/(1.0f + pow((e1/sigmaPar),2));
- w1 = (w1)/(1.0f + pow((w1/sigmaPar),2));
- n1 = (n1)/(1.0f + pow((n1/sigmaPar),2));
- s1 = (s1)/(1.0f + pow((s1/sigmaPar),2));
- u1 = (u1)/(1.0f + pow((u1/sigmaPar),2));
- d1 = (d1)/(1.0f + pow((d1/sigmaPar),2));
- }
- else if (penaltytype == 3) {
- /* Tukey Biweight */
- if (abs(e1) <= sigmaPar) e1 = e1*pow((1.0f - pow((e1/sigmaPar),2)), 2);
- else e1 = 0.0f;
- if (abs(w1) <= sigmaPar) w1 = w1*pow((1.0f - pow((w1/sigmaPar),2)), 2);
- else w1 = 0.0f;
- if (abs(n1) <= sigmaPar) n1 = n1*pow((1.0f - pow((n1/sigmaPar),2)), 2);
- else n1 = 0.0f;
- if (abs(s1) <= sigmaPar) s1 = s1*pow((1.0f - pow((s1/sigmaPar),2)), 2);
- else s1 = 0.0f;
- if (abs(u1) <= sigmaPar) u1 = u1*pow((1.0f - pow((u1/sigmaPar),2)), 2);
- else u1 = 0.0f;
- if (abs(d1) <= sigmaPar) d1 = d1*pow((1.0f - pow((d1/sigmaPar),2)), 2);
- else d1 = 0.0f;
- }
- else printf("%s \n", "No penalty function selected! Use 1,2 or 3.");
-
- Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index]));
- }
- }
-
-/////////////////////////////////////////////////
-// HOST FUNCTION
-extern "C" int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z)
-{
- // set up device
- int dev = 0;
- CHECK(cudaSetDevice(dev));
- float *d_input, *d_output;
- float sigmaPar2;
- sigmaPar2 = sigmaPar/sqrt(2.0f);
-
- CHECK(cudaMalloc((void**)&d_input,N*M*Z*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_output,N*M*Z*sizeof(float)));
-
- CHECK(cudaMemcpy(d_input,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- CHECK(cudaMemcpy(d_output,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
-
- if (Z == 1) {
- /*2D case */
-
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D));
-
- for(int n=0; n < iterationsNumb; n++) {
- if (sigmaPar == 0.0f) {
- /* linear diffusion (heat equation) */
- LinearDiff2D_kernel<<<dimGrid,dimBlock>>>(d_input, d_output, lambdaPar, tau, N, M);
- CHECK(cudaDeviceSynchronize());
- }
- else {
- /* nonlinear diffusion */
- NonLinearDiff2D_kernel<<<dimGrid,dimBlock>>>(d_input, d_output, lambdaPar, sigmaPar2, tau, penaltytype, N, M);
- CHECK(cudaDeviceSynchronize());
- }
- }
- }
- else {
- /*3D case*/
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKZSIZE));
- for(int n=0; n < iterationsNumb; n++) {
- if (sigmaPar == 0.0f) {
- /* linear diffusion (heat equation) */
- LinearDiff3D_kernel<<<dimGrid,dimBlock>>>(d_input, d_output, lambdaPar, tau, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- }
- else {
- /* nonlinear diffusion */
- NonLinearDiff3D_kernel<<<dimGrid,dimBlock>>>(d_input, d_output, lambdaPar, sigmaPar2, tau, penaltytype, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- }
- }
-
- }
- CHECK(cudaMemcpy(Output,d_output,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
- CHECK(cudaFree(d_input));
- CHECK(cudaFree(d_output));
- //cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/NonlDiff_GPU_core.h b/Core/regularisers_GPU/NonlDiff_GPU_core.h
deleted file mode 100644
index 5fe457e..0000000
--- a/Core/regularisers_GPU/NonlDiff_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __NonlDiffGPU_H__
-#define __NonlDiffGPU_H__
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
-
-#endif
diff --git a/Core/regularisers_GPU/PatchSelect_GPU_core.cu b/Core/regularisers_GPU/PatchSelect_GPU_core.cu
deleted file mode 100644
index 98c8488..0000000
--- a/Core/regularisers_GPU/PatchSelect_GPU_core.cu
+++ /dev/null
@@ -1,460 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "PatchSelect_GPU_core.h"
-#include "shared.h"
-
-/* CUDA implementation of non-local weight pre-calculation for non-local priors
- * Weights and associated indices are stored into pre-allocated arrays and passed
- * to the regulariser
- *
- *
- * Input Parameters:
- * 1. 2D grayscale image (classical 3D version will not be supported but rather 2D + dim extension (TODO))
- * 2. Searching window (half-size of the main bigger searching window, e.g. 11)
- * 3. Similarity window (half-size of the patch window, e.g. 2)
- * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken)
- * 5. noise-related parameter to calculate non-local weights
- *
- * Output [2D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. Weights_ij - associated weights
- */
-
-
-#define BLKXSIZE 16
-#define BLKYSIZE 16
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-#define M_PI 3.14159265358979323846
-#define EPS 1.0e-8
-#define CONSTVECSIZE5 121
-#define CONSTVECSIZE7 225
-#define CONSTVECSIZE9 361
-#define CONSTVECSIZE11 529
-#define CONSTVECSIZE13 729
-
-__device__ void swap(float *xp, float *yp)
-{
- float temp = *xp;
- *xp = *yp;
- *yp = temp;
-}
-__device__ void swapUS(unsigned short *xp, unsigned short *yp)
-{
- unsigned short temp = *xp;
- *xp = *yp;
- *yp = temp;
-}
-
-/********************************************************************************/
-__global__ void IndexSelect2D_5_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2)
-{
-
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2;
- float normsum;
-
- float Weight_Vec[CONSTVECSIZE5];
- unsigned short ind_i[CONSTVECSIZE5];
- unsigned short ind_j[CONSTVECSIZE5];
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- long index = i*M+j;
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) {
- if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) {
- normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2);
- counterG++;
- }}
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = __expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
-
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index2 = (N*M*x) + index;
- H_i_d[index2] = ind_i[x];
- H_j_d[index2] = ind_j[x];
- Weights_d[index2] = Weight_Vec[x];
- }
-}
-/********************************************************************************/
-__global__ void IndexSelect2D_7_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2)
-{
-
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2;
- float normsum;
-
- float Weight_Vec[CONSTVECSIZE7];
- unsigned short ind_i[CONSTVECSIZE7];
- unsigned short ind_j[CONSTVECSIZE7];
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- long index = i*M+j;
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) {
- if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) {
- normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2);
- counterG++;
- }}
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = __expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
-
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index2 = (N*M*x) + index;
- H_i_d[index2] = ind_i[x];
- H_j_d[index2] = ind_j[x];
- Weights_d[index2] = Weight_Vec[x];
- }
-}
-__global__ void IndexSelect2D_9_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2)
-{
-
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2;
- float normsum;
-
- float Weight_Vec[CONSTVECSIZE9];
- unsigned short ind_i[CONSTVECSIZE9];
- unsigned short ind_j[CONSTVECSIZE9];
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- long index = i*M+j;
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) {
- if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) {
- normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2);
- counterG++;
- }}
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
-
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index2 = (N*M*x) + index;
- H_i_d[index2] = ind_i[x];
- H_j_d[index2] = ind_j[x];
- Weights_d[index2] = Weight_Vec[x];
- }
-}
-__global__ void IndexSelect2D_11_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2)
-{
-
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2;
- float normsum;
-
- float Weight_Vec[CONSTVECSIZE11];
- unsigned short ind_i[CONSTVECSIZE11];
- unsigned short ind_j[CONSTVECSIZE11];
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- long index = i*M+j;
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) {
- if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) {
- normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2);
- counterG++;
- }}
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = __expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
-
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index2 = (N*M*x) + index;
- H_i_d[index2] = ind_i[x];
- H_j_d[index2] = ind_j[x];
- Weights_d[index2] = Weight_Vec[x];
- }
-}
-__global__ void IndexSelect2D_13_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2)
-{
-
- long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2;
- float normsum;
-
- float Weight_Vec[CONSTVECSIZE13];
- unsigned short ind_i[CONSTVECSIZE13];
- unsigned short ind_j[CONSTVECSIZE13];
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- long index = i*M+j;
-
- counter = 0;
- for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
- for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
- i1 = i+i_m;
- j1 = j+j_m;
- if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) {
- normsum = 0.0f; counterG = 0;
- for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
- for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
- i2 = i1 + i_c;
- j2 = j1 + j_c;
- i3 = i + i_c;
- j3 = j + j_c;
- if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) {
- if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) {
- normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2);
- counterG++;
- }}
- }}
- /* writing temporarily into vectors */
- if (normsum > EPS) {
- Weight_Vec[counter] = __expf(-normsum/h2);
- ind_i[counter] = i1;
- ind_j[counter] = j1;
- counter++;
- }
- }
- }}
-
- /* do sorting to choose the most prominent weights [HIGH to LOW] */
- /* and re-arrange indeces accordingly */
- for (x = 0; x < counter-1; x++) {
- for (y = 0; y < counter-x-1; y++) {
- if (Weight_Vec[y] < Weight_Vec[y+1]) {
- swap(&Weight_Vec[y], &Weight_Vec[y+1]);
- swapUS(&ind_i[y], &ind_i[y+1]);
- swapUS(&ind_j[y], &ind_j[y+1]);
- }
- }
- }
- /*sorting loop finished*/
- /*now select the NumNeighb more prominent weights and store into arrays */
- for(x=0; x < NumNeighb; x++) {
- index2 = (N*M*x) + index;
- H_i_d[index2] = ind_i[x];
- H_j_d[index2] = ind_j[x];
- Weights_d[index2] = Weight_Vec[x];
- }
-}
-
-
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-/********************* MAIN HOST FUNCTION ******************/
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-extern "C" int PatchSelect_GPU_main(float *A, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return -1;
- }
-
- int SearchW_full, SimilW_full, counterG, i, j;
- float *Ad, *Weights_d, h2, *Eucl_Vec, *Eucl_Vec_d;
- unsigned short *H_i_d, *H_j_d;
- h2 = h*h;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
-
- SearchW_full = (2*SearchWindow + 1)*(2*SearchWindow + 1); /* the full searching window size */
- SimilW_full = (2*SimilarWin + 1)*(2*SimilarWin + 1); /* the full similarity window size */
-
- /* generate a 2D Gaussian kernel for NLM procedure */
- Eucl_Vec = (float*) calloc (SimilW_full,sizeof(float));
- counterG = 0;
- for(i=-SimilarWin; i<=SimilarWin; i++) {
- for(j=-SimilarWin; j<=SimilarWin; j++) {
- Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2))/(2.0*SimilarWin*SimilarWin));
- counterG++;
- }} /*main neighb loop */
-
-
- /*allocate space on the device*/
- checkCudaErrors( cudaMalloc((void**)&Ad, N*M*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&H_i_d, N*M*NumNeighb*sizeof(unsigned short)) );
- checkCudaErrors( cudaMalloc((void**)&H_j_d, N*M*NumNeighb*sizeof(unsigned short)) );
- checkCudaErrors( cudaMalloc((void**)&Weights_d, N*M*NumNeighb*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d, SimilW_full*sizeof(float)) );
-
- /* copy data from the host to the device */
- checkCudaErrors( cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
-
- /********************** Run CUDA kernel here ********************/
- if (SearchWindow == 5) IndexSelect2D_5_kernel<<<dimGrid,dimBlock>>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2);
- else if (SearchWindow == 7) IndexSelect2D_7_kernel<<<dimGrid,dimBlock>>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2);
- else if (SearchWindow == 9) IndexSelect2D_9_kernel<<<dimGrid,dimBlock>>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2);
- else if (SearchWindow == 11) IndexSelect2D_11_kernel<<<dimGrid,dimBlock>>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2);
- else if (SearchWindow == 13) IndexSelect2D_13_kernel<<<dimGrid,dimBlock>>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2);
- else {
- fprintf(stderr, "Select the searching window size from 5, 7, 9, 11 or 13\n");
- return -1;}
- checkCudaErrors(cudaPeekAtLastError() );
- checkCudaErrors(cudaDeviceSynchronize());
- /***************************************************************/
-
- checkCudaErrors(cudaMemcpy(H_i, H_i_d, N*M*NumNeighb*sizeof(unsigned short),cudaMemcpyDeviceToHost) );
- checkCudaErrors(cudaMemcpy(H_j, H_j_d, N*M*NumNeighb*sizeof(unsigned short),cudaMemcpyDeviceToHost) );
- checkCudaErrors(cudaMemcpy(Weights, Weights_d, N*M*NumNeighb*sizeof(float),cudaMemcpyDeviceToHost) );
-
-
- cudaFree(Ad);
- cudaFree(H_i_d);
- cudaFree(H_j_d);
- cudaFree(Weights_d);
- cudaFree(Eucl_Vec_d);
- cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/PatchSelect_GPU_core.h b/Core/regularisers_GPU/PatchSelect_GPU_core.h
deleted file mode 100644
index 8c124d3..0000000
--- a/Core/regularisers_GPU/PatchSelect_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __NLREG_KERNELS_H_
-#define __NLREG_KERNELS_H_
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int PatchSelect_GPU_main(float *A, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h);
-
-#endif
diff --git a/Core/regularisers_GPU/TGV_GPU_core.cu b/Core/regularisers_GPU/TGV_GPU_core.cu
deleted file mode 100644
index 58b2c41..0000000
--- a/Core/regularisers_GPU/TGV_GPU_core.cu
+++ /dev/null
@@ -1,625 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_GPU_core.h"
-#include "shared.h"
-
-/* CUDA implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D/3D)
- * 2. lambda - regularisation parameter
- * 3. parameter to control the first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations
- * 6. Lipshitz constant (default is 12)
- *
- * Output:
- * Filtered/regulariaed image
- *
- * References:
- * [1] K. Bredies "Total Generalized Variation"
- */
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-#define EPS 1.0e-7
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-
-
-/********************************************************************/
-/***************************2D Functions*****************************/
-/********************************************************************/
-__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, float sigma)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[index] += sigma*((U[j*dimX+(i-1)] - U[index]) - V1[index]);
- else P1[index] += sigma*((U[j*dimX+(i+1)] - U[index]) - V1[index]);
- if (j == dimY-1) P2[index] += sigma*((U[(j-1)*dimX+i] - U[index]) - V2[index]);
- else P2[index] += sigma*((U[(j+1)*dimX+i] - U[index]) - V2[index]);
- }
- return;
-}
-
-__global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float alpha1)
-{
- float grad_magn;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- grad_magn = sqrt(pow(P1[index],2) + pow(P2[index],2));
- grad_magn = grad_magn/alpha1;
- if (grad_magn > 1.0f) {
- P1[index] /= grad_magn;
- P2[index] /= grad_magn;
- }
- }
- return;
-}
-
-__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float sigma)
-{
- float q1, q2, q11, q22;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
- /* symmetric boundary conditions (Neuman) */
- q1 = 0.0f; q11 = 0.0f; q2 = 0.0f; q22 = 0.0f;
- /* boundary conditions (Neuman) */
- if (i != dimX-1){
- q1 = V1[j*dimX+(i+1)] - V1[index];
- q11 = V2[j*dimX+(i+1)] - V2[index];
- }
- if (j != dimY-1) {
- q2 = V2[(j+1)*dimX+i] - V2[index];
- q22 = V1[(j+1)*dimX+i] - V1[index];
- }
- Q1[index] += sigma*(q1);
- Q2[index] += sigma*(q2);
- Q3[index] += sigma*(0.5f*(q11 + q22));
- }
- return;
-}
-
-__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int dimY, float alpha0)
-{
- float grad_magn;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
- grad_magn = sqrt(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0f) {
- Q1[index] /= grad_magn;
- Q2[index] /= grad_magn;
- Q3[index] /= grad_magn;
- }
- }
- return;
-}
-
-__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, int dimX, int dimY, float lambda, float tau)
-{
- float P_v1, P_v2, div;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
-
- if (i == 0) P_v1 = P1[index];
- else P_v1 = P1[index] - P1[j*dimX+(i-1)];
- if (j == 0) P_v2 = P2[index];
- else P_v2 = P2[index] - P2[(j-1)*dimX+i];
- div = P_v1 + P_v2;
- U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
- }
- return;
-}
-
-__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float tau)
-{
- float q1, q3_x, q2, q3_y, div1, div2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + dimX*j;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) {
- q2 = 0.0f; q3_y = 0.0f; q1 = 0.0f; q3_x = 0.0;
- /* boundary conditions (Neuman) */
- if (i != 0) {
- q1 = Q1[index] - Q1[j*dimX+(i-1)];
- q3_x = Q3[index] - Q3[j*dimX+(i-1)];
- }
- if (j != 0) {
- q2 = Q2[index] - Q2[(j-1)*dimX+i];
- q3_y = Q3[index] - Q3[(j-1)*dimX+i];
- }
- div1 = q1 + q3_y;
- div2 = q3_x + q2;
- V1[index] += tau*(P1[index] + div1);
- V2[index] += tau*(P2[index] + div2);
- }
- return;
-}
-
-__global__ void copyIm_TGV_kernel(float *U, float *U_old, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- U_old[index] = U[index];
- }
-}
-
-__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- V1_old[index] = V1[index];
- V2_old[index] = V2[index];
- }
-}
-
-__global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- U[index] = 2.0f*U[index] - U_old[index];
- }
-}
-
-
-__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- V1[index] = 2.0f*V1[index] - V1_old[index];
- V2[index] = 2.0f*V2[index] - V2_old[index];
- }
-}
-/********************************************************************/
-/***************************3D Functions*****************************/
-/********************************************************************/
-__global__ void DualP_3D_kernel(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
-{
- int index;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- index = (dimX*dimY)*k + j*dimX+i;
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i-1)] - U[index]) - V1[index]);
- else P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i+1)] - U[index]) - V1[index]);
- if (j == dimY-1) P2[index] += sigma*((U[(dimX*dimY)*k + (j-1)*dimX+i] - U[index]) - V2[index]);
- else P2[index] += sigma*((U[(dimX*dimY)*k + (j+1)*dimX+i] - U[index]) - V2[index]);
- if (k == dimZ-1) P3[index] += sigma*((U[(dimX*dimY)*(k-1) + j*dimX+i] - U[index]) - V3[index]);
- else P3[index] += sigma*((U[(dimX*dimY)*(k+1) + j*dimX+i] - U[index]) - V3[index]);
- }
- return;
-}
-
-__global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float alpha1)
-{
- float grad_magn;
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
- index = (dimX*dimY)*k + j*dimX+i;
-
- grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1;
- if (grad_magn > 1.0f) {
- P1[index] /= grad_magn;
- P2[index] /= grad_magn;
- P3[index] /= grad_magn;
- }
- }
- return;
-}
-
-__global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float sigma)
-{
- int index;
- float q1, q2, q3, q11, q22, q33, q44, q55, q66;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- index = (dimX*dimY)*k + j*dimX+i;
- q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f;
- /* symmetric boundary conditions (Neuman) */
- if (i != dimX-1){
- q1 = V1[(dimX*dimY)*k + j*dimX+(i+1)] - V1[index];
- q11 = V2[(dimX*dimY)*k + j*dimX+(i+1)] - V2[index];
- q33 = V3[(dimX*dimY)*k + j*dimX+(i+1)] - V3[index];
- }
- if (j != dimY-1) {
- q2 = V2[(dimX*dimY)*k + (j+1)*dimX+i] - V2[index];
- q22 = V1[(dimX*dimY)*k + (j+1)*dimX+i] - V1[index];
- q55 = V3[(dimX*dimY)*k + (j+1)*dimX+i] - V3[index];
- }
- if (k != dimZ-1) {
- q3 = V3[(dimX*dimY)*(k+1) + j*dimX+i] - V3[index];
- q44 = V1[(dimX*dimY)*(k+1) + j*dimX+i] - V1[index];
- q66 = V2[(dimX*dimY)*(k+1) + j*dimX+i] - V2[index];
- }
-
- Q1[index] += sigma*(q1); /*Q11*/
- Q2[index] += sigma*(q2); /*Q22*/
- Q3[index] += sigma*(q3); /*Q33*/
- Q4[index] += sigma*(0.5f*(q11 + q22)); /* Q21 / Q12 */
- Q5[index] += sigma*(0.5f*(q33 + q44)); /* Q31 / Q13 */
- Q6[index] += sigma*(0.5f*(q55 + q66)); /* Q32 / Q23 */
- }
- return;
-}
-
-
-__global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float alpha0)
-{
- float grad_magn;
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0f) {
- Q1[index] /= grad_magn;
- Q2[index] /= grad_magn;
- Q3[index] /= grad_magn;
- Q4[index] /= grad_magn;
- Q5[index] /= grad_magn;
- Q6[index] /= grad_magn;
- }
- }
- return;
-}
-__global__ void DivProjP_3D_kernel(float *U, float *U0, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- float P_v1, P_v2, P_v3, div;
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (i == 0) P_v1 = P1[index];
- else P_v1 = P1[index] - P1[(dimX*dimY)*k + j*dimX+(i-1)];
- if (j == 0) P_v2 = P2[index];
- else P_v2 = P2[index] - P2[(dimX*dimY)*k + (j-1)*dimX+i];
- if (k == 0) P_v3 = P3[index];
- else P_v3 = P3[index] - P3[(dimX*dimY)*(k-1) + (j)*dimX+i];
-
- div = P_v1 + P_v2 + P_v3;
- U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
- }
- return;
-}
-__global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float tau)
-{
- float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3;
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- q1 = 0.0f; q4x= 0.0f; q5x= 0.0f; q2= 0.0f; q4y= 0.0f; q6y= 0.0f; q6z= 0.0f; q5z= 0.0f; q3= 0.0f;
- /* Q1 - Q11, Q2 - Q22, Q3 - Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/
- /* symmetric boundary conditions (Neuman) */
- if (i != 0) {
- q1 = Q1[index] - Q1[(dimX*dimY)*k + j*dimX+(i-1)];
- q4x = Q4[index] - Q4[(dimX*dimY)*k + j*dimX+(i-1)];
- q5x = Q5[index] - Q5[(dimX*dimY)*k + j*dimX+(i-1)];
- }
- if (j != 0) {
- q2 = Q2[index] - Q2[(dimX*dimY)*k + (j-1)*dimX+i];
- q4y = Q4[index] - Q4[(dimX*dimY)*k + (j-1)*dimX+i];
- q6y = Q6[index] - Q6[(dimX*dimY)*k + (j-1)*dimX+i];
- }
- if (k != 0) {
- q6z = Q6[index] - Q6[(dimX*dimY)*(k-1) + (j)*dimX+i];
- q5z = Q5[index] - Q5[(dimX*dimY)*(k-1) + (j)*dimX+i];
- q3 = Q3[index] - Q3[(dimX*dimY)*(k-1) + (j)*dimX+i];
- }
- div1 = q1 + q4y + q5z;
- div2 = q4x + q2 + q6z;
- div3 = q5x + q6y + q3;
-
- V1[index] += tau*(P1[index] + div1);
- V2[index] += tau*(P2[index] + div2);
- V3[index] += tau*(P3[index] + div3);
- }
- return;
-}
-
-__global__ void copyIm_TGV_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total)
-{
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (index < num_total) {
- U_old[index] = U[index];
- }
-}
-
-__global__ void copyIm_TGV_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total)
-{
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (index < num_total) {
- V1_old[index] = V1[index];
- V2_old[index] = V2[index];
- V3_old[index] = V3[index];
- }
-}
-
-__global__ void newU_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total)
-{
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (index < num_total) {
- U[index] = 2.0f*U[index] - U_old[index];
- }
-}
-
-__global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total)
-{
- int index;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- index = (dimX*dimY)*k + j*dimX+i;
-
- if (index < num_total) {
- V1[index] = 2.0f*V1[index] - V1_old[index];
- V2[index] = 2.0f*V2[index] - V2_old[index];
- V3[index] = 2.0f*V3[index] - V3_old[index];
- }
-}
-
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-/************************ MAIN HOST FUNCTION ***********************/
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ)
-{
- int dimTotal, dev = 0;
- CHECK(cudaSetDevice(dev));
-
- dimTotal = dimX*dimY*dimZ;
-
- float *U_old, *d_U0, *d_U, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma;
- tau = pow(L2,-0.5);
- sigma = pow(L2,-0.5);
-
- CHECK(cudaMalloc((void**)&d_U0,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_U,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&U_old,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&P1,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&P2,dimTotal*sizeof(float)));
-
- CHECK(cudaMalloc((void**)&Q1,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&Q2,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&Q3,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V1,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V2,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V1_old,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V2_old,dimTotal*sizeof(float)));
-
- CHECK(cudaMemcpy(d_U0,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice));
- CHECK(cudaMemcpy(d_U,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice));
-
- if (dimZ == 1) {
- /*2D case */
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D));
-
- for(int n=0; n < iterationsNumb; n++) {
-
- /* Calculate Dual Variable P */
- DualP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, P1, P2, dimX, dimY, sigma);
- CHECK(cudaDeviceSynchronize());
- /*Projection onto convex set for P*/
- ProjP_2D_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, alpha1);
- CHECK(cudaDeviceSynchronize());
- /* Calculate Dual Variable Q */
- DualQ_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, Q1, Q2, Q3, dimX, dimY, sigma);
- CHECK(cudaDeviceSynchronize());
- /*Projection onto convex set for Q*/
- ProjQ_2D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, dimX, dimY, alpha0);
- CHECK(cudaDeviceSynchronize());
- /*saving U into U_old*/
- copyIm_TGV_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, dimX, dimY, lambda, tau);
- CHECK(cudaDeviceSynchronize());
- /*get updated solution U*/
- newU_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /*saving V into V_old*/
- copyIm_TGV_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /* upd V*/
- UpdV_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, tau);
- CHECK(cudaDeviceSynchronize());
- /*get new V*/
- newU_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal);
- CHECK(cudaDeviceSynchronize());
- }
- }
- else {
- /*3D case */
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKXSIZE));
-
- float *P3, *Q4, *Q5, *Q6, *V3, *V3_old;
-
- CHECK(cudaMalloc((void**)&P3,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&Q4,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&Q5,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&Q6,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V3,dimTotal*sizeof(float)));
- CHECK(cudaMalloc((void**)&V3_old,dimTotal*sizeof(float)));
-
- for(int n=0; n < iterationsNumb; n++) {
-
- /* Calculate Dual Variable P */
- DualP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma);
- CHECK(cudaDeviceSynchronize());
- /*Projection onto convex set for P*/
- ProjP_3D_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, alpha1);
- CHECK(cudaDeviceSynchronize());
- /* Calculate Dual Variable Q */
- DualQ_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, sigma);
- CHECK(cudaDeviceSynchronize());
- /*Projection onto convex set for Q*/
- ProjQ_3D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, alpha0);
- CHECK(cudaDeviceSynchronize());
- /*saving U into U_old*/
- copyIm_TGV_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimZ, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, P3, dimX, dimY, dimZ, lambda, tau);
- CHECK(cudaDeviceSynchronize());
- /*get updated solution U*/
- newU_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimZ, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /*saving V into V_old*/
- copyIm_TGV_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal);
- CHECK(cudaDeviceSynchronize());
- /* upd V*/
- UpdV_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, tau);
- CHECK(cudaDeviceSynchronize());
- /*get new V*/
- newU_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal);
- CHECK(cudaDeviceSynchronize());
- }
-
- CHECK(cudaFree(Q4));
- CHECK(cudaFree(Q5));
- CHECK(cudaFree(Q6));
- CHECK(cudaFree(P3));
- CHECK(cudaFree(V3));
- CHECK(cudaFree(V3_old));
- }
-
- CHECK(cudaMemcpy(U,d_U,dimTotal*sizeof(float),cudaMemcpyDeviceToHost));
- CHECK(cudaFree(d_U0));
- CHECK(cudaFree(d_U));
- CHECK(cudaFree(U_old));
- CHECK(cudaFree(P1));
- CHECK(cudaFree(P2));
-
- CHECK(cudaFree(Q1));
- CHECK(cudaFree(Q2));
- CHECK(cudaFree(Q3));
- CHECK(cudaFree(V1));
- CHECK(cudaFree(V2));
- CHECK(cudaFree(V1_old));
- CHECK(cudaFree(V2_old));
- return 0;
-}
diff --git a/Core/regularisers_GPU/TGV_GPU_core.h b/Core/regularisers_GPU/TGV_GPU_core.h
deleted file mode 100644
index 9f73d1c..0000000
--- a/Core/regularisers_GPU/TGV_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __TGV_GPU_H__
-#define __TGV_GPU_H__
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
-
-#endif
diff --git a/Core/regularisers_GPU/TV_FGP_GPU_core.cu b/Core/regularisers_GPU/TV_FGP_GPU_core.cu
deleted file mode 100755
index b371c5d..0000000
--- a/Core/regularisers_GPU/TV_FGP_GPU_core.cu
+++ /dev/null
@@ -1,564 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TV_FGP_GPU_core.h"
-#include "shared.h"
-#include <thrust/device_vector.h>
-#include <thrust/transform_reduce.h>
-
-/* CUDA implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-struct square { __host__ __device__ float operator()(float x) { return x * x; } };
-
-/************************************************/
-/*****************2D modules*********************/
-/************************************************/
-__global__ void Obj_func2D_kernel(float *Ad, float *D, float *R1, float *R2, int N, int M, int ImSize, float lambda)
-{
-
- float val1,val2;
-
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- if (xIndex <= 0) {val1 = 0.0f;} else {val1 = R1[(xIndex-1) + N*yIndex];}
- if (yIndex <= 0) {val2 = 0.0f;} else {val2 = R2[xIndex + N*(yIndex-1)];}
- //Write final result to global memory
- D[index] = Ad[index] - lambda*(R1[index] + R2[index] - val1 - val2);
- }
- return;
-}
-
-__global__ void Grad_func2D_kernel(float *P1, float *P2, float *D, float *R1, float *R2, int N, int M, int ImSize, float multip)
-{
-
- float val1,val2;
-
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
-
- /* boundary conditions */
- if (xIndex >= N-1) val1 = 0.0f; else val1 = D[index] - D[(xIndex+1) + N*yIndex];
- if (yIndex >= M-1) val2 = 0.0f; else val2 = D[index] - D[(xIndex) + N*(yIndex + 1)];
-
- //Write final result to global memory
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- }
- return;
-}
-
-__global__ void Proj_func2D_iso_kernel(float *P1, float *P2, int N, int M, int ImSize)
-{
-
- float denom;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- denom = pow(P1[index],2) + pow(P2[index],2);
- if (denom > 1.0f) {
- P1[index] = P1[index]/sqrt(denom);
- P2[index] = P2[index]/sqrt(denom);
- }
- }
- return;
-}
-__global__ void Proj_func2D_aniso_kernel(float *P1, float *P2, int N, int M, int ImSize)
-{
-
- float val1, val2;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- val1 = abs(P1[index]);
- val2 = abs(P2[index]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- P1[index] = P1[index]/val1;
- P2[index] = P2[index]/val2;
- }
- return;
-}
-__global__ void Rupd_func2D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, float multip2, int N, int M, int ImSize)
-{
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]);
- R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]);
- }
- return;
-}
-__global__ void nonneg2D_kernel(float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- if (Output[index] < 0.0f) Output[index] = 0.0f;
- }
-}
-/************************************************/
-/*****************3D modules*********************/
-/************************************************/
-__global__ void Obj_func3D_kernel(float *Ad, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float lambda)
-{
-
- float val1,val2,val3;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- if (i <= 0) {val1 = 0.0f;} else {val1 = R1[(N*M)*(k) + (i-1) + N*j];}
- if (j <= 0) {val2 = 0.0f;} else {val2 = R2[(N*M)*(k) + i + N*(j-1)];}
- if (k <= 0) {val3 = 0.0f;} else {val3 = R3[(N*M)*(k-1) + i + N*j];}
- //Write final result to global memory
- D[index] = Ad[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3);
- }
- return;
-}
-
-__global__ void Grad_func3D_kernel(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float multip)
-{
-
- float val1,val2,val3;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- /* boundary conditions */
- if (i >= N-1) val1 = 0.0f; else val1 = D[index] - D[(N*M)*(k) + (i+1) + N*j];
- if (j >= M-1) val2 = 0.0f; else val2 = D[index] - D[(N*M)*(k) + i + N*(j+1)];
- if (k >= Z-1) val3 = 0.0f; else val3 = D[index] - D[(N*M)*(k+1) + i + N*j];
-
- //Write final result to global memory
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- P3[index] = R3[index] + multip*val3;
- }
- return;
-}
-
-__global__ void Proj_func3D_iso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize)
-{
-
- float denom,sq_denom;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- denom = pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2);
-
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrt(denom);
- P1[index] = P1[index]*sq_denom;
- P2[index] = P2[index]*sq_denom;
- P3[index] = P3[index]*sq_denom;
- }
- }
- return;
-}
-
-__global__ void Proj_func3D_aniso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize)
-{
-
- float val1, val2, val3;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- val1 = abs(P1[index]);
- val2 = abs(P2[index]);
- val3 = abs(P3[index]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
- P1[index] = P1[index]/val1;
- P2[index] = P2[index]/val2;
- P3[index] = P3[index]/val3;
- }
- return;
-}
-__global__ void Rupd_func3D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, float multip2, int N, int M, int Z, int ImSize)
-{
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]);
- R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]);
- R3[index] = P3[index] + multip2*(P3[index] - P3_old[index]);
- }
- return;
-}
-
-__global__ void nonneg3D_kernel(float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- if (Output[index] < 0.0f) Output[index] = 0.0f;
- }
-}
-__global__ void FGPcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void FGPcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void FGPResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-__global__ void FGPResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-
-////////////MAIN HOST FUNCTION ///////////////
-extern "C" int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return -1;
- }
-
- int count = 0, i;
- float re, multip,multip2;
- float tk = 1.0f;
- float tkp1=1.0f;
-
- if (dimZ <= 1) {
- /*2D verson*/
- int ImSize = dimX*dimY;
- float *d_input, *d_update=NULL, *d_update_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL;
-
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) );
- if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice));
- cudaMemset(P1, 0, ImSize*sizeof(float));
- cudaMemset(P2, 0, ImSize*sizeof(float));
- cudaMemset(P1_prev, 0, ImSize*sizeof(float));
- cudaMemset(P2_prev, 0, ImSize*sizeof(float));
- cudaMemset(R1, 0, ImSize*sizeof(float));
- cudaMemset(R2, 0, ImSize*sizeof(float));
-
- /********************** Run CUDA 2D kernel here ********************/
- multip = (1.0f/(8.0f*lambdaPar));
-
- /* The main kernel */
- for (i = 0; i < iter; i++) {
-
- /* computing the gradient of the objective function */
- Obj_func2D_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, R1, R2, dimX, dimY, ImSize, lambdaPar);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (nonneg != 0) {
- nonneg2D_kernel<<<dimGrid,dimBlock>>>(d_update, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() ); }
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D_kernel<<<dimGrid,dimBlock>>>(P1, P2, d_update, R1, R2, dimX, dimY, ImSize, multip);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* projection step */
- if (methodTV == 0) Proj_func2D_iso_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, ImSize); /*isotropic TV*/
- else Proj_func2D_aniso_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, ImSize); /*anisotropic TV*/
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- multip2 = ((tk-1.0f)/tkp1);
-
- Rupd_func2D_kernel<<<dimGrid,dimBlock>>>(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, multip2, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (epsil != 0.0f) {
- /* calculate norm - stopping rules using the Thrust library */
- FGPResidCalc2D_kernel<<<dimGrid,dimBlock>>>(d_update, d_update_prev, P1_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- thrust::device_vector<float> d_vec(P1_prev, P1_prev + ImSize);
- float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus<float>()));
- thrust::device_vector<float> d_vec2(d_update, d_update + ImSize);
- float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus<float>()));
-
- re = (reduction/reduction2);
- if (re < epsil) count++;
- if (count > 4) break;
-
- FGPcopy_kernel2D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- }
-
- FGPcopy_kernel2D<<<dimGrid,dimBlock>>>(P1, P1_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- FGPcopy_kernel2D<<<dimGrid,dimBlock>>>(P2, P2_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", i);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- if (epsil != 0.0f) cudaFree(d_update_prev);
- cudaFree(P1);
- cudaFree(P2);
- cudaFree(P1_prev);
- cudaFree(P2_prev);
- cudaFree(R1);
- cudaFree(R2);
- }
- else {
- /*3D verson*/
- int ImSize = dimX*dimY*dimZ;
- float *d_input, *d_update=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P3,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P3_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R3,ImSize*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice));
- cudaMemset(P1, 0, ImSize*sizeof(float));
- cudaMemset(P2, 0, ImSize*sizeof(float));
- cudaMemset(P3, 0, ImSize*sizeof(float));
- cudaMemset(P1_prev, 0, ImSize*sizeof(float));
- cudaMemset(P2_prev, 0, ImSize*sizeof(float));
- cudaMemset(P3_prev, 0, ImSize*sizeof(float));
- cudaMemset(R1, 0, ImSize*sizeof(float));
- cudaMemset(R2, 0, ImSize*sizeof(float));
- cudaMemset(R3, 0, ImSize*sizeof(float));
- /********************** Run CUDA 3D kernel here ********************/
- multip = (1.0f/(26.0f*lambdaPar));
-
- /* The main kernel */
- for (i = 0; i < iter; i++) {
-
- /* computing the gradient of the objective function */
- Obj_func3D_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, lambdaPar);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (nonneg != 0) {
- nonneg3D_kernel<<<dimGrid,dimBlock>>>(d_update, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() ); }
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, multip);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* projection step */
- if (methodTV == 0) Proj_func3D_iso_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* isotropic kernel */
- else Proj_func3D_aniso_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* anisotropic kernel */
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- multip2 = ((tk-1.0f)/tkp1);
-
- Rupd_func3D_kernel<<<dimGrid,dimBlock>>>(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, multip2, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- FGPcopy_kernel3D<<<dimGrid,dimBlock>>>(P1, P1_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- FGPcopy_kernel3D<<<dimGrid,dimBlock>>>(P2, P2_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- FGPcopy_kernel3D<<<dimGrid,dimBlock>>>(P3, P3_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", i);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- cudaFree(P1);
- cudaFree(P2);
- cudaFree(P3);
- cudaFree(P1_prev);
- cudaFree(P2_prev);
- cudaFree(P3_prev);
- cudaFree(R1);
- cudaFree(R2);
- cudaFree(R3);
- }
- //cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/TV_FGP_GPU_core.h b/Core/regularisers_GPU/TV_FGP_GPU_core.h
deleted file mode 100755
index bf13508..0000000
--- a/Core/regularisers_GPU/TV_FGP_GPU_core.h
+++ /dev/null
@@ -1,9 +0,0 @@
-#ifndef _TV_FGP_GPU_
-#define _TV_FGP_GPU_
-
-#include "CCPiDefines.h"
-#include <memory.h>
-
-extern "C" CCPI_EXPORT int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-
-#endif
diff --git a/Core/regularisers_GPU/TV_ROF_GPU_core.cu b/Core/regularisers_GPU/TV_ROF_GPU_core.cu
deleted file mode 100755
index 76f5be9..0000000
--- a/Core/regularisers_GPU/TV_ROF_GPU_core.cu
+++ /dev/null
@@ -1,358 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TV_ROF_GPU_core.h"
-
-/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case)
-*
-* Input Parameters:
-* 1. Noisy image/volume [REQUIRED]
-* 2. lambda - regularization parameter [REQUIRED]
-* 3. tau - marching step for explicit scheme, ~0.1 is recommended [REQUIRED]
-* 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
-*
-* Output:
-* [1] Regularized image/volume
-
- * This function is based on the paper by
-* [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*
-* D. Kazantsev, 2016-18
-*/
-#include "shared.h"
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-#define EPS 1.0e-12
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-__host__ __device__ int sign (float x)
-{
- return (x > 0) - (x < 0);
-}
-
-/*********************2D case****************************/
-
- /* differences 1 */
- __global__ void D1_func2D(float* Input, float* D1, int N, int M)
- {
- int i1, j1, i2;
- float NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i + 1; if (i1 >= N) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= M) j1 = j-1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */
- NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[j*N + i2]; /* y- */
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5f*(sign((float)NOMy_1) + sign((float)NOMy_0))*(MIN(abs((float)NOMy_1), abs((float)NOMy_0)));
- denom2 = denom2*denom2;
- T1 = sqrt(denom1 + denom2 + EPS);
- D1[index] = NOMx_1/T1;
- }
- }
-
- /* differences 2 */
- __global__ void D2_func2D(float* Input, float* D2, int N, int M)
- {
- int i1, j1, j2;
- float NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) {
-
- /* boundary conditions (Neumann reflections) */
- i1 = i + 1; if (i1 >= N) i1 = i-1;
- j1 = j + 1; if (j1 >= M) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */
- NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */
- NOMx_0 = Input[index] - Input[j2*N + i]; /* x- */
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5f*(sign((float)NOMx_1) + sign((float)NOMx_0))*(MIN(abs((float)NOMx_1), abs((float)NOMx_0)));
- denom2 = denom2*denom2;
- T2 = sqrt(denom1 + denom2 + EPS);
- D2[index] = NOMy_1/T2;
- }
- }
-
- __global__ void TV_kernel2D(float *D1, float *D2, float *Update, float *Input, float lambda, float tau, int N, int M)
- {
- int i2, j2;
- float dv1,dv2;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = i + N*j;
-
- if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) {
-
- /* boundary conditions (Neumann reflections) */
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
-
- /* divergence components */
- dv1 = D1[index] - D1[j2*N + i];
- dv2 = D2[index] - D2[j*N + i2];
-
- Update[index] += tau*(2.0f*lambda*(dv1 + dv2) - (Update[index] - Input[index]));
-
- }
- }
-/*********************3D case****************************/
-
- /* differences 1 */
- __global__ void D1_func3D(float* Input, float* D1, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + j1*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + j*dimX + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[(dimX*dimY)*k + j*dimX + i2]; /* y- */
-
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
- NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + j*dimX + i]; /* z- */
-
-
- denom1 = NOMx_1*NOMx_1;
- denom2 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0)));
- denom3 = denom3*denom3;
- T1 = sqrt(denom1 + denom2 + denom3 + EPS);
- D1[index] = NOMx_1/T1;
- }
- }
-
- /* differences 2 */
- __global__ void D2_func3D(float* Input, float* D2, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */
- NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
- NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */
-
-
- denom1 = NOMy_1*NOMy_1;
- denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0)));
- denom3 = denom3*denom3;
- T2 = sqrt(denom1 + denom2 + denom3 + EPS);
- D2[index] = NOMy_1/T2;
- }
- }
-
- /* differences 3 */
- __global__ void D3_func3D(float* Input, float* D3, int dimX, int dimY, int dimZ)
- {
- float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3;
- int i1,i2,k1,j1,j2,k2;
-
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /* Forward-backward differences */
- NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */
- NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */
- NOMy_0 = Input[index] - Input[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */
- NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
- NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */
-
- denom1 = NOMz_1*NOMz_1;
- denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0)));
- denom2 = denom2*denom2;
- denom3 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0)));
- denom3 = denom3*denom3;
- T3 = sqrt(denom1 + denom2 + denom3 + EPS);
- D3[index] = NOMz_1/T3;
- }
- }
-
- __global__ void TV_kernel3D(float *D1, float *D2, float *D3, float *Update, float *Input, float lambda, float tau, int dimX, int dimY, int dimZ)
- {
- float dv1, dv2, dv3;
- int i1,i2,k1,j1,j2,k2;
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (dimX*dimY)*k + j*dimX+i;
-
- if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) {
-
- /* symmetric boundary conditions (Neuman) */
- i1 = i + 1; if (i1 >= dimX) i1 = i-1;
- i2 = i - 1; if (i2 < 0) i2 = i+1;
- j1 = j + 1; if (j1 >= dimY) j1 = j-1;
- j2 = j - 1; if (j2 < 0) j2 = j+1;
- k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
- k2 = k - 1; if (k2 < 0) k2 = k+1;
-
- /*divergence components */
- dv1 = D1[index] - D1[(dimX*dimY)*k + j2*dimX+i];
- dv2 = D2[index] - D2[(dimX*dimY)*k + j*dimX+i2];
- dv3 = D3[index] - D3[(dimX*dimY)*k2 + j*dimX+i];
-
- Update[index] += tau*(2.0f*lambda*(dv1 + dv2 + dv3) - (Update[index] - Input[index]));
-
- }
- }
-
-/////////////////////////////////////////////////
-// HOST FUNCTION
-extern "C" int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z)
-{
- // set up device
- int dev = 0;
- CHECK(cudaSetDevice(dev));
- float *d_input, *d_update, *d_D1, *d_D2;
-
- if (Z == 0) Z = 1;
- CHECK(cudaMalloc((void**)&d_input,N*M*Z*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_update,N*M*Z*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_D1,N*M*Z*sizeof(float)));
- CHECK(cudaMalloc((void**)&d_D2,N*M*Z*sizeof(float)));
-
- CHECK(cudaMemcpy(d_input,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- CHECK(cudaMemcpy(d_update,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
-
- if (Z > 1) {
- // TV - 3D case
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
-
- float *d_D3;
- CHECK(cudaMalloc((void**)&d_D3,N*M*Z*sizeof(float)));
-
- for(int n=0; n < iter; n++) {
- /* calculate differences */
- D1_func3D<<<dimGrid,dimBlock>>>(d_update, d_D1, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- D2_func3D<<<dimGrid,dimBlock>>>(d_update, d_D2, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- D3_func3D<<<dimGrid,dimBlock>>>(d_update, d_D3, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- /*running main kernel*/
- TV_kernel3D<<<dimGrid,dimBlock>>>(d_D1, d_D2, d_D3, d_update, d_input, lambdaPar, tau, N, M, Z);
- CHECK(cudaDeviceSynchronize());
- }
-
- CHECK(cudaFree(d_D3));
- }
- else {
- // TV - 2D case
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D));
-
- for(int n=0; n < iter; n++) {
- /* calculate differences */
- D1_func2D<<<dimGrid,dimBlock>>>(d_update, d_D1, N, M);
- CHECK(cudaDeviceSynchronize());
- D2_func2D<<<dimGrid,dimBlock>>>(d_update, d_D2, N, M);
- CHECK(cudaDeviceSynchronize());
- /*running main kernel*/
- TV_kernel2D<<<dimGrid,dimBlock>>>(d_D1, d_D2, d_update, d_input, lambdaPar, tau, N, M);
- CHECK(cudaDeviceSynchronize());
- }
- }
- CHECK(cudaMemcpy(Output,d_update,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
- CHECK(cudaFree(d_input));
- CHECK(cudaFree(d_update));
- CHECK(cudaFree(d_D1));
- CHECK(cudaFree(d_D2));
- //cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/TV_ROF_GPU_core.h b/Core/regularisers_GPU/TV_ROF_GPU_core.h
deleted file mode 100755
index 3a09296..0000000
--- a/Core/regularisers_GPU/TV_ROF_GPU_core.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef __TVGPU_H__
-#define __TVGPU_H__
-#include "CCPiDefines.h"
-#include <stdio.h>
-
-extern "C" CCPI_EXPORT int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
-
-#endif
diff --git a/Core/regularisers_GPU/TV_SB_GPU_core.cu b/Core/regularisers_GPU/TV_SB_GPU_core.cu
deleted file mode 100755
index 1f494ee..0000000
--- a/Core/regularisers_GPU/TV_SB_GPU_core.cu
+++ /dev/null
@@ -1,552 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TV_SB_GPU_core.h"
-#include "shared.h"
-#include <thrust/device_vector.h>
-#include <thrust/transform_reduce.h>
-
-/* CUDA implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1]
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularisation parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-* 6. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL parameter]
-* 7. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
-*
-* Output:
-* 1. Filtered/regularized image
-*
-* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-*/
-
-// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-struct square { __host__ __device__ float operator()(float x) { return x * x; } };
-
-/************************************************/
-/*****************2D modules*********************/
-/************************************************/
-__global__ void gauss_seidel2D_kernel(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, float lambda, float mu, float normConst, int N, int M, int ImSize)
-{
-
- float sum;
- int i1,i2,j1,j2;
-
- //calculate each thread global index
- const int i=blockIdx.x*blockDim.x+threadIdx.x;
- const int j=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = j*N+i;
-
- if ((i < N) && (j < M)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- sum = Dx[j*N+i2] - Dx[index] + Dy[j2*N+i] - Dy[index] - Bx[j*N+i2] + Bx[index] - By[j2*N+i] + By[index];
- sum += U_prev[j*N+i1] + U_prev[j*N+i2] + U_prev[j1*N+i] + U_prev[j2*N+i];
- sum *= lambda;
- sum += mu*A[index];
- U[index] = normConst*sum; //Write final result to global memory
- }
- return;
-}
-__global__ void updDxDy_shrinkAniso2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, float lambda, int N, int M, int ImSize)
-{
-
- int i1,j1;
- float val1, val11, val2, val22, denom_lam;
- denom_lam = 1.0f/lambda;
-
- //calculate each thread global index
- const int i=blockIdx.x*blockDim.x+threadIdx.x;
- const int j=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = j*N+i;
-
- if ((i < N) && (j < M)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
-
- val1 = (U[j*N+i1] - U[index]) + Bx[index];
- val2 = (U[j1*N+i] - U[index]) + By[index];
-
- val11 = abs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = abs(val2) - denom_lam; if (val22 < 0) val22 = 0;
-
- if (val1 !=0) Dx[index] = (val1/abs(val1))*val11; else Dx[index] = 0;
- if (val2 !=0) Dy[index] = (val2/abs(val2))*val22; else Dy[index] = 0;
- }
- return;
-}
-
-__global__ void updDxDy_shrinkIso2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, float lambda, int N, int M, int ImSize)
-{
-
- int i1,j1;
- float val1, val11, val2, denom_lam, denom;
- denom_lam = 1.0f/lambda;
-
- //calculate each thread global index
- const int i=blockIdx.x*blockDim.x+threadIdx.x;
- const int j=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = j*N+i;
-
- if ((i < N) && (j < M)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
-
- val1 = (U[j*N+i1] - U[index]) + Bx[index];
- val2 = (U[j1*N+i] - U[index]) + By[index];
-
- denom = sqrt(val1*val1 + val2*val2);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- }
- }
- return;
-}
-
-__global__ void updBxBy2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, int N, int M, int ImSize)
-{
- int i1,j1;
-
- //calculate each thread global index
- const int i=blockIdx.x*blockDim.x+threadIdx.x;
- const int j=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = j*N+i;
-
- if ((i < N) && (j < M)) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
-
- Bx[index] += (U[j*N+i1] - U[index]) - Dx[index];
- By[index] += (U[j1*N+i] - U[index]) - Dy[index];
- }
- return;
-}
-
-
-/************************************************/
-/*****************3D modules*********************/
-/************************************************/
-__global__ void gauss_seidel3D_kernel(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, float mu, float normConst, int N, int M, int Z, int ImSize)
-{
-
- float sum,d_val,b_val;
- int i1,i2,j1,j2,k1,k2;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- d_val = Dx[(N*M)*k + j*N+i2] - Dx[index] + Dy[(N*M)*k + j2*N+i] - Dy[index] + Dz[(N*M)*k2 + j*N+i] - Dz[index];
- b_val = -Bx[(N*M)*k + j*N+i2] + Bx[index] - By[(N*M)*k + j2*N+i] + By[index] - Bz[(N*M)*k2 + j*N+i] + Bz[index];
- sum = d_val + b_val;
- sum += U_prev[(N*M)*k + j*N+i1] + U_prev[(N*M)*k + j*N+i2] + U_prev[(N*M)*k + j1*N+i] + U_prev[(N*M)*k + j2*N+i] + U_prev[(N*M)*k1 + j*N+i] + U_prev[(N*M)*k2 + j*N+i];
- sum *= lambda;
- sum += mu*A[index];
- U[index] = normConst*sum;
- }
- return;
-}
-__global__ void updDxDy_shrinkAniso3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, int N, int M, int Z, int ImSize)
-{
-
- int i1,j1,k1;
- float val1, val11, val2, val3, val22, val33, denom_lam;
- denom_lam = 1.0f/lambda;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
-
- val1 = (U[(N*M)*k + i1 + N*j] - U[index]) + Bx[index];
- val2 = (U[(N*M)*k + i + N*j1] - U[index]) + By[index];
- val3 = (U[(N*M)*k1 + i + N*j] - U[index]) + Bz[index];
-
- val11 = abs(val1) - denom_lam; if (val11 < 0.0f) val11 = 0.0f;
- val22 = abs(val2) - denom_lam; if (val22 < 0.0f) val22 = 0.0f;
- val33 = abs(val3) - denom_lam; if (val33 < 0.0f) val33 = 0.0f;
-
- if (val1 !=0.0f) Dx[index] = (val1/abs(val1))*val11; else Dx[index] = 0.0f;
- if (val2 !=0.0f) Dy[index] = (val2/abs(val2))*val22; else Dy[index] = 0.0f;
- if (val3 !=0.0f) Dz[index] = (val3/abs(val3))*val33; else Dz[index] = 0.0f;
- }
- return;
-}
-
-__global__ void updDxDy_shrinkIso3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, int N, int M, int Z, int ImSize)
-{
-
- int i1,j1,k1;
- float val1, val11, val2, val3, denom_lam, denom;
- denom_lam = 1.0f/lambda;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
-
- val1 = (U[(N*M)*k + i1 + N*j] - U[index]) + Bx[index];
- val2 = (U[(N*M)*k + i + N*j1] - U[index]) + By[index];
- val3 = (U[(N*M)*k1 + i + N*j] - U[index]) + Bz[index];
-
- denom = sqrt(val1*val1 + val2*val2 + val3*val3);
-
- val11 = (denom - denom_lam); if (val11 < 0.0f) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- Dz[index] = val11*(val3/denom);
- }
- else {
- Dx[index] = 0.0f;
- Dy[index] = 0.0f;
- Dz[index] = 0.0f;
- }
- }
- return;
-}
-
-__global__ void updBxBy3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int N, int M, int Z, int ImSize)
-{
- int i1,j1,k1;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == N) i1 = i-1;
- j1 = j+1; if (j1 == M) j1 = j-1;
- k1 = k+1; if (k1 == Z) k1 = k-1;
-
- Bx[index] += (U[(N*M)*k + i1 + N*j] - U[index]) - Dx[index];
- By[index] += (U[(N*M)*k + i + N*j1] - U[index]) - Dy[index];
- Bz[index] += (U[(N*M)*k1 + i + N*j] - U[index]) - Dz[index];
- }
- return;
-}
-
-__global__ void SBcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void SBcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void SBResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-__global__ void SBResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-/********************* MAIN HOST FUNCTION ******************/
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-extern "C" int TV_SB_GPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return -1;
- }
-
- int ll, DimTotal;
- float re, lambda, normConst;
- int count = 0;
- mu = 1.0f/mu;
- lambda = 2.0f*mu;
-
- if (dimZ <= 1) {
- /*2D verson*/
- DimTotal = dimX*dimY;
- normConst = 1.0f/(mu + 4.0f*lambda);
- float *d_input, *d_update, *d_res, *d_update_prev=NULL, *Dx=NULL, *Dy=NULL, *Bx=NULL, *By=NULL;
-
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update_prev,DimTotal*sizeof(float)) );
- if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_res,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Dx,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Dy,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bx,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&By,DimTotal*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors( cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
- cudaMemset(Dx, 0, DimTotal*sizeof(float));
- cudaMemset(Dy, 0, DimTotal*sizeof(float));
- cudaMemset(Bx, 0, DimTotal*sizeof(float));
- cudaMemset(By, 0, DimTotal*sizeof(float));
-
- /********************** Run CUDA 2D kernels here ********************/
- /* The main kernel */
- for (ll = 0; ll < iter; ll++) {
-
- /* storing old value */
- SBcopy_kernel2D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* perform two GS iterations (normally 2 is enough for the convergence) */
- gauss_seidel2D_kernel<<<dimGrid,dimBlock>>>(d_update, d_input, d_update_prev, Dx, Dy, Bx, By, lambda, mu, normConst, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- SBcopy_kernel2D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- /* 2nd GS iteration */
- gauss_seidel2D_kernel<<<dimGrid,dimBlock>>>(d_update, d_input, d_update_prev, Dx, Dy, Bx, By, lambda, mu, normConst, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* TV-related step */
- if (methodTV == 1) updDxDy_shrinkAniso2D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Bx, By, lambda, dimX, dimY, DimTotal);
- else updDxDy_shrinkIso2D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Bx, By, lambda, dimX, dimY, DimTotal);
-
- /* update for Bregman variables */
- updBxBy2D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Bx, By, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (epsil != 0.0f) {
- /* calculate norm - stopping rules using the Thrust library */
- SBResidCalc2D_kernel<<<dimGrid,dimBlock>>>(d_update, d_update_prev, d_res, dimX, dimY, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- thrust::device_vector<float> d_vec(d_res, d_res + DimTotal);
- float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus<float>()));
- thrust::device_vector<float> d_vec2(d_update, d_update + DimTotal);
- float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus<float>()));
-
- re = (reduction/reduction2);
- if (re < epsil) count++;
- if (count > 4) break;
- }
-
- }
- if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- cudaFree(d_update_prev);
- if (epsil != 0.0f) cudaFree(d_res);
- cudaFree(Dx);
- cudaFree(Dy);
- cudaFree(Bx);
- cudaFree(By);
- }
- else {
- /*3D verson*/
- DimTotal = dimX*dimY*dimZ;
- normConst = 1.0f/(mu + 6.0f*lambda);
- float *d_input, *d_update, *d_res, *d_update_prev=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update_prev,DimTotal*sizeof(float)) );
- if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_res,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Dx,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Dy,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Dz,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bx,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&By,DimTotal*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bz,DimTotal*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors( cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice));
- cudaMemset(Dx, 0, DimTotal*sizeof(float));
- cudaMemset(Dy, 0, DimTotal*sizeof(float));
- cudaMemset(Dz, 0, DimTotal*sizeof(float));
- cudaMemset(Bx, 0, DimTotal*sizeof(float));
- cudaMemset(By, 0, DimTotal*sizeof(float));
- cudaMemset(Bz, 0, DimTotal*sizeof(float));
-
- /********************** Run CUDA 3D kernels here ********************/
- /* The main kernel */
- for (ll = 0; ll < iter; ll++) {
-
- /* storing old value */
- SBcopy_kernel3D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* perform two GS iterations (normally 2 is enough for the convergence) */
- gauss_seidel3D_kernel<<<dimGrid,dimBlock>>>(d_update, d_input, d_update_prev, Dx, Dy, Dz, Bx, By, Bz, lambda, mu, normConst, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- SBcopy_kernel3D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- /* 2nd GS iteration */
- gauss_seidel3D_kernel<<<dimGrid,dimBlock>>>(d_update, d_input, d_update_prev, Dx, Dy, Dz, Bx, By, Bz, lambda, mu, normConst, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* TV-related step */
- if (methodTV == 1) updDxDy_shrinkAniso3D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Dz, Bx, By, Bz, lambda, dimX, dimY, dimZ, DimTotal);
- else updDxDy_shrinkIso3D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Dz, Bx, By, Bz, lambda, dimX, dimY, dimZ, DimTotal);
-
- /* update for Bregman variables */
- updBxBy3D_kernel<<<dimGrid,dimBlock>>>(d_update, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (epsil != 0.0f) {
- /* calculate norm - stopping rules using the Thrust library */
- SBResidCalc3D_kernel<<<dimGrid,dimBlock>>>(d_update, d_update_prev, d_res, dimX, dimY, dimZ, DimTotal);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- thrust::device_vector<float> d_vec(d_res, d_res + DimTotal);
- float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus<float>()));
- thrust::device_vector<float> d_vec2(d_update, d_update + DimTotal);
- float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus<float>()));
-
- re = (reduction/reduction2);
- if (re < epsil) count++;
- if (count > 4) break;
- }
- }
- if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- cudaFree(d_update_prev);
- if (epsil != 0.0f) cudaFree(d_res);
- cudaFree(Dx);
- cudaFree(Dy);
- cudaFree(Dz);
- cudaFree(Bx);
- cudaFree(By);
- cudaFree(Bz);
- }
- //cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/TV_SB_GPU_core.h b/Core/regularisers_GPU/TV_SB_GPU_core.h
deleted file mode 100755
index 901b90f..0000000
--- a/Core/regularisers_GPU/TV_SB_GPU_core.h
+++ /dev/null
@@ -1,10 +0,0 @@
-#ifndef _SB_TV_GPU_
-#define _SB_TV_GPU_
-
-#include "CCPiDefines.h"
-#include <memory.h>
-
-
-extern "C" CCPI_EXPORT int TV_SB_GPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
-
-#endif
diff --git a/Core/regularisers_GPU/dTV_FGP_GPU_core.cu b/Core/regularisers_GPU/dTV_FGP_GPU_core.cu
deleted file mode 100644
index 7503ec7..0000000
--- a/Core/regularisers_GPU/dTV_FGP_GPU_core.cu
+++ /dev/null
@@ -1,741 +0,0 @@
- /*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-#include "shared.h"
-#include "dTV_FGP_GPU_core.h"
-#include <thrust/device_vector.h>
-#include <thrust/transform_reduce.h>
-
-/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
- * which employs structural similarity of the level sets of two images/volumes, see [1,2]
- * The current implementation updates image 1 while image 2 is being fixed.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
- * 3. lambdaPar - regularization parameter [REQUIRED]
- * 4. Number of iterations [OPTIONAL]
- * 5. eplsilon: tolerance constant [OPTIONAL]
- * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
- * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
- * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
- * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
- *
- * Output:
- * [1] Filtered/regularized image/volume
- *
- * This function is based on the Matlab's codes and papers by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
- */
-
-
-#define BLKXSIZE2D 16
-#define BLKYSIZE2D 16
-
-#define BLKXSIZE 8
-#define BLKYSIZE 8
-#define BLKZSIZE 8
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-struct square { __host__ __device__ float operator()(float x) { return x * x; } };
-
-/************************************************/
-/*****************2D modules*********************/
-/************************************************/
-
-__global__ void GradNorm_func2D_kernel(float *Refd, float *Refd_x, float *Refd_y, float eta, int N, int M, int ImSize)
-{
-
- float val1, val2, gradX, gradY, magn;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- /* boundary conditions */
- if (xIndex >= N-1) val1 = 0.0f; else val1 = Refd[(xIndex+1) + N*yIndex];
- if (yIndex >= M-1) val2 = 0.0f; else val2 = Refd[(xIndex) + N*(yIndex + 1)];
-
- gradX = val1 - Refd[index];
- gradY = val2 - Refd[index];
- magn = pow(gradX,2) + pow(gradY,2);
- magn = sqrt(magn + pow(eta,2));
- Refd_x[index] = gradX/magn;
- Refd_y[index] = gradY/magn;
- }
- return;
-}
-
-__global__ void ProjectVect_func2D_kernel(float *R1, float *R2, float *Refd_x, float *Refd_y, int N, int M, int ImSize)
-{
-
- float in_prod;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- in_prod = R1[index]*Refd_x[index] + R2[index]*Refd_y[index]; /* calculate inner product */
- R1[index] = R1[index] - in_prod*Refd_x[index];
- R2[index] = R2[index] - in_prod*Refd_y[index];
- }
- return;
-}
-
-
-__global__ void Obj_dfunc2D_kernel(float *Ad, float *D, float *R1, float *R2, int N, int M, int ImSize, float lambda)
-{
-
- float val1,val2;
-
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- if (xIndex <= 0) {val1 = 0.0f;} else {val1 = R1[(xIndex-1) + N*yIndex];}
- if (yIndex <= 0) {val2 = 0.0f;} else {val2 = R2[xIndex + N*(yIndex-1)];}
-
- //Write final result to global memory
- D[index] = Ad[index] - lambda*(R1[index] + R2[index] - val1 - val2);
- }
- return;
-}
-
-__global__ void Grad_dfunc2D_kernel(float *P1, float *P2, float *D, float *R1, float *R2, float *Refd_x, float *Refd_y, int N, int M, int ImSize, float multip)
-{
-
- float val1,val2,in_prod;
-
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
-
- /* boundary conditions */
- if (xIndex >= N-1) val1 = 0.0f; else val1 = D[index] - D[(xIndex+1) + N*yIndex];
- if (yIndex >= M-1) val2 = 0.0f; else val2 = D[index] - D[(xIndex) + N*(yIndex + 1)];
-
- in_prod = val1*Refd_x[index] + val2*Refd_y[index]; /* calculate inner product */
- val1 = val1 - in_prod*Refd_x[index];
- val2 = val2 - in_prod*Refd_y[index];
-
- //Write final result to global memory
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- }
- return;
-}
-
-__global__ void Proj_dfunc2D_iso_kernel(float *P1, float *P2, int N, int M, int ImSize)
-{
-
- float denom;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- denom = pow(P1[index],2) + pow(P2[index],2);
- if (denom > 1.0f) {
- P1[index] = P1[index]/sqrt(denom);
- P2[index] = P2[index]/sqrt(denom);
- }
- }
- return;
-}
-__global__ void Proj_dfunc2D_aniso_kernel(float *P1, float *P2, int N, int M, int ImSize)
-{
-
- float val1, val2;
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- val1 = abs(P1[index]);
- val2 = abs(P2[index]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- P1[index] = P1[index]/val1;
- P2[index] = P2[index]/val2;
- }
- return;
-}
-__global__ void Rupd_dfunc2D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, float multip2, int N, int M, int ImSize)
-{
- //calculate each thread global index
- const int xIndex=blockIdx.x*blockDim.x+threadIdx.x;
- const int yIndex=blockIdx.y*blockDim.y+threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if ((xIndex < N) && (yIndex < M)) {
- R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]);
- R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]);
- }
- return;
-}
-__global__ void dTVnonneg2D_kernel(float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- if (Output[index] < 0.0f) Output[index] = 0.0f;
- }
-}
-__global__ void dTVcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void dTVcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input[index];
- }
-}
-
-__global__ void dTVResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total)
-{
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
-
- int index = xIndex + N*yIndex;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-__global__ void dTVResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- Output[index] = Input1[index] - Input2[index];
- }
-}
-
-/************************************************/
-/*****************3D modules*********************/
-/************************************************/
-__global__ void GradNorm_func3D_kernel(float *Refd, float *Refd_x, float *Refd_y, float *Refd_z, float eta, int N, int M, int Z, int ImSize)
-{
-
- float val1, val2, val3, gradX, gradY, gradZ, magn;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- /* boundary conditions */
- if (i >= N-1) val1 = 0.0f; else val1 = Refd[(N*M)*k + (i+1) + N*j];
- if (j >= M-1) val2 = 0.0f; else val2 = Refd[(N*M)*k + i + N*(j+1)];
- if (k >= Z-1) val3 = 0.0f; else val3 = Refd[(N*M)*(k+1) + i + N*j];
-
- gradX = val1 - Refd[index];
- gradY = val2 - Refd[index];
- gradZ = val3 - Refd[index];
- magn = pow(gradX,2) + pow(gradY,2) + pow(gradZ,2);
- magn = sqrt(magn + pow(eta,2));
- Refd_x[index] = gradX/magn;
- Refd_y[index] = gradY/magn;
- Refd_z[index] = gradZ/magn;
- }
- return;
-}
-
-__global__ void ProjectVect_func3D_kernel(float *R1, float *R2, float *R3, float *Refd_x, float *Refd_y, float *Refd_z, int N, int M, int Z, int ImSize)
-{
-
- float in_prod;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- in_prod = R1[index]*Refd_x[index] + R2[index]*Refd_y[index] + R3[index]*Refd_z[index]; /* calculate inner product */
-
- R1[index] = R1[index] - in_prod*Refd_x[index];
- R2[index] = R2[index] - in_prod*Refd_y[index];
- R3[index] = R3[index] - in_prod*Refd_z[index];
- }
- return;
-}
-
-
-__global__ void Obj_dfunc3D_kernel(float *Ad, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float lambda)
-{
-
- float val1,val2,val3;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- if (i <= 0) {val1 = 0.0f;} else {val1 = R1[(N*M)*(k) + (i-1) + N*j];}
- if (j <= 0) {val2 = 0.0f;} else {val2 = R2[(N*M)*(k) + i + N*(j-1)];}
- if (k <= 0) {val3 = 0.0f;} else {val3 = R3[(N*M)*(k-1) + i + N*j];}
- //Write final result to global memory
- D[index] = Ad[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3);
- }
- return;
-}
-
-__global__ void Grad_dfunc3D_kernel(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float *Refd_x, float *Refd_y, float *Refd_z, int N, int M, int Z, int ImSize, float multip)
-{
-
- float val1,val2,val3,in_prod;
-
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- /* boundary conditions */
- if (i >= N-1) val1 = 0.0f; else val1 = D[index] - D[(N*M)*(k) + (i+1) + N*j];
- if (j >= M-1) val2 = 0.0f; else val2 = D[index] - D[(N*M)*(k) + i + N*(j+1)];
- if (k >= Z-1) val3 = 0.0f; else val3 = D[index] - D[(N*M)*(k+1) + i + N*j];
-
- in_prod = val1*Refd_x[index] + val2*Refd_y[index] + val3*Refd_z[index]; /* calculate inner product */
- val1 = val1 - in_prod*Refd_x[index];
- val2 = val2 - in_prod*Refd_y[index];
- val3 = val3 - in_prod*Refd_z[index];
-
- //Write final result to global memory
- P1[index] = R1[index] + multip*val1;
- P2[index] = R2[index] + multip*val2;
- P3[index] = R3[index] + multip*val3;
- }
- return;
-}
-
-__global__ void Proj_dfunc3D_iso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize)
-{
-
- float denom,sq_denom;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- denom = pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2);
-
- if (denom > 1.0f) {
- sq_denom = 1.0f/sqrt(denom);
- P1[index] = P1[index]*sq_denom;
- P2[index] = P2[index]*sq_denom;
- P3[index] = P3[index]*sq_denom;
- }
- }
- return;
-}
-
-__global__ void Proj_dfunc3D_aniso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize)
-{
-
- float val1, val2, val3;
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- val1 = abs(P1[index]);
- val2 = abs(P2[index]);
- val3 = abs(P3[index]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
- P1[index] = P1[index]/val1;
- P2[index] = P2[index]/val2;
- P3[index] = P3[index]/val3;
- }
- return;
-}
-
-
-__global__ void Rupd_dfunc3D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, float multip2, int N, int M, int Z, int ImSize)
-{
- //calculate each thread global index
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if ((i < N) && (j < M) && (k < Z)) {
- R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]);
- R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]);
- R3[index] = P3[index] + multip2*(P3[index] - P3_old[index]);
- }
- return;
-}
-
-__global__ void dTVnonneg3D_kernel(float* Output, int N, int M, int Z, int num_total)
-{
- int i = blockDim.x * blockIdx.x + threadIdx.x;
- int j = blockDim.y * blockIdx.y + threadIdx.y;
- int k = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = (N*M)*k + i + N*j;
-
- if (index < num_total) {
- if (Output[index] < 0.0f) Output[index] = 0.0f;
- }
-}
-/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
-
-////////////MAIN HOST FUNCTION ///////////////
-extern "C" int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iter, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return -1;
- }
-
- int count = 0, i;
- float re, multip,multip2;
- float tk = 1.0f;
- float tkp1=1.0f;
-
- if (dimZ <= 1) {
- /*2D verson*/
- int ImSize = dimX*dimY;
- float *d_input, *d_update=NULL, *d_update_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *d_InputRef=NULL;
-
- dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D);
- dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) );
- if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_InputRef,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&InputRef_x,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&InputRef_y,ImSize*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors( cudaMemcpy(d_InputRef,InputRef,ImSize*sizeof(float),cudaMemcpyHostToDevice));
-
- cudaMemset(P1, 0, ImSize*sizeof(float));
- cudaMemset(P2, 0, ImSize*sizeof(float));
- cudaMemset(P1_prev, 0, ImSize*sizeof(float));
- cudaMemset(P2_prev, 0, ImSize*sizeof(float));
- cudaMemset(R1, 0, ImSize*sizeof(float));
- cudaMemset(R2, 0, ImSize*sizeof(float));
- cudaMemset(InputRef_x, 0, ImSize*sizeof(float));
- cudaMemset(InputRef_y, 0, ImSize*sizeof(float));
-
- /******************** Run CUDA 2D kernel here ********************/
- multip = (1.0f/(8.0f*lambdaPar));
- /* calculate gradient vectors for the reference */
- GradNorm_func2D_kernel<<<dimGrid,dimBlock>>>(d_InputRef, InputRef_x, InputRef_y, eta, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* The main kernel */
- for (i = 0; i < iter; i++) {
-
- /*projects a 2D vector field R-1,2 onto the orthogonal complement of another 2D vector field InputRef_xy*/
- ProjectVect_func2D_kernel<<<dimGrid,dimBlock>>>(R1, R2, InputRef_x, InputRef_y, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* computing the gradient of the objective function */
- Obj_dfunc2D_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, R1, R2, dimX, dimY, ImSize, lambdaPar);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (nonneg != 0) {
- dTVnonneg2D_kernel<<<dimGrid,dimBlock>>>(d_update, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() ); }
-
- /*Taking a step towards minus of the gradient*/
- Grad_dfunc2D_kernel<<<dimGrid,dimBlock>>>(P1, P2, d_update, R1, R2, InputRef_x, InputRef_y, dimX, dimY, ImSize, multip);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* projection step */
- if (methodTV == 0) Proj_dfunc2D_iso_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, ImSize); /*isotropic TV*/
- else Proj_dfunc2D_aniso_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, ImSize); /*anisotropic TV*/
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- multip2 = ((tk-1.0f)/tkp1);
-
- Rupd_dfunc2D_kernel<<<dimGrid,dimBlock>>>(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, multip2, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (epsil != 0.0f) {
- /* calculate norm - stopping rules using the Thrust library */
- dTVResidCalc2D_kernel<<<dimGrid,dimBlock>>>(d_update, d_update_prev, P1_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- thrust::device_vector<float> d_vec(P1_prev, P1_prev + ImSize);
- float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus<float>()));
- thrust::device_vector<float> d_vec2(d_update, d_update + ImSize);
- float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus<float>()));
-
- re = (reduction/reduction2);
- if (re < epsil) count++;
- if (count > 4) break;
-
- dTVcopy_kernel2D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- }
-
- dTVcopy_kernel2D<<<dimGrid,dimBlock>>>(P1, P1_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- dTVcopy_kernel2D<<<dimGrid,dimBlock>>>(P2, P2_prev, dimX, dimY, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", i);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- if (epsil != 0.0f) cudaFree(d_update_prev);
- cudaFree(P1);
- cudaFree(P2);
- cudaFree(P1_prev);
- cudaFree(P2_prev);
- cudaFree(R1);
- cudaFree(R2);
-
- cudaFree(d_InputRef);
- cudaFree(InputRef_x);
- cudaFree(InputRef_y);
- }
- else {
- /*3D verson*/
- int ImSize = dimX*dimY*dimZ;
- float *d_input, *d_update=NULL, *d_update_prev, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *InputRef_z=NULL, *d_InputRef=NULL;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE));
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) );
- if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P3,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&P3_prev,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&R3,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&d_InputRef,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&InputRef_x,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&InputRef_y,ImSize*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&InputRef_z,ImSize*sizeof(float)) );
-
- checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors( cudaMemcpy(d_InputRef,InputRef,ImSize*sizeof(float),cudaMemcpyHostToDevice));
-
- cudaMemset(P1, 0, ImSize*sizeof(float));
- cudaMemset(P2, 0, ImSize*sizeof(float));
- cudaMemset(P3, 0, ImSize*sizeof(float));
- cudaMemset(P1_prev, 0, ImSize*sizeof(float));
- cudaMemset(P2_prev, 0, ImSize*sizeof(float));
- cudaMemset(P3_prev, 0, ImSize*sizeof(float));
- cudaMemset(R1, 0, ImSize*sizeof(float));
- cudaMemset(R2, 0, ImSize*sizeof(float));
- cudaMemset(R3, 0, ImSize*sizeof(float));
- cudaMemset(InputRef_x, 0, ImSize*sizeof(float));
- cudaMemset(InputRef_y, 0, ImSize*sizeof(float));
- cudaMemset(InputRef_z, 0, ImSize*sizeof(float));
-
- /********************** Run CUDA 3D kernel here ********************/
- multip = (1.0f/(26.0f*lambdaPar));
- /* calculate gradient vectors for the reference */
- GradNorm_func3D_kernel<<<dimGrid,dimBlock>>>(d_InputRef, InputRef_x, InputRef_y, InputRef_z, eta, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* The main kernel */
- for (i = 0; i < iter; i++) {
-
- /*projects a 3D vector field R-1,2,3 onto the orthogonal complement of another 3D vector field InputRef_xyz*/
- ProjectVect_func3D_kernel<<<dimGrid,dimBlock>>>(R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* computing the gradient of the objective function */
- Obj_dfunc3D_kernel<<<dimGrid,dimBlock>>>(d_input, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, lambdaPar);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (nonneg != 0) {
- dTVnonneg3D_kernel<<<dimGrid,dimBlock>>>(d_update, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() ); }
-
- /*Taking a step towards minus of the gradient*/
- Grad_dfunc3D_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, d_update, R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, dimX, dimY, dimZ, ImSize, multip);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- /* projection step */
- if (methodTV == 0) Proj_dfunc3D_iso_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* isotropic kernel */
- else Proj_dfunc3D_aniso_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* anisotropic kernel */
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- multip2 = ((tk-1.0f)/tkp1);
-
- Rupd_dfunc3D_kernel<<<dimGrid,dimBlock>>>(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, multip2, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- if (epsil != 0.0f) {
- /* calculate norm - stopping rules using the Thrust library */
- dTVResidCalc3D_kernel<<<dimGrid,dimBlock>>>(d_update, d_update_prev, P1_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- thrust::device_vector<float> d_vec(P1_prev, P1_prev + ImSize);
- float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus<float>()));
- thrust::device_vector<float> d_vec2(d_update, d_update + ImSize);
- float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus<float>()));
-
- re = (reduction/reduction2);
- if (re < epsil) count++;
- if (count > 4) break;
-
- dTVcopy_kernel3D<<<dimGrid,dimBlock>>>(d_update, d_update_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
- }
-
- dTVcopy_kernel3D<<<dimGrid,dimBlock>>>(P1, P1_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- dTVcopy_kernel3D<<<dimGrid,dimBlock>>>(P2, P2_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- dTVcopy_kernel3D<<<dimGrid,dimBlock>>>(P3, P3_prev, dimX, dimY, dimZ, ImSize);
- checkCudaErrors( cudaDeviceSynchronize() );
- checkCudaErrors(cudaPeekAtLastError() );
-
- tk = tkp1;
- }
- if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", i);
- /***************************************************************/
- //copy result matrix from device to host memory
- cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost);
-
- cudaFree(d_input);
- cudaFree(d_update);
- if (epsil != 0.0f) cudaFree(d_update_prev);
- cudaFree(P1);
- cudaFree(P2);
- cudaFree(P3);
- cudaFree(P1_prev);
- cudaFree(P2_prev);
- cudaFree(P3_prev);
- cudaFree(R1);
- cudaFree(R2);
- cudaFree(R3);
- cudaFree(InputRef_x);
- cudaFree(InputRef_y);
- cudaFree(InputRef_z);
- cudaFree(d_InputRef);
- }
- //cudaDeviceReset();
- return 0;
-}
diff --git a/Core/regularisers_GPU/dTV_FGP_GPU_core.h b/Core/regularisers_GPU/dTV_FGP_GPU_core.h
deleted file mode 100644
index f9281e8..0000000
--- a/Core/regularisers_GPU/dTV_FGP_GPU_core.h
+++ /dev/null
@@ -1,9 +0,0 @@
-#ifndef _dTV_FGP_GPU_
-#define _dTV_FGP_GPU_
-
-#include "CCPiDefines.h"
-#include <memory.h>
-
-extern "C" CCPI_EXPORT int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iter, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-
-#endif
diff --git a/Core/regularisers_GPU/shared.h b/Core/regularisers_GPU/shared.h
deleted file mode 100644
index fe98cd6..0000000
--- a/Core/regularisers_GPU/shared.h
+++ /dev/null
@@ -1,42 +0,0 @@
-/*shared macros*/
-
-
-/*checks CUDA call, should be used in functions returning <int> value
-if error happens, writes to standard error and explicitly returns -1*/
-#define CHECK(call) \
-{ \
- const cudaError_t error = call; \
- if (error != cudaSuccess) \
- { \
- fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \
- fprintf(stderr, "code: %d, reason: %s\n", error, \
- cudaGetErrorString(error)); \
- return -1; \
- } \
-}
-
-// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
-#define checkCudaErrors(call) \
-{ \
- const cudaError_t error = call; \
- if (error != cudaSuccess) \
- { \
- fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \
- fprintf(stderr, "code: %d, reason: %s\n", error, \
- cudaGetErrorString(error)); \
- return -1; \
- } \
-}
-/*#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- return;
- }
-}
-*/
-
diff --git a/Wrappers/CMakeLists.txt b/Wrappers/CMakeLists.txt
deleted file mode 100644
index bdcb8f4..0000000
--- a/Wrappers/CMakeLists.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-# Copyright 2017 Edoardo Pasca
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-if (BUILD_MATLAB_WRAPPER)
- add_subdirectory(Matlab)
-endif()
-if (BUILD_PYTHON_WRAPPER)
- add_subdirectory(Python)
-endif() \ No newline at end of file
diff --git a/Wrappers/Matlab/CMakeLists.txt b/Wrappers/Matlab/CMakeLists.txt
deleted file mode 100755
index 0c26148..0000000
--- a/Wrappers/Matlab/CMakeLists.txt
+++ /dev/null
@@ -1,147 +0,0 @@
-project(regulariserMatlab)
-
-
-find_package(Matlab REQUIRED COMPONENTS MAIN_PROGRAM MX_LIBRARY ENG_LIBRARY )
-
-
-
-#C:\Users\ofn77899\Documents\Projects\CCPi\GitHub\CCPi-FISTA_Reconstruction\Core\regularisers_CPU
-# matlab_add_mex(
- # NAME CPU_ROF
- # SRC
- # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
- # LINK_TO cilreg ${Matlab_LIBRARIES}
- # )
-
-# target_include_directories(CPU_ROF
- # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- # ${CMAKE_SOURCE_DIR}/Core/
- # ${MATLAB_INCLUDE_DIR})
-
- # matlab_add_mex(
- # NAME CPU_TNV
- # SRC
- # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c
- # LINK_TO cilreg ${Matlab_LIBRARIES}
- # )
-
-# target_include_directories(CPU_TNV
- # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- # ${CMAKE_SOURCE_DIR}/Core/
- # ${MATLAB_INCLUDE_DIR})
-
-#set (CPU_MEX_FILES "regularisers_CPU/TNV.c;regularisers_CPU/ROF_TV.c")
-#set (MEX_TARGETS "CPU_TNV;CPU_ROF")
-#list(APPEND MEX_TARGETS "CPU_TNV")
-#list(APPEND MEX_TARGETS "CPU_ROF")
-
-file(GLOB CPU_MEX_FILES
- "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/*.c"
- #"${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.c"
-)
-
-#message("CPU_MEX_FILES " ${CPU_MEX_FILES})
-
-list(LENGTH CPU_MEX_FILES num)
-
-
-MATH(EXPR num "${num}-1")
-#set(num "-1")
-message("found ${num} files")
-
-foreach(tgt RANGE 0 ${num})
- message("number " ${tgt})
- list(LENGTH CPU_MEX_FILES num2)
- message("the list is ${num2}")
- #list(GET CPU_TARGETS ${tgt} current_target)
- list(GET CPU_MEX_FILES ${tgt} current_file_name)
- get_filename_component(current_file ${current_file_name} NAME)
- string(REGEX MATCH "(.+).c" match ${current_file})
- if (NOT ${match} EQUAL "" )
- set (current_target ${CMAKE_MATCH_1})
- endif()
- message("matlab_add_mex target " ${current_file} " and " ${current_target})
- matlab_add_mex(
- NAME ${current_target}
- SRC
- ${current_file_name}
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/SB_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TGV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffusion_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffus4th_order_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/LLT_ROF_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/ROF_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_dTV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TNV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/utils.c
- #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/Diffusion_Inpaint_core.c
- #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
- LINK_TO cilreg ${Matlab_LIBRARIES}
- )
-
-target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
- ${MATLAB_INCLUDE_DIR})
- set_property(TARGET ${current_target} PROPERTY C_STANDARD 99)
- list(APPEND CPU_MEX_TARGETS ${current_target})
- INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}")
-endforeach()
-
-add_custom_target(MatlabWrapper DEPENDS ${CPU_MEX_TARGETS})
-
-if (BUILD_CUDA)
- find_package(CUDA)
- if (CUDA_FOUND)
- file(GLOB GPU_MEX_FILES
- "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.cpp"
- )
-
- list(LENGTH GPU_MEX_FILES num)
-message("number of GPU files " ${num})
-
- MATH(EXPR num "${num}-1")
- #set(num "-1")
-
- foreach(tgt RANGE ${num})
- message("number " ${tgt})
- list(LENGTH GPU_MEX_FILES num2)
- message("the list is ${num2}")
- #list(GET CPU_TARGETS ${tgt} current_target)
- list(GET GPU_MEX_FILES ${tgt} current_file_name)
- get_filename_component(current_file ${current_file_name} NAME)
- string(REGEX MATCH "(.+).c" match ${current_file})
- if (NOT ${match} EQUAL "" )
- set (current_target ${CMAKE_MATCH_1})
- endif()
- message("matlab_add_mex target " ${current_file} " and " ${current_target})
- message("matlab_add_mex " ${current_target})
- matlab_add_mex(
- NAME ${current_target}
- SRC
- ${current_file_name}
- LINK_TO cilregcuda ${Matlab_LIBRARIES}
- )
-
- target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
- ${MATLAB_INCLUDE_DIR})
-
- list(APPEND GPU_MEX_TARGETS ${current_target})
- INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}")
- endforeach()
-
- add_custom_target(MatlabWrapperGPU DEPENDS ${GPU_MEX_TARGETS})
-
- endif()
-endif()
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
deleted file mode 100644
index 0c331a4..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ /dev/null
@@ -1,178 +0,0 @@
-% Volume (3D) denoising demo using CCPi-RGL
-clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-Path3 = sprintf(['..' filesep 'supp'], 1i);
-addpath(Path1);
-addpath(Path2);
-addpath(Path3);
-
-N = 512;
-slices = 7;
-vol3D = zeros(N,N,slices, 'single');
-Ideal3D = zeros(N,N,slices, 'single');
-Im = double(imread('lena_gray_512.tif'))/255; % loading image
-for i = 1:slices
-vol3D(:,:,i) = Im + .05*randn(size(Im));
-Ideal3D(:,:,i) = Im;
-end
-vol3D(vol3D < 0) = 0;
-figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
-
-
-lambda_reg = 0.03; % regularsation parameter for all methods
-%%
-fprintf('Denoise a volume using the ROF-TV model (CPU) \n');
-tau_rof = 0.0025; % time-marching constant
-iter_rof = 300; % number of ROF iterations
-tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_rof = (RMSE(Ideal3D(:),u_rof(:)));
-fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);
-figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
-% tau_rof = 0.0025; % time-marching constant
-% iter_rof = 300; % number of ROF iterations
-% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));
-% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);
-% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));
-fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);
-figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
-% iter_fgp = 300; % number of FGP iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));
-% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG);
-% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the SB-TV model (CPU) \n');
-iter_sb = 150; % number of SB iterations
-epsil_tol = 1.0e-05; % tolerance
-tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_sb = (RMSE(Ideal3D(:),u_sb(:)));
-fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb);
-figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
-% iter_sb = 150; % number of SB iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));
-% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG);
-% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the ROF-LLT model (CPU) \n');
-lambda_ROF = lambda_reg; % ROF regularisation parameter
-lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
-iter_LLT = 300; % iterations
-tau_rof_llt = 0.0025; % time-marching constant
-tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:)));
-fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
-figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n');
-% lambda_ROF = lambda_reg; % ROF regularisation parameter
-% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
-% iter_LLT = 300; % iterations
-% tau_rof_llt = 0.0025; % time-marching constant
-% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));
-% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
-% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 300; % number of diffusion iterations
-lambda_regDiff = 0.025; % regularisation for the diffusivity
-sigmaPar = 0.015; % edge-preserving parameter
-tau_param = 0.025; % time-marching constant
-tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-rmse_diff = (RMSE(Ideal3D(:),u_diff(:)));
-fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
-figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n');
-% iter_diff = 300; % number of diffusion iterations
-% lambda_regDiff = 0.025; % regularisation for the diffusivity
-% sigmaPar = 0.015; % edge-preserving parameter
-% tau_param = 0.025; % time-marching constant
-% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:)));
-% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
-% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)');
-%%
-fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
-iter_diff = 300; % number of diffusion iterations
-lambda_regDiff = 3.5; % regularisation for the diffusivity
-sigmaPar = 0.02; % edge-preserving parameter
-tau_param = 0.0015; % time-marching constant
-tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:)));
-fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
-figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
-%%
-% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
-% iter_diff = 300; % number of diffusion iterations
-% lambda_regDiff = 3.5; % regularisation for the diffusivity
-% sigmaPar = 0.02; % edge-preserving parameter
-% tau_param = 0.0015; % time-marching constant
-% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:)));
-% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
-% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
-%%
-fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.03; % regularisation parameter
-alpha1 = 1.0; % parameter to control the first-order term
-alpha0 = 2.0; % parameter to control the second-order term
-iter_TGV = 500; % number of Primal-Dual iterations for TGV
-tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-rmseTGV = RMSE(Ideal3D(:),u_tgv(:));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
-figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)');
-%%
-%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
-fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
-
-% create another volume (reference) with slightly less amount of noise
-vol3D_ref = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
-end
-vol3D_ref(vol3D_ref < 0) = 0;
-% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)');
-%%
-fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
-
-% create another volume (reference) with slightly less amount of noise
-vol3D_ref = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
-end
-vol3D_ref(vol3D_ref < 0) = 0;
-% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)');
-%%
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
deleted file mode 100644
index 14d3096..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ /dev/null
@@ -1,189 +0,0 @@
-% Image (2D) denoising demo using CCPi-RGL
-clear; close all
-fsep = '/';
-
-Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i);
-Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i);
-Path3 = sprintf(['..' fsep 'supp'], 1i);
-addpath(Path1); addpath(Path2); addpath(Path3);
-
-Im = double(imread('lena_gray_512.tif'))/255; % loading image
-u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-figure; imshow(u0, [0 1]); title('Noisy image');
-
-lambda_reg = 0.03; % regularsation parameter for all methods
-%%
-fprintf('Denoise using the ROF-TV model (CPU) \n');
-tau_rof = 0.0025; % time-marching constant
-iter_rof = 750; % number of ROF iterations
-tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
-rmseROF = (RMSE(u_rof(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
-figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the ROF-TV model (GPU) \n');
-% tau_rof = 0.0025; % time-marching constant
-% iter_rof = 750; % number of ROF iterations
-% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc;
-% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the FGP-TV model (CPU) \n');
-iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 1.0e-06; % tolerance
-tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
-rmseFGP = (RMSE(u_fgp(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
-figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
-
-%%
-% fprintf('Denoise using the FGP-TV model (GPU) \n');
-% iter_fgp = 1000; % number of FGP iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the SB-TV model (CPU) \n');
-iter_sb = 150; % number of SB iterations
-epsil_tol = 1.0e-06; % tolerance
-tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
-rmseSB = (RMSE(u_sb(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
-figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the SB-TV model (GPU) \n');
-% iter_sb = 150; % number of SB iterations
-% epsil_tol = 1.0e-06; % tolerance
-% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.045; % regularisation parameter
-alpha1 = 1.0; % parameter to control the first-order term
-alpha0 = 2.0; % parameter to control the second-order term
-iter_TGV = 2000; % number of Primal-Dual iterations for TGV
-tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-rmseTGV = (RMSE(u_tgv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
-figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
-%%
-% fprintf('Denoise using the TGV model (GPU) \n');
-% lambda_TGV = 0.045; % regularisation parameter
-% alpha1 = 1.0; % parameter to control the first-order term
-% alpha0 = 2.0; % parameter to control the second-order term
-% iter_TGV = 2000; % number of Primal-Dual iterations for TGV
-% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
-% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
-% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
-%%
-fprintf('Denoise using the ROF-LLT model (CPU) \n');
-lambda_ROF = lambda_reg; % ROF regularisation parameter
-lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
-iter_LLT = 1; % iterations
-tau_rof_llt = 0.0025; % time-marching constant
-tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
-figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
-%%
-% fprintf('Denoise using the ROF-LLT model (GPU) \n');
-% lambda_ROF = lambda_reg; % ROF regularisation parameter
-% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
-% iter_LLT = 500; % iterations
-% tau_rof_llt = 0.0025; % time-marching constant
-% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
-% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
-% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
-%%
-fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 800; % number of diffusion iterations
-lambda_regDiff = 0.025; % regularisation for the diffusivity
-sigmaPar = 0.015; % edge-preserving parameter
-tau_param = 0.025; % time-marching constant
-tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-rmseDiffus = (RMSE(u_diff(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
-figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
-%%
-% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
-% iter_diff = 800; % number of diffusion iterations
-% lambda_regDiff = 0.025; % regularisation for the diffusivity
-% sigmaPar = 0.015; % edge-preserving parameter
-% tau_param = 0.025; % time-marching constant
-% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
-%%
-fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
-iter_diff = 800; % number of diffusion iterations
-lambda_regDiff = 3.5; % regularisation for the diffusivity
-sigmaPar = 0.02; % edge-preserving parameter
-tau_param = 0.0015; % time-marching constant
-tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
-figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
-%%
-% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
-% iter_diff = 800; % number of diffusion iterations
-% lambda_regDiff = 3.5; % regularisation for the diffusivity
-% sigmaPar = 0.02; % edge-preserving parameter
-% tau_param = 0.0015; % time-marching constant
-% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)');
-%%
-fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n');
-SearchingWindow = 7;
-PatchWindow = 2;
-NeighboursNumber = 20; % the number of neibours to include
-h = 0.23; % edge related parameter for NLM
-tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc;
-%%
-fprintf('Denoise using Non-local Total Variation (CPU) \n');
-iter_nltv = 3; % number of nltv iterations
-lambda_nltv = 0.05; % regularisation parameter for nltv
-tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc;
-rmse_nltv = (RMSE(u_nltv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv);
-figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)');
-%%
-%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
-
-fprintf('Denoise using the FGP-dTV model (CPU) \n');
-% create another image (reference) with slightly less amount of noise
-u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 1.0e-06; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
-figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
-%%
-% fprintf('Denoise using the FGP-dTV model (GPU) \n');
-% % create another image (reference) with slightly less amount of noise
-% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-%
-% iter_fgp = 1000; % number of FGP iterations
-% epsil_tol = 1.0e-06; % tolerance
-% eta = 0.2; % Reference image gradient smoothing constant
-% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
-%%
-fprintf('Denoise using the TNV prior (CPU) \n');
-slices = 5; N = 512;
-vol3D = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D(:,:,i) = Im + .05*randn(size(Im));
-end
-vol3D(vol3D < 0) = 0;
-
-iter_tnv = 200; % number of TNV iterations
-tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc;
-figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)');
diff --git a/Wrappers/Matlab/demos/demoMatlab_inpaint.m b/Wrappers/Matlab/demos/demoMatlab_inpaint.m
deleted file mode 100644
index 66f9c15..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_inpaint.m
+++ /dev/null
@@ -1,35 +0,0 @@
-% Image (2D) inpainting demo using CCPi-RGL
-clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-addpath(Path1);
-addpath(Path2);
-
-load('SinoInpaint.mat');
-Sinogram = Sinogram./max(Sinogram(:));
-Sino_mask = Sinogram.*(1-single(Mask));
-figure;
-subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram');
-subplot(1,2,2); imshow(Mask, [0 1]); title('Mask');
-%%
-fprintf('Inpaint using Linear-Diffusion model (CPU) \n');
-iter_diff = 5000; % number of diffusion iterations
-lambda_regDiff = 6000; % regularisation for the diffusivity
-sigmaPar = 0.0; % edge-preserving parameter
-tau_param = 0.000075; % time-marching constant
-tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)');
-%%
-fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 1500; % number of diffusion iterations
-lambda_regDiff = 80; % regularisation for the diffusivity
-sigmaPar = 0.00009; % edge-preserving parameter
-tau_param = 0.000008; % time-marching constant
-tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)');
-%%
-fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n');
-Increment = 1; % linear increment for the searching window
-tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc;
-figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)');
-%% \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
deleted file mode 100644
index 72a828e..0000000
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
+++ /dev/null
@@ -1,81 +0,0 @@
-% execute this mex file on Linux in Matlab once
-
-fsep = '/';
-
-pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i);
-pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i);
-pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i);
-
-copyfile(pathcopyFrom, 'regularisers_CPU');
-copyfile(pathcopyFrom1, 'regularisers_CPU');
-copyfile(pathcopyFrom2, 'regularisers_CPU');
-
-cd regularisers_CPU
-
-Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-
-fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>');
-
-fprintf('%s \n', 'Compiling ROF-TV...');
-mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('ROF_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling FGP-TV...');
-mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('FGP_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling SB-TV...');
-mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('SB_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling dFGP-TV...');
-mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('FGP_dTV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling TNV...');
-mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('TNV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling NonLinear Diffusion...');
-mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('NonlDiff.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
-mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('Diffusion_4thO.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling TGV...');
-mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('TGV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling ROF-LLT...');
-mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('LLT_ROF.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling NonLocal-TV...');
-mex PatchSelect.c PatchSelect_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('Nonlocal_TV.mex*',Pathmove);
-movefile('PatchSelect.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling additional tools...');
-mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('TV_energy.mex*',Pathmove);
-
-%############Inpainters##############%
-fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...');
-mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('NonlDiff_Inp.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling Nonlocal marching method for inpainting...');
-mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* LLT_ROF_core* CCPiDefines.h
-delete PatchSelect_core* Nonlocal_TV_core*
-delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
-fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>');
-
-pathA2 = sprintf(['..' fsep '..' fsep], 1i);
-cd(pathA2);
-cd demos
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
deleted file mode 100644
index 6f7541c..0000000
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
+++ /dev/null
@@ -1,135 +0,0 @@
-% execute this mex file on Windows in Matlab once
-
-% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
-% I've been able to compile on Windows 7 with MinGW and Matlab 2016b, however,
-% not sure if openmp is enabled after the compilation.
-
-% Here I present two ways how software can be compiled, if you have some
-% other suggestions/remarks please contact me at dkazanc@hotmail.com
-% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
-
-fsep = '/';
-
-pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i);
-pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i);
-pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i);
-
-copyfile(pathcopyFrom, 'regularisers_CPU');
-copyfile(pathcopyFrom1, 'regularisers_CPU');
-copyfile(pathcopyFrom2, 'regularisers_CPU');
-
-cd regularisers_CPU
-
-Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-
-fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>');
-
-fprintf('%s \n', 'Compiling ROF-TV...');
-mex ROF_TV.c ROF_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('ROF_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling FGP-TV...');
-mex FGP_TV.c FGP_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('FGP_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling SB-TV...');
-mex SB_TV.c SB_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('SB_TV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling dFGP-TV...');
-mex FGP_dTV.c FGP_dTV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('FGP_dTV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling TNV...');
-mex TNV.c TNV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('TNV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling NonLinear Diffusion...');
-mex NonlDiff.c Diffusion_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('NonlDiff.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
-mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('Diffusion_4thO.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling TGV...');
-mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('TGV.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling ROF-LLT...');
-mex LLT_ROF.c LLT_ROF_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('LLT_ROF.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling NonLocal-TV...');
-mex PatchSelect.c PatchSelect_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('Nonlocal_TV.mex*',Pathmove);
-movefile('PatchSelect.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling additional tools...');
-mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('TV_energy.mex*',Pathmove);
-
-%############Inpainters##############%
-fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...');
-mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('NonlDiff_Inp.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling Nonlocal marching method for inpaiting...');
-mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
-movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-
-
-%%
-%%% The second approach to compile using TDM-GCC which follows this
-%%% discussion:
-%%% https://uk.mathworks.com/matlabcentral/answers/279171-using-mingw-compiler-and-open-mp#comment_359122
-%%% 1. Install TDM-GCC independently from http://tdm-gcc.tdragon.net/ (I installed 5.1.0)
-%%% Install openmp version: http://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%205%20series/5.1.0-tdm64-1/gcc-5.1.0-tdm64-1-openmp.zip/download
-%%% 2. Link til libgomp.a in that installation when compilling your mex file.
-
-%%% assuming you unzipped TDM GCC (OpenMp) in folder TDMGCC on C drive, uncomment
-%%% bellow
-% fprintf('%s \n', 'Compiling CPU regularisers...');
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" ROF_TV.c ROF_TV_core.c utils.c
-% movefile('ROF_TV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_TV.c FGP_TV_core.c utils.c
-% movefile('FGP_TV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" SB_TV.c SB_TV_core.c utils.c
-% movefile('SB_TV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_dTV.c FGP_dTV_core.c utils.c
-% movefile('FGP_dTV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TNV.c TNV_core.c utils.c
-% movefile('TNV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff.c Diffusion_core.c utils.c
-% movefile('NonlDiff.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Diffusion_4thO.c Diffus4th_order_core.c utils.c
-% movefile('Diffusion_4thO.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c
-% movefile('TGV.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" LLT_ROF.c LLT_ROF_core.c utils.c
-% movefile('LLT_ROF.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" PatchSelect.c PatchSelect_core.c utils.c
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Nonlocal_TV.c Nonlocal_TV_core.c utils.c
-% movefile('Nonlocal_TV.mex*',Pathmove);
-% movefile('PatchSelect.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c
-% movefile('TV_energy.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c
-% movefile('NonlDiff_Inp.mex*',Pathmove);
-% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c
-% movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-
-
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
-delete PatchSelect_core* Nonlocal_TV_core*
-delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
-fprintf('%s \n', 'Regularisers successfully compiled!');
-
-
-%%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-%pathA2 = sprintf(['..' fsep '..' fsep], 1i);
-%cd(pathA2);
-%cd demos
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
deleted file mode 100644
index dd1475c..0000000
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ /dev/null
@@ -1,74 +0,0 @@
-% execute this mex file in Matlab once
-
-%>>>>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<<
-% In order to compile CUDA modules one needs to have nvcc-compiler
-% installed (see CUDA SDK), check it under MATLAB with !nvcc --version
-
-% In the code bellow we provide a full explicit path to nvcc compiler
-% ! paths to matlab and CUDA sdk can be different, modify accordingly !
-
-% Tested on Ubuntu 18.04/MATLAB 2016b/cuda10.0/gcc7.3
-
-% Installation HAS NOT been tested on Windows, please you Cmake build or
-% modify the code bellow accordingly
-fsep = '/';
-
-pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_GPU'], 1i);
-pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i);
-
-copyfile(pathcopyFrom, 'regularisers_GPU');
-copyfile(pathcopyFrom1, 'regularisers_GPU');
-
-cd regularisers_GPU
-
-Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-
-fprintf('%s \n', '<<<<<<<<<<<Compiling GPU regularisers (CUDA)>>>>>>>>>>>>>');
-
-fprintf('%s \n', 'Compiling ROF-TV...');
-!/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o
-movefile('ROF_TV_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling FGP-TV...');
-!/usr/local/cuda/bin/nvcc -O0 -c TV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o
-movefile('FGP_TV_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling SB-TV...');
-!/usr/local/cuda/bin/nvcc -O0 -c TV_SB_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o
-movefile('SB_TV_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling TGV...');
-!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o
-movefile('TGV_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling dFGP-TV...');
-!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o
-movefile('FGP_dTV_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling NonLinear Diffusion...');
-!/usr/local/cuda/bin/nvcc -O0 -c NonlDiff_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu NonlDiff_GPU.cpp NonlDiff_GPU_core.o
-movefile('NonlDiff_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
-!/usr/local/cuda/bin/nvcc -O0 -c Diffus_4thO_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o
-movefile('Diffusion_4thO_GPU.mex*',Pathmove);
-
-fprintf('%s \n', 'Compiling ROF-LLT...');
-!/usr/local/cuda/bin/nvcc -O0 -c LLT_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
-mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu LLT_ROF_GPU.cpp LLT_ROF_GPU_core.o
-movefile('LLT_ROF_GPU.mex*',Pathmove);
-
-
-delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h
-fprintf('%s \n', 'All successfully compiled!');
-
-pathA2 = sprintf(['..' fsep '..' fsep], 1i);
-cd(pathA2);
-cd demos \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt b/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt
deleted file mode 100644
index e69de29..0000000
--- a/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt
+++ /dev/null
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c
deleted file mode 100644
index 66ea9be..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c
+++ /dev/null
@@ -1,77 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "Diffus4th_order_core.h"
-
-/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Edge-preserving parameter (sigma) [REQUIRED]
- * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300]
- * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambda, tau, sigma;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */
- iter_numb = 300; /* iterations number */
- tau = 0.01; /* marching step parameter */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant");
- if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Diffus4th_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
deleted file mode 100644
index 642362f..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
+++ /dev/null
@@ -1,97 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch, nonneg;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 300; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- nonneg = 0; /* default nonnegativity switch, off - 0 */
- printswitch = 0; /*default print is switched, off - 0 */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if ((nrhs == 6) || (nrhs == 7)) {
- nonneg = (int) mxGetScalar(prhs[5]);
- if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
- }
- if (nrhs == 7) {
- printswitch = (int) mxGetScalar(prhs[6]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c
deleted file mode 100644
index 1a0c070..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c
+++ /dev/null
@@ -1,114 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_dTV_core.h"
-
-/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
- * which employs structural similarity of the level sets of two images/volumes, see [1,2]
- * The current implementation updates image 1 while image 2 is being fixed.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
- * 3. lambdaPar - regularization parameter [REQUIRED]
- * 4. Number of iterations [OPTIONAL]
- * 5. eplsilon: tolerance constant [OPTIONAL]
- * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
- * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
- * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
- * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
- *
- * Output:
- * [1] Filtered/regularized image/volume
- *
- * This function is based on the Matlab's codes and papers by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch, nonneg;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- const mwSize *dim_array2;
- float *Input, *InputRef, *Output=NULL, lambda, epsil, eta;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
- dim_array2 = mxGetDimensions(prhs[1]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */
- iter = 300; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- eta = 0.01; /* default smoothing constant */
- methTV = 0; /* default isotropic TV penalty */
- nonneg = 0; /* default nonnegativity switch, off - 0 */
- printswitch = 0; /*default print is switched, off - 0 */
-
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
- if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");}
- if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");}
-
-
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */
- if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
- if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
- eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */
- }
- if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if ((nrhs == 8) || (nrhs == 9)) {
- nonneg = (int) mxGetScalar(prhs[7]);
- if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
- }
- if (nrhs == 9) {
- printswitch = (int) mxGetScalar(prhs[8]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- dTV_FGP_CPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c
deleted file mode 100644
index ab45446..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c
+++ /dev/null
@@ -1,82 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "LLT_ROF_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
-*
-* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
-* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
-* lambdaLLT starting with smaller values.
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambdaROF - ROF-related regularisation parameter
-* 3. lambdaLLT - LLT-related regularisation parameter
-* 4. tau - time-marching step
-* 5. iter - iterations number (for both models)
-*
-* Output:
-* Filtered/regularised image
-*
-* References:
-* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iterationsNumb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter");
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */
- lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */
- iterationsNumb = 250;
- tau = 0.0025;
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- LLT_ROF_CPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c
deleted file mode 100644
index ec35b8b..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c
+++ /dev/null
@@ -1,89 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "Diffusion_core.h"
-
-/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1] (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL parameter]
- * 5. tau - time-marching step for explicit scheme [OPTIONAL parameter]
- * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight [OPTIONAL parameter]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb, penaltytype;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, tau, sigma;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */
- iter_numb = 300; /* iterations number */
- tau = 0.025; /* marching step parameter */
- penaltytype = 1; /* Huber penalty by default */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey");
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
- if (nrhs == 6) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */
- if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',");
- if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */
- if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */
- if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */
- mxFree(penalty_type);
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Diffusion_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c
deleted file mode 100644
index 9833392..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c
+++ /dev/null
@@ -1,103 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "Diffusion_Inpaint_core.h"
-
-/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Image/volume to inpaint
- * 2. Inpainting Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data)
- * 3. lambda - regularization parameter
- * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 5. Number of iterations, for explicit scheme >= 150 is recommended
- * 6. tau - time-marching step for explicit scheme
- * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Inpainted image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb, penaltytype, i, inpaint_elements;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- const mwSize *dim_array2;
-
- float *Input, *Output=NULL, lambda, tau, sigma;
- unsigned char *Mask;
-
- dim_array = mxGetDimensions(prhs[0]);
- dim_array2 = mxGetDimensions(prhs[1]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */
- lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */
- sigma = (float) mxGetScalar(prhs[3]); /* Edge-preserving parameter */
- iter_numb = 300; /* iterations number */
- tau = 0.025; /* marching step parameter */
- penaltytype = 1; /* Huber penalty by default */
-
- if ((nrhs < 4) || (nrhs > 7)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey");
- if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter_numb = (int) mxGetScalar(prhs[4]); /* iterations number */
- if ((nrhs == 6) || (nrhs == 7)) tau = (float) mxGetScalar(prhs[5]); /* marching step parameter */
- if (nrhs == 7) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[6]); /* Huber, PM or Tukey 'Huber' is the default */
- if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',");
- if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */
- if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */
- if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */
- mxFree(penalty_type);
- }
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");}
-
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!");
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) {
- if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!");
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- }
-
- inpaint_elements = 0;
- for (i=0; i<(int)(dimY*dimX*dimZ); i++) if (Mask[i] == 1) inpaint_elements++;
- if (inpaint_elements == 0) mexErrMsgTxt("The mask is full of zeros, nothing to inpaint");
- Diffusion_Inpaint_CPU_main(Input, Mask, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c
deleted file mode 100644
index b3f2c98..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c
+++ /dev/null
@@ -1,84 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "NonlocalMarching_Inpaint_core.h"
-
-/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case)
- * The method is heuristic but computationally efficent (especially for larger images).
- * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms
- * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data
- *
- * Input:
- * 1. 2D image or sinogram [REQUIRED]
- * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) [REQUIRED]
- * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice [OPTIONAL, default 1]
- * 4. Number of iterations [OPTIONAL, default - calculate based on the mask]
- *
- * Output:
- * 1. Inpainted sinogram
- * 2. updated mask
- * Reference: TBA
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iterations, SW_increment;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- const mwSize *dim_array2;
-
- float *Input, *Output=NULL;
- unsigned char *Mask, *Mask_upd=NULL;
-
- dim_array = mxGetDimensions(prhs[0]);
- dim_array2 = mxGetDimensions(prhs[1]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */
- SW_increment = 1;
- iterations = 0;
-
- if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Linear increment, Iterations number");
- if ((nrhs == 3) || (nrhs == 4)) SW_increment = (int) mxGetScalar(prhs[2]); /* linear increment */
- if ((nrhs == 4)) iterations = (int) mxGetScalar(prhs[3]); /* iterations number */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");}
-
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!");
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Mask_upd = (unsigned char*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxUINT8_CLASS, mxREAL));
- }
- if (number_of_dims == 3) {
- mexErrMsgTxt("Currently 2D supported only");
- }
- NonlocalMarching_Inpaint_main(Input, Mask, Output, Mask_upd, SW_increment, iterations, 0, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c
deleted file mode 100644
index 014c0a0..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "matrix.h"
-#include "mex.h"
-#include "Nonlocal_TV_core.h"
-
-#define EPS 1.0000e-9
-
-/* Matlab wrapper for C-OMP implementation of non-local regulariser
- * Weights and associated indices must be given as an input.
- * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort
- * goes in pre-calculation of weights and selection of patches
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. AR_i - indeces of i neighbours
- * 3. AR_j - indeces of j neighbours
- * 4. AR_k - indeces of k neighbours (0 - for 2D case)
- * 5. Weights_ij(k) - associated weights
- * 6. regularisation parameter
- * 7. iterations number
-
- * Output:
- * 1. denoised image/volume
- * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- long number_of_dims, dimX, dimY, dimZ;
- int IterNumb, NumNeighb = 0;
- unsigned short *H_i, *H_j, *H_k;
- const int *dim_array;
- const int *dim_array2;
- float *A_orig, *Output=NULL, *Weights, lambda;
-
- dim_array = mxGetDimensions(prhs[0]);
- dim_array2 = mxGetDimensions(prhs[1]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- A_orig = (float *) mxGetData(prhs[0]); /* a 2D image or a set of 2D images (3D stack) */
- H_i = (unsigned short *) mxGetData(prhs[1]); /* indeces of i neighbours */
- H_j = (unsigned short *) mxGetData(prhs[2]); /* indeces of j neighbours */
- H_k = (unsigned short *) mxGetData(prhs[3]); /* indeces of k neighbours */
- Weights = (float *) mxGetData(prhs[4]); /* weights for patches */
- lambda = (float) mxGetScalar(prhs[5]); /* regularisation parameter */
- IterNumb = (int) mxGetScalar(prhs[6]); /* the number of iterations */
-
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /*****2D INPUT *****/
- if (number_of_dims == 2) {
- dimZ = 0;
- NumNeighb = dim_array2[2];
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- /*****3D INPUT *****/
- /****************************************************/
- if (number_of_dims == 3) {
- NumNeighb = dim_array2[3];
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- }
-
- /* run the main function here */
- Nonlocal_TV_CPU_main(A_orig, Output, H_i, H_j, H_k, Weights, dimX, dimY, dimZ, NumNeighb, lambda, IterNumb);
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c
deleted file mode 100644
index f942539..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC and Diamond Light Source Ltd.
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- * Copyright 2018 Diamond Light Source Ltd.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "matrix.h"
-#include "mex.h"
-#include "PatchSelect_core.h"
-
-/* C-OMP implementation of non-local weight pre-calculation for non-local priors
- * Weights and associated indices are stored into pre-allocated arrays and passed
- * to the regulariser
- *
- *
- * Input Parameters:
- * 1. 2D/3D grayscale image/volume
- * 2. Searching window (half-size of the main bigger searching window, e.g. 11)
- * 3. Similarity window (half-size of the patch window, e.g. 2)
- * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken)
- * 5. noise-related parameter to calculate non-local weights
- *
- * Output [2D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. Weights_ij - associated weights
- *
- * Output [3D]:
- * 1. AR_i - indeces of i neighbours
- * 2. AR_j - indeces of j neighbours
- * 3. AR_k - indeces of j neighbours
- * 4. Weights_ijk - associated weights
- */
-/**************************************************/
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int number_of_dims, SearchWindow, SimilarWin, NumNeighb;
- mwSize dimX, dimY, dimZ;
- unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL;
- const int *dim_array;
- float *A, *Weights = NULL, h;
- int dim_array2[3]; /* for 2D data */
- int dim_array3[4]; /* for 3D data */
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /* a 2D or 3D image/volume */
- SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window */
- SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window (patch-search)*/
- NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */
- h = (float) mxGetScalar(prhs[4]); /* NLM parameter */
-
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
- dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */
- dim_array3[0] = dimX; dim_array3[1] = dimY; dim_array3[2] = dimZ; dim_array3[3] = NumNeighb; /* 3D case */
-
- /****************2D INPUT ***************/
- if (number_of_dims == 2) {
- dimZ = 0;
- H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL));
- H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL));
- Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL));
- }
- /****************3D INPUT ***************/
- if (number_of_dims == 3) {
- H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL));
- H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL));
- H_k = (unsigned short*)mxGetPr(plhs[2] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL));
- Weights = (float*)mxGetPr(plhs[3] = mxCreateNumericArray(4, dim_array3, mxSINGLE_CLASS, mxREAL));
- }
-
- PatchSelect_CPU_main(A, H_i, H_j, H_k, Weights, (long)(dimX), (long)(dimY), (long)(dimZ), SearchWindow, SimilarWin, NumNeighb, h, 0);
-
- }
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
deleted file mode 100644
index 55ef2b1..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
+++ /dev/null
@@ -1,77 +0,0 @@
-
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "ROF_TV_core.h"
-
-/* ROF-TV denoising/regularization model [1] (2D/3D case)
- * (MEX wrapper for MATLAB)
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
- * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- *
- * D. Kazantsev, 2016-18
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array_i;
- float *Input, *Output=NULL, lambda, tau;
-
- dim_array_i = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */
- tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant");
- /*Handling Matlab output data*/
- dimX = dim_array_i[0]; dimY = dim_array_i[1]; dimZ = dim_array_i[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array_i, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) {
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL));
- }
-
- TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c
deleted file mode 100644
index 8636322..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "SB_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1]
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularisation parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
-*
-* Output:
-* 1. Filtered/regularized image
-*
-* This function is based on the Matlab's code and paper by
-* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 100; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- printswitch = 0; /*default print is switched, off - 0 */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if ((nrhs == 5) || (nrhs == 6)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (nrhs == 6) {
- printswitch = (int) mxGetScalar(prhs[5]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- SB_TV_CPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ);
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
deleted file mode 100644
index aa4eed4..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
+++ /dev/null
@@ -1,83 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "TGV_core.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D/3D)
- * 2. lambda - regularisation parameter
- * 3. parameter to control the first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations
- * 6. Lipshitz constant (default is 12)
- *
- * Output:
- * Filtered/regulariaed image
- *
- * References:
- * [1] K. Bredies "Total Generalized Variation"
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */
- lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
- alpha1 = 1.0f; /* parameter to control the first-order term */
- alpha0 = 0.5f; /* parameter to control the second-order term */
- iter = 300; /* Iterations number */
- L2 = 12.0f; /* Lipshitz constant */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
- if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
- if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) {
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- /* running the function */
- TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY, dimZ);
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c
deleted file mode 100644
index acea75d..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c
+++ /dev/null
@@ -1,74 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TNV_core.h"
-/*
- * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1]
- * The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see
- * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package
- *
- * Input Parameters:
- * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume
- * 2. lambda - regularisation parameter
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon - tolerance constant [OPTIONAL parameter]
- * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
- *
- * Output:
- * 1. Filtered/regularized image
- *
- * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
- */
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D + channels), Regularisation parameter, Regularization parameter, iterations number, tolerance");
-
- Input = (float *) mxGetData(prhs[0]); /* noisy sequence of channels (2D + channels) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 1000; /* default iterations number */
- epsil = 1.00e-05; /* default tolerance constant */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if (nrhs == 4) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) mexErrMsgTxt("The input must be 3D: [X,Y,Channels]");
- if (number_of_dims == 3) {
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- /* running the function */
- TNV_CPU_main(Input, Output, lambda, iter, epsil, dimX, dimY, dimZ);
- }
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c
deleted file mode 100644
index d457f46..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c
+++ /dev/null
@@ -1,72 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "utils.h"
-/*
- * Function to calculate TV energy value with respect to the denoising variational problem
- *
- * Input:
- * 1. Denoised Image/volume
- * 2. Original (noisy) Image/volume
- * 3. lambda - regularisation parameter
- *
- * Output:
- * 1. Energy function value
- *
- */
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, type;
-
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Input0, lambda;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs != 4)) mexErrMsgTxt("4 inputs: Two images or volumes of the same size required, estimated and the original (noisy), regularisation parameter, type");
-
- Input = (float *) mxGetData(prhs[0]); /* Denoised Image/volume */
- Input0 = (float *) mxGetData(prhs[1]); /* Original (noisy) Image/volume */
- lambda = (float) mxGetScalar(prhs[2]); /* regularisation parameter */
- type = (int) mxGetScalar(prhs[3]); /* type of energy */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*output energy function value */
- plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
- float *funcvalA = (float *) mxGetData(plhs[0]);
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- TV_energy2D(Input, Input0, funcvalA, lambda, type, dimX, dimY);
- }
- if (number_of_dims == 3) {
- TV_energy3D(Input, Input0, funcvalA, lambda, type, dimX, dimY, dimZ);
- }
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp
deleted file mode 100644
index 0cc042b..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp
+++ /dev/null
@@ -1,77 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "Diffus_4thO_GPU_core.h"
-
-/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Edge-preserving parameter (sigma) [REQUIRED]
- * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300]
- * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambda, tau, sigma;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */
- iter_numb = 300; /* iterations number */
- tau = 0.01; /* marching step parameter */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant");
- if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Diffus4th_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp
deleted file mode 100644
index c174e75..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp
+++ /dev/null
@@ -1,97 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TV_FGP_GPU_core.h"
-
-/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch, nonneg;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 300; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- nonneg = 0; /* default nonnegativity switch, off - 0 */
- printswitch = 0; /*default print is switched, off - 0 */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if ((nrhs == 6) || (nrhs == 7)) {
- nonneg = (int) mxGetScalar(prhs[5]);
- if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
- }
- if (nrhs == 7) {
- printswitch = (int) mxGetScalar(prhs[6]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp
deleted file mode 100644
index 3f5a4b3..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp
+++ /dev/null
@@ -1,113 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "dTV_FGP_GPU_core.h"
-
-/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
- * which employs structural similarity of the level sets of two images/volumes, see [1,2]
- * The current implementation updates image 1 while image 2 is being fixed.
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
- * 3. lambdaPar - regularization parameter [REQUIRED]
- * 4. Number of iterations [OPTIONAL]
- * 5. eplsilon: tolerance constant [OPTIONAL]
- * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
- * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
- * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
- * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
- *
- * Output:
- * [1] Filtered/regularized image/volume
- *
- * This function is based on the Matlab's codes and papers by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
- */
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch, nonneg;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
- const mwSize *dim_array2;
-
- float *Input, *InputRef, *Output=NULL, lambda, epsil, eta;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
- dim_array2 = mxGetDimensions(prhs[1]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */
- iter = 300; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- eta = 0.01; /* default smoothing constant */
- methTV = 0; /* default isotropic TV penalty */
- nonneg = 0; /* default nonnegativity switch, off - 0 */
- printswitch = 0; /*default print is switched, off - 0 */
-
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
- if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");}
- if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");}
-
-
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */
- if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
- if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
- eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */
- }
- if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if ((nrhs == 8) || (nrhs == 9)) {
- nonneg = (int) mxGetScalar(prhs[7]);
- if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
- }
- if (nrhs == 9) {
- printswitch = (int) mxGetScalar(prhs[8]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- dTV_FGP_GPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp
deleted file mode 100644
index e8da4ce..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp
+++ /dev/null
@@ -1,83 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "LLT_ROF_GPU_core.h"
-
-/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
-*
-* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
-* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
-* lambdaLLT starting with smaller values.
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambdaROF - ROF-related regularisation parameter
-* 3. lambdaLLT - LLT-related regularisation parameter
-* 4. tau - time-marching step
-* 5. iter - iterations number (for both models)
-*
-* Output:
-* Filtered/regularised image
-*
-* References:
-* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
-* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iterationsNumb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter");
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */
- lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */
- iterationsNumb = 250;
- tau = 0.0025;
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- LLT_ROF_GPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp
deleted file mode 100644
index 1cd0cdc..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include <stdio.h>
-#include <string.h>
-#include "NonlDiff_GPU_core.h"
-
-/* CUDA implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case)
- * The minimisation is performed using explicit scheme.
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion
- * 4. Number of iterations, for explicit scheme >= 150 is recommended
- * 5. tau - time-marching step for explicit scheme
- * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639.
- * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb, penaltytype;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, tau, sigma;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */
- iter_numb = 300; /* iterations number */
- tau = 0.025; /* marching step parameter */
- penaltytype = 1; /* Huber penalty by default */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey");
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
- if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
- if (nrhs == 6) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */
- if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',");
- if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */
- if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */
- if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */
- mxFree(penalty_type);
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- NonlDiff_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp
deleted file mode 100644
index bd01d55..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp
+++ /dev/null
@@ -1,74 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TV_ROF_GPU_core.h"
-
-/* ROF-TV denoising/regularization model [1] (2D/3D case)
- * (MEX wrapper for MATLAB)
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
- * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- *
- * D. Kazantsev, 2016-18
- */
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter_numb;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, tau;
-
- dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- Input = (float *) mxGetData(prhs[0]);
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */
- tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant");
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- /* output arrays*/
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /* output image/volume */
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp
deleted file mode 100644
index 9d1328f..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TV_SB_GPU_core.h"
-
-/* CUDA mex-file for implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1]
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularisation parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
-*
-* Output:
-* 1. Filtered/regularized image
-*
-* This function is based on the Matlab's code and paper by
-* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, methTV, printswitch;
- mwSize dimX, dimY, dimZ;
- const mwSize *dim_array;
-
- float *Input, *Output=NULL, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 100; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- printswitch = 0; /*default print is switched, off - 0 */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if ((nrhs == 5) || (nrhs == 6)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (nrhs == 6) {
- printswitch = (int) mxGetScalar(prhs[5]);
- if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* running the function */
- TV_SB_GPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ);
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
deleted file mode 100644
index edb551d..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
+++ /dev/null
@@ -1,79 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "TGV_GPU_core.h"
-
-/* CUDA implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image (2D) (required)
- * 2. lambda - regularisation parameter (required)
- * 3. parameter to control the first-order term (alpha1) (default - 1)
- * 4. parameter to control the second-order term (alpha0) (default - 0.5)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
- * 6. Lipshitz constant (default is 12)
- *
- * Output:
- * Filtered/regulariaed image
- *
- * References:
- * [1] K. Bredies "Total Generalized Variation"
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter;
- mwSize dimX, dimY;
- const mwSize *dim_array;
- float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
- alpha1 = 1.0f; /* parameter to control the first-order term */
- alpha0 = 0.5f; /* parameter to control the second-order term */
- iter = 300; /* Iterations number */
- L2 = 12.0f; /* Lipshitz constant */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
- if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
- if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
-
- if (number_of_dims == 2) {
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- /* running the function */
- TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
- }
- if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
-}
diff --git a/Wrappers/Matlab/supp/RMSE.m b/Wrappers/Matlab/supp/RMSE.m
deleted file mode 100644
index 002f776..0000000
--- a/Wrappers/Matlab/supp/RMSE.m
+++ /dev/null
@@ -1,7 +0,0 @@
-function err = RMSE(signal1, signal2)
-%RMSE Root Mean Squared Error
-
-err = sum((signal1 - signal2).^2)/length(signal1); % MSE
-err = sqrt(err); % RMSE
-
-end \ No newline at end of file
diff --git a/Wrappers/Matlab/supp/my_red_yellowMAP.mat b/Wrappers/Matlab/supp/my_red_yellowMAP.mat
deleted file mode 100644
index c2a5b87..0000000
--- a/Wrappers/Matlab/supp/my_red_yellowMAP.mat
+++ /dev/null
Binary files differ
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
deleted file mode 100644
index c2ef855..0000000
--- a/Wrappers/Python/CMakeLists.txt
+++ /dev/null
@@ -1,141 +0,0 @@
-# Copyright 2018 Edoardo Pasca
-cmake_minimum_required (VERSION 3.0)
-
-project(regulariserPython)
-#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py
-
-# The version number.
-
-#set (CIL_VERSION $ENV{CIL_VERSION} CACHE INTERNAL "Core Imaging Library version" FORCE)
-
-# conda orchestrated build
-message("CIL_VERSION: ${CIL_VERSION}")
-#include (GenerateExportHeader)
-
-find_package(PythonInterp REQUIRED)
-if (PYTHONINTERP_FOUND)
- message ("Current Python " ${PYTHON_VERSION_STRING} " found " ${PYTHON_EXECUTABLE})
-endif()
-
-
-## Build the regularisers package as a library
-message("Creating Regularisers as shared library")
-
-message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
-
-set(CMAKE_BUILD_TYPE "Release")
-
-if(WIN32)
- set (FLAGS "/DWIN32 /EHsc /openmp /DCCPiCore_EXPORTS")
- set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /NODEFAULTLIB:MSVCRT.lib")
-
- set (EXTRA_LIBRARIES)
-
- message("library lib: ${LIBRARY_LIB}")
-
-elseif(UNIX)
- set (FLAGS "-fopenmp -O2 -funsigned-char -Wall -Wl,--no-undefined -DCCPiReconstructionIterative_EXPORTS -std=c++0x")
- set (EXTRA_LIBRARIES
- "gomp"
- )
-endif()
-
-# GPU regularisers
-if (BUILD_CUDA)
- find_package(CUDA)
- if (CUDA_FOUND)
- message("CUDA FOUND")
- set (SETUP_GPU_WRAPPERS "extra_libraries += ['cilregcuda']\n\
-setup( \n\
- name='ccpi', \n\
- description='CCPi Core Imaging Library - Image regularisers GPU',\n\
- version=cil_version,\n\
- cmdclass = {'build_ext': build_ext},\n\
- ext_modules = [Extension('ccpi.filters.gpu_regularisers',\n\
- sources=[ \n\
- os.path.join('.' , 'src', 'gpu_regularisers.pyx' ),\n\
- ],\n\
- include_dirs=extra_include_dirs, \n\
- library_dirs=extra_library_dirs, \n\
- extra_compile_args=extra_compile_args, \n\
- libraries=extra_libraries ), \n\
- ],\n\
- zip_safe = False, \n\
- packages = {'ccpi','ccpi.filters'},\n\
- )")
- else()
- message("CUDA NOT FOUND")
- set(SETUP_GPU_WRAPPERS "#CUDA NOT FOUND")
- endif()
-endif()
-configure_file("${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in" "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py")
-
-
-find_package(PythonInterp)
-find_package(PythonLibs)
-if (PYTHONINTERP_FOUND)
- message(STATUS "Found PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}")
- message(STATUS "Python version ${PYTHON_VERSION_STRING}")
-endif()
-if (PYTHONLIBS_FOUND)
- message(STATUS "Found PYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS}")
- message(STATUS "Found PYTHON_LIBRARIES=${PYTHON_LIBRARIES}")
-endif()
-
-if (PYTHONINTERP_FOUND)
- message("Python found " ${PYTHON_EXECUTABLE})
- set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in")
- set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py")
- #set(DEPS "${CMAKE_CURRENT_SOURCE_DIR}/module/__init__.py")
- set (DEPS "${CMAKE_BINARY_DIR}/Core/")
- set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp")
-
- configure_file(${SETUP_PY_IN} ${SETUP_PY})
-
- message("Core binary dir " ${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE})
-
- if (CONDA_BUILD)
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core
- ${PYTHON_EXECUTABLE} ${SETUP_PY} install
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
-
- else()
- if (WIN32)
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE}
- ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
- else()
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core
- ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
- endif()
- install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- DESTINATION ${PYTHON_DEST})
- endif()
-
-
- add_custom_target(PythonWrapper ALL DEPENDS ${OUTPUT})
-
- #install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)")
-endif()
diff --git a/Wrappers/Python/ccpi/__init__.py b/Wrappers/Python/ccpi/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/Wrappers/Python/ccpi/__init__.py
+++ /dev/null
diff --git a/Wrappers/Python/ccpi/filters/__init__.py b/Wrappers/Python/ccpi/filters/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/Wrappers/Python/ccpi/filters/__init__.py
+++ /dev/null
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
deleted file mode 100644
index 588ea32..0000000
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ /dev/null
@@ -1,214 +0,0 @@
-"""
-script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
-"""
-
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU
-try:
- from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU
- gpu_enabled = True
-except ImportError:
- gpu_enabled = False
-from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU
-
-def ROF_TV(inputData, regularisation_parameter, iterations,
- time_marching_parameter,device='cpu'):
- if device == 'cpu':
- return TV_ROF_CPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return TV_ROF_GPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def FGP_TV(inputData, regularisation_parameter,iterations,
- tolerance_param, methodTV, nonneg, printM, device='cpu'):
- if device == 'cpu':
- return TV_FGP_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return TV_FGP_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def SB_TV(inputData, regularisation_parameter, iterations,
- tolerance_param, methodTV, printM, device='cpu'):
- if device == 'cpu':
- return TV_SB_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return TV_SB_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def FGP_dTV(inputData, refdata, regularisation_parameter, iterations,
- tolerance_param, eta_const, methodTV, nonneg, printM, device='cpu'):
- if device == 'cpu':
- return dTV_FGP_CPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return dTV_FGP_GPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def TNV(inputData, regularisation_parameter, iterations, tolerance_param):
- return TNV_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param)
-def NDF(inputData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, penalty_type, device='cpu'):
- if device == 'cpu':
- return NDF_CPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- elif device == 'gpu' and gpu_enabled:
- return NDF_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, device='cpu'):
- if device == 'cpu':
- return Diff4th_CPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return Diff4th_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def PatchSelect(inputData, searchwindow, patchwindow, neighbours, edge_parameter, device='cpu'):
- if device == 'cpu':
- return PATCHSEL_CPU(inputData,
- searchwindow,
- patchwindow,
- neighbours,
- edge_parameter)
- elif device == 'gpu' and gpu_enabled:
- return PATCHSEL_GPU(inputData,
- searchwindow,
- patchwindow,
- neighbours,
- edge_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def NLTV(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations):
- return NLTV_CPU(inputData,
- H_i,
- H_j,
- H_k,
- Weights,
- regularisation_parameter,
- iterations)
-
-def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations,
- LipshitzConst, device='cpu'):
- if device == 'cpu':
- return TGV_CPU(inputData,
- regularisation_parameter,
- alpha1,
- alpha0,
- iterations,
- LipshitzConst)
- elif device == 'gpu' and gpu_enabled:
- return TGV_GPU(inputData,
- regularisation_parameter,
- alpha1,
- alpha0,
- iterations,
- LipshitzConst)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations,
- time_marching_parameter, device='cpu'):
- if device == 'cpu':
- return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, penalty_type):
- return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
- edge_parameter, iterations, time_marching_parameter, penalty_type)
-
-def NVM_INP(inputData, maskData, SW_increment, iterations):
- return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations)
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat
deleted file mode 100644
index 6c84355..0000000
--- a/Wrappers/Python/conda-recipe/bld.bat
+++ /dev/null
@@ -1,20 +0,0 @@
-IF NOT DEFINED CIL_VERSION (
-ECHO CIL_VERSION Not Defined.
-exit 1
-)
-
-mkdir "%SRC_DIR%\ccpi"
-ROBOCOPY /E "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi"
-ROBOCOPY /E "%RECIPE_DIR%\..\..\..\Core" "%SRC_DIR%\Core"
-::cd %SRC_DIR%\ccpi\Python
-cd %SRC_DIR%
-
-:: issue cmake to create setup.py
-cmake -G "NMake Makefiles" %RECIPE_DIR%\..\..\..\ -DBUILD_PYTHON_WRAPPERS=ON -DCONDA_BUILD=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB="%CONDA_PREFIX%\lib" -DLIBRARY_INC="%CONDA_PREFIX%" -DCMAKE_INSTALL_PREFIX="%PREFIX%\Library"
-
-::%PYTHON% setup-regularisers.py build_ext
-::if errorlevel 1 exit 1
-::%PYTHON% setup-regularisers.py install
-::if errorlevel 1 exit 1
-nmake install
-if errorlevel 1 exit 1 \ No newline at end of file
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh
deleted file mode 100644
index 39c0f2c..0000000
--- a/Wrappers/Python/conda-recipe/build.sh
+++ /dev/null
@@ -1,17 +0,0 @@
-
-mkdir "$SRC_DIR/ccpi"
-cp -rv "$RECIPE_DIR/../.." "$SRC_DIR/ccpi"
-cp -rv "$RECIPE_DIR/../../../Core" "$SRC_DIR/Core"
-
-cd $SRC_DIR
-##cuda=off
-
-cmake -G "Unix Makefiles" $RECIPE_DIR/../../../ -DBUILD_PYTHON_WRAPPER=ON -DCONDA_BUILD=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB=$CONDA_PREFIX/lib -DLIBRARY_INC=$CONDA_PREFIX -DCMAKE_INSTALL_PREFIX=$PREFIX
-
-
-make install
-
-#$PYTHON setup-regularisers.py build_ext
-#$PYTHON setup-regularisers.py install
-
-
diff --git a/Wrappers/Python/conda-recipe/conda_build_config.yaml b/Wrappers/Python/conda-recipe/conda_build_config.yaml
deleted file mode 100644
index fbe82dc..0000000
--- a/Wrappers/Python/conda-recipe/conda_build_config.yaml
+++ /dev/null
@@ -1,9 +0,0 @@
-python:
- - 2.7 # [not win]
- - 3.5
- - 3.6
-# - 3.7
-numpy:
- - 1.12
- - 1.14
- - 1.15
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
deleted file mode 100644
index 7435b2b..0000000
--- a/Wrappers/Python/conda-recipe/meta.yaml
+++ /dev/null
@@ -1,40 +0,0 @@
-package:
- name: ccpi-regulariser
- version: {{CIL_VERSION}}
-
-build:
- preserve_egg_dir: False
- number: 0
- script_env:
- - CIL_VERSION
-
-test:
- files:
- - lena_gray_512.tif
- requires:
- - pillow=4.1.1
-
-requirements:
- build:
- - python
- - numpy {{ numpy }}
- - setuptools
- - cython
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
- - cmake
-
- run:
- - {{ pin_compatible('numpy', max_pin='x.x') }}
- - python
- - numpy
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
- - libgcc-ng
-
-about:
- home: http://www.ccpi.ac.uk
- license: BSD license
- summary: 'CCPi Core Imaging Library Quantification Toolbox'
diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py
deleted file mode 100755
index 21f3216..0000000
--- a/Wrappers/Python/conda-recipe/run_test.py
+++ /dev/null
@@ -1,819 +0,0 @@
-import unittest
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from PIL import Image
-
-class TiffReader(object):
- def imread(self, filename):
- return np.asarray(Image.open(filename))
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-def nrmse(im1, im2):
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-
-def rmse(im1, im2):
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
- return rmse
-###############################################################################
-
-class TestRegularisers(unittest.TestCase):
-
-
- def test_ROF_TV_CPU_vs_GPU(self):
- #print ("tomas debug test function")
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________ROF-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 2500,\
- 'time_marching_parameter': 0.00002
- }
- print ("#############ROF TV CPU####################")
- start_time = timeit.default_timer()
- rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
- rms = rmse(Im, rof_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############ROF TV GPU##################")
- start_time = timeit.default_timer()
- try:
- rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, rof_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = ROF_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-04
- diff_im = np.zeros(np.shape(rof_cpu))
- diff_im = abs(rof_cpu - rof_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_FGP_TV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________FGP-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############FGP TV CPU####################")
- start_time = timeit.default_timer()
- fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, fgp_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############FGP TV GPU##################")
- start_time = timeit.default_timer()
- try:
- fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, fgp_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = FGP_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(fgp_cpu))
- diff_im = abs(fgp_cpu - fgp_gpu)
- diff_im[diff_im > tolerance] = 1
-
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_SB_TV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________SB-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############SB-TV CPU####################")
- start_time = timeit.default_timer()
- sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, sb_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############SB TV GPU##################")
- start_time = timeit.default_timer()
- try:
-
- sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, sb_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = SB_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(sb_cpu))
- diff_im = abs(sb_cpu - sb_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_TGV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________TGV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
- print ("#############TGV CPU####################")
- start_time = timeit.default_timer()
- tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
- rms = rmse(Im, tgv_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############TGV GPU##################")
- start_time = timeit.default_timer()
- try:
- tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, tgv_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = TGV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(tgv_gpu))
- diff_im = abs(tgv_cpu - tgv_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_LLT_ROF_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________LLT-ROF bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter' :0.0001 ,\
- }
-
- print ("#############LLT- ROF CPU####################")
- start_time = timeit.default_timer()
- lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
- rms = rmse(Im, lltrof_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("#############LLT- ROF GPU####################")
- start_time = timeit.default_timer()
- try:
- lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, lltrof_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = LLT_ROF
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-04
- diff_im = np.zeros(np.shape(lltrof_gpu))
- diff_im = abs(lltrof_cpu - lltrof_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_NDF_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_______________NDF bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.06, \
- 'edge_parameter':0.04,\
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
- print ("#############NDF CPU####################")
- start_time = timeit.default_timer()
- ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
- rms = rmse(Im, ndf_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############NDF GPU##################")
- start_time = timeit.default_timer()
- try:
- ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, ndf_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = NDF
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(ndf_cpu))
- diff_im = abs(ndf_cpu - ndf_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
-
- def test_Diff4th_CPU_vs_GPU(self):
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("___Anisotropic Diffusion 4th Order (2D)____")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.001
- }
-
- print ("#############Diff4th CPU####################")
- start_time = timeit.default_timer()
- diff4th_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
- rms = rmse(Im, diff4th_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############Diff4th GPU##################")
- start_time = timeit.default_timer()
- try:
- diff4th_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'], 'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, diff4th_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = Diff4th
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(diff4th_cpu))
- diff_im = abs(diff4th_cpu - diff4th_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_FDGdTV_CPU_vs_GPU(self):
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________FGP-dTV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1000 ,\
- 'tolerance_constant':1e-07,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############FGP dTV CPU####################")
- start_time = timeit.default_timer()
- fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, fgp_dtv_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############FGP dTV GPU##################")
- start_time = timeit.default_timer()
- try:
- fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, fgp_dtv_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = FGP_dTV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(fgp_dtv_cpu))
- diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_cpu_ROF_TV(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
-
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
-
- """
- # read noiseless image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- """
- tolerance = 1e-05
- rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
-
- # set parameters for ROF-TV
- pars_rof_tv = {'algorithm': ROF_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 50,\
- 'time_marching_parameter': 0.00001
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing ROF-TV (2D, CPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- rof_cpu = ROF_TV(pars_rof_tv['input'],
- pars_rof_tv['regularisation_parameter'],
- pars_rof_tv['number_of_iterations'],
- pars_rof_tv['time_marching_parameter'],'cpu')
- rms_rof = rmse(Im, rof_cpu)
-
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance)
- def test_cpu_FGP_TV(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
-
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
- """
- # read noiseless image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- """
- tolerance = 1e-05
- rms_fgp_exp = 0.019152347 #expected value for FGP model
-
- pars_fgp_tv = {'algorithm' : FGP_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :50 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing FGP-TV (2D, CPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- fgp_cpu = FGP_TV(pars_fgp_tv['input'],
- pars_fgp_tv['regularisation_parameter'],
- pars_fgp_tv['number_of_iterations'],
- pars_fgp_tv['tolerance_constant'],
- pars_fgp_tv['methodTV'],
- pars_fgp_tv['nonneg'],
- pars_fgp_tv['printingOut'],'cpu')
- rms_fgp = rmse(Im, fgp_cpu)
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance)
-
- def test_gpu_ROF(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
-
- tolerance = 1e-05
- rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
-
- # set parameters for ROF-TV
- pars_rof_tv = {'algorithm': ROF_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 50,\
- 'time_marching_parameter': 0.00001
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing ROF-TV (2D, GPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- try:
- rof_gpu = ROF_TV(pars_rof_tv['input'],
- pars_rof_tv['regularisation_parameter'],
- pars_rof_tv['number_of_iterations'],
- pars_rof_tv['time_marching_parameter'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms_rof = rmse(Im, rof_gpu)
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance)
-
- def test_gpu_FGP(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
- tolerance = 1e-05
-
- rms_fgp_exp = 0.019152347 #expected value for FGP model
-
- # set parameters for FGP-TV
- pars_fgp_tv = {'algorithm' : FGP_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :50 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing FGP-TV (2D, GPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- try:
- fgp_gpu = FGP_TV(pars_fgp_tv['input'],
- pars_fgp_tv['regularisation_parameter'],
- pars_fgp_tv['number_of_iterations'],
- pars_fgp_tv['tolerance_constant'],
- pars_fgp_tv['methodTV'],
- pars_fgp_tv['nonneg'],
- pars_fgp_tv['printingOut'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms_fgp = rmse(Im, fgp_gpu)
- # now compare obtained rms with the expected value
-
- self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance)
-
-if __name__ == '__main__':
- unittest.main()
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py
deleted file mode 100644
index 3b4191b..0000000
--- a/Wrappers/Python/demos/demo_cpu_inpainters.py
+++ /dev/null
@@ -1,192 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Demonstration of CPU inpainters
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from scipy import io
-from ccpi.filters.regularisers import NDF_INP, NVM_INP
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'maskData':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-
-# read sinogram and the mask
-filename = os.path.join(".." , ".." , ".." , "data" ,"SinoInpaint.mat")
-sino = io.loadmat(filename)
-sino_full = sino.get('Sinogram')
-Mask = sino.get('Mask')
-[angles_dim,detectors_dim] = sino_full.shape
-sino_full = sino_full/np.max(sino_full)
-#apply mask to sinogram
-sino_cut = sino_full*(1-Mask)
-#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32')
-#sino_cut_new = sino_cut.copy(order='c')
-#sino_cut_new[:] = sino_cut[:]
-sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32);
-#mask = np.zeros((angles_dim,detectors_dim),'uint8')
-#mask =Mask.copy(order='c')
-#mask[:] = Mask[:]
-mask = np.ascontiguousarray(Mask, dtype=np.uint8);
-
-plt.figure(1)
-plt.subplot(121)
-plt.imshow(sino_cut_new,vmin=0.0, vmax=1)
-plt.title('Missing Data sinogram')
-plt.subplot(122)
-plt.imshow(mask)
-plt.title('Mask')
-plt.show()
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Inpainting using linear diffusion (2D)__")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(2)
-plt.suptitle('Performance of linear inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut_new,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'regularisation_parameter':5000,\
- 'edge_parameter':0,\
- 'number_of_iterations' :5000 ,\
- 'time_marching_parameter':0.000075,\
- 'penalty_type':0
- }
-
-start_time = timeit.default_timer()
-ndf_inp_linear = NDF_INP(pars['input'],
- pars['maskData'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(sino_full, ndf_inp_linear)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_inp_linear, cmap="gray")
-plt.title('{}'.format('Linear diffusion inpainting results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_Inpainting using nonlinear diffusion (2D)_")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(3)
-plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut_new,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'regularisation_parameter':80,\
- 'edge_parameter':0.00009,\
- 'number_of_iterations' :1500 ,\
- 'time_marching_parameter':0.000008,\
- 'penalty_type':1
- }
-
-start_time = timeit.default_timer()
-ndf_inp_nonlinear = NDF_INP(pars['input'],
- pars['maskData'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(sino_full, ndf_inp_nonlinear)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray")
-plt.title('{}'.format('Nonlinear diffusion inpainting results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("Inpainting using nonlocal vertical marching")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(4)
-plt.suptitle('Performance of NVM inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NVM_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'SW_increment': 1,\
- 'number_of_iterations' : 150
- }
-
-start_time = timeit.default_timer()
-(nvm_inp, mask_upd) = NVM_INP(pars['input'],
- pars['maskData'],
- pars['SW_increment'],
- pars['number_of_iterations'])
-
-rms = rmse(sino_full, nvm_inp)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nvm_inp, cmap="gray")
-plt.title('{}'.format('Nonlocal Vertical Marching inpainting results'))
-#%%
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
deleted file mode 100644
index e6befa9..0000000
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ /dev/null
@@ -1,572 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of CPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect, NLTV
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255.0
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-# change dims to check that modules work with non-squared images
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (2D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, sb_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1350 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-
-rms = rmse(Im, tgv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT- ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, lltrof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("________________NDF (2D)___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type':1
- }
-
-print ("#############NDF CPU################")
-start_time = timeit.default_timer()
-ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
-rms = rmse(Im, ndf_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############Diff4th CPU################")
-start_time = timeit.default_timer()
-diff4_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, diff4_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal patches pre-calculation____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-start_time = timeit.default_timer()
-# set parameters
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-H_i, H_j, Weights = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'cpu')
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-"""
-plt.figure()
-plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
-plt.show()
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal Total Variation penalty____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NLTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars2 = {'algorithm' : NLTV, \
- 'input' : u0,\
- 'H_i': H_i, \
- 'H_j': H_j,\
- 'H_k' : 0,\
- 'Weights' : Weights,\
- 'regularisation_parameter': 0.04,\
- 'iterations': 3
- }
-start_time = timeit.default_timer()
-nltv_cpu = NLTV(pars2['input'],
- pars2['H_i'],
- pars2['H_j'],
- pars2['H_k'],
- pars2['Weights'],
- pars2['regularisation_parameter'],
- pars2['iterations'])
-
-rms = rmse(Im, nltv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nltv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____________FGP-dTV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-rms = rmse(Im, fgp_dtv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("__________Total nuclear Variation__________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TNV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-channelsNo = 5
-noisyVol = np.zeros((channelsNo,N,M),dtype='float32')
-idealVol = np.zeros((channelsNo,N,M),dtype='float32')
-
-for i in range (channelsNo):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-# set parameters
-pars = {'algorithm' : TNV, \
- 'input' : noisyVol,\
- 'regularisation_parameter': 0.04, \
- 'number_of_iterations' : 200 ,\
- 'tolerance_constant':1e-05
- }
-
-print ("#############TNV CPU#################")
-start_time = timeit.default_timer()
-tnv_cpu = TNV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'])
-
-rms = rmse(idealVol, tnv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray")
-plt.title('{}'.format('CPU results'))
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
deleted file mode 100644
index 2d2fc22..0000000
--- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py
+++ /dev/null
@@ -1,458 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of 3D CPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-# change dims to check that modules work with non-squared images
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-slices = 15
-
-noisyVol = np.zeros((slices,N,M),dtype='float32')
-noisyRef = np.zeros((slices,N,M),dtype='float32')
-idealVol = np.zeros((slices,N,M),dtype='float32')
-
-for i in range (slices):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy 15th slice of a volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu3D = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(idealVol, rof_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu3D = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(idealVol, fgp_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu3D = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-rms = rmse(idealVol, sb_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using SB-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________LLT-ROF (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu3D = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(idealVol, lltrof_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________TGV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu3D = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-
-rms = rmse(idealVol, tgv_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using TGV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("________________NDF (3D)___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF CPU################")
-start_time = timeit.default_timer()
-ndf_cpu3D = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(idealVol, ndf_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using NDF iterations'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : noisyVol,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############Diff4th CPU################")
-start_time = timeit.default_timer()
-diff4th_cpu3D = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'])
-
-rms = rmse(idealVol, diff4th_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-dTV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV,\
- 'input' : noisyVol,\
- 'refdata' : noisyRef,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dTV_cpu3D = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(idealVol, fgp_dTV_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV'))
-#%%
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
deleted file mode 100644
index 230a761..0000000
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ /dev/null
@@ -1,790 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of CPU implementation against the GPU one
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 4500,\
- 'time_marching_parameter': 0.00002
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(rof_cpu - rof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(fgp_cpu))
-diff_im = abs(fgp_cpu - fgp_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________SB-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB-TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, sb_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############SB TV GPU##################")
-start_time = timeit.default_timer()
-sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, sb_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = SB_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(sb_cpu))
-diff_im = abs(sb_cpu - sb_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________TGV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :400 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-rms = rmse(Im, tgv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############TGV GPU##################")
-start_time = timeit.default_timer()
-tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-rms = rmse(Im, tgv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = TGV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(tgv_gpu))
-diff_im = abs(tgv_cpu - tgv_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________LLT-ROF bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :4500 ,\
- 'time_marching_parameter' :0.00002 ,\
- }
-
-print ("#############LLT- ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, lltrof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("#############LLT- ROF GPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, lltrof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = LLT_ROF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(lltrof_gpu))
-diff_im = abs(lltrof_cpu - lltrof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.06, \
- 'edge_parameter':0.04,\
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF CPU####################")
-start_time = timeit.default_timer()
-ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
-rms = rmse(Im, ndf_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############NDF GPU##################")
-start_time = timeit.default_timer()
-ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(Im, ndf_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = NDF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(ndf_cpu))
-diff_im = abs(ndf_cpu - ndf_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.001
- }
-
-print ("#############Diff4th CPU####################")
-start_time = timeit.default_timer()
-diff4th_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, diff4th_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############Diff4th GPU##################")
-start_time = timeit.default_timer()
-diff4th_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'], 'gpu')
-
-rms = rmse(Im, diff4th_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = Diff4th
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(diff4th_cpu))
-diff_im = abs(diff4th_cpu - diff4th_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-dTV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1000 ,\
- 'tolerance_constant':1e-07,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_dtv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############FGP dTV GPU##################")
-start_time = timeit.default_timer()
-fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-rms = rmse(Im, fgp_dtv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_dTV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(fgp_dtv_cpu))
-diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____Non-local regularisation bench_________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of Nonlocal TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-print ("############## Nonlocal Patches on CPU##################")
-start_time = timeit.default_timer()
-H_i, H_j, WeightsCPU = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'cpu')
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-print ("############## Nonlocal Patches on GPU##################")
-start_time = timeit.default_timer()
-start_time = timeit.default_timer()
-H_i, H_j, WeightsGPU = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'gpu')
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(u0))
-diff_im = abs(WeightsCPU[0,:,:] - WeightsGPU[0,:,:])
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,2,2)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
deleted file mode 100644
index e1c6575..0000000
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ /dev/null
@@ -1,518 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of GPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect, NLTV
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the ROF-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the FGP-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________SB-TV regulariser______________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the SB-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############SB TV GPU##################")
-start_time = timeit.default_timer()
-sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, sb_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = SB_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-
-rms = rmse(Im, tgv_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT- ROF GPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-
-rms = rmse(Im, lltrof_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the NDF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("##############NDF GPU##################")
-start_time = timeit.default_timer()
-ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(Im, ndf_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = NDF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############DIFF4th CPU################")
-start_time = timeit.default_timer()
-diff4_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, diff4_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal patches pre-calculation____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-start_time = timeit.default_timer()
-# set parameters
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-H_i, H_j, Weights = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'gpu')
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-"""
-plt.figure()
-plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
-plt.show()
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal Total Variation penalty____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NLTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars2 = {'algorithm' : NLTV, \
- 'input' : u0,\
- 'H_i': H_i, \
- 'H_j': H_j,\
- 'H_k' : 0,\
- 'Weights' : Weights,\
- 'regularisation_parameter': 0.02,\
- 'iterations': 3
- }
-start_time = timeit.default_timer()
-nltv_cpu = NLTV(pars2['input'],
- pars2['H_i'],
- pars2['H_j'],
- pars2['H_k'],
- pars2['Weights'],
- pars2['regularisation_parameter'],
- pars2['iterations'])
-
-rms = rmse(Im, nltv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nltv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-dTV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the FGP-dTV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############FGP dTV GPU##################")
-start_time = timeit.default_timer()
-fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_dtv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_dTV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
deleted file mode 100644
index b6058d2..0000000
--- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py
+++ /dev/null
@@ -1,460 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of GPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-
-
-slices = 20
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-
-noisyVol = np.zeros((slices,N,N),dtype='float32')
-noisyRef = np.zeros((slices,N,N),dtype='float32')
-idealVol = np.zeros((slices,N,N),dtype='float32')
-
-for i in range (slices):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy 15th slice of a volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV GPU####################")
-start_time = timeit.default_timer()
-rof_gpu3D = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-rms = rmse(idealVol, rof_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using ROF-TV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV GPU####################")
-start_time = timeit.default_timer()
-fgp_gpu3D = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, fgp_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :100 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV GPU####################")
-start_time = timeit.default_timer()
-sb_gpu3D = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, sb_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using SB-TV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________LLT-ROF (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu3D = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(idealVol, lltrof_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________TGV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :600 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV GPU####################")
-start_time = timeit.default_timer()
-tgv_gpu3D = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-
-rms = rmse(idealVol, tgv_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using TGV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF GPU####################")
-start_time = timeit.default_timer()
-ndf_gpu3D = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(idealVol, ndf_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using NDF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (3D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of DIFF4th regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : noisyVol,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############DIFF4th CPU################")
-start_time = timeit.default_timer()
-diff4_gpu3D = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(idealVol, diff4_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-dTV (3D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : noisyVol,\
- 'refdata' : noisyRef,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV GPU####################")
-start_time = timeit.default_timer()
-fgp_dTV_gpu3D = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, fgp_dTV_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV'))
-#%%
diff --git a/Wrappers/Python/demos/qualitymetrics.py b/Wrappers/Python/demos/qualitymetrics.py
deleted file mode 100644
index 850829e..0000000
--- a/Wrappers/Python/demos/qualitymetrics.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Feb 21 13:34:32 2018
-# quality metrics
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-import numpy as np
-
-def nrmse(im1, im2):
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-
-def rmse(im1, im2):
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
- return rmse
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
deleted file mode 100644
index 462edda..0000000
--- a/Wrappers/Python/setup-regularisers.py.in
+++ /dev/null
@@ -1,75 +0,0 @@
-#!/usr/bin/env python
-
-import setuptools
-from distutils.core import setup
-from distutils.extension import Extension
-from Cython.Distutils import build_ext
-
-import os
-import sys
-import numpy
-import platform
-
-cil_version=os.environ['CIL_VERSION']
-if cil_version == '':
- print("Please set the environmental variable CIL_VERSION")
- sys.exit(1)
-
-library_include_path = ""
-library_lib_path = ""
-try:
- library_include_path = os.environ['LIBRARY_INC']
- library_lib_path = os.environ['LIBRARY_LIB']
-except:
- library_include_path = os.environ['PREFIX']+'/include'
- pass
-
-extra_include_dirs = [numpy.get_include(), library_include_path]
-#extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
-extra_compile_args = []
-extra_library_dirs = [library_lib_path]
-extra_compile_args = []
-extra_link_args = []
-extra_libraries = ['cilreg']
-
-print ("extra_library_dirs " , extra_library_dirs)
-
-extra_include_dirs += [os.path.join(".." , ".." , "Core"),
- os.path.join(".." , ".." , "Core", "regularisers_CPU"),
- os.path.join(".." , ".." , "Core", "inpainters_CPU"),
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "LLTROF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "PatchSelect" ) ,
- "."]
-
-if platform.system() == 'Windows':
- extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]
-else:
- extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
- extra_libraries += [@EXTRA_OMP_LIB@]
-
-setup(
- name='ccpi',
- description='CCPi Core Imaging Library - Image regularisers',
- version=cil_version,
- cmdclass = {'build_ext': build_ext},
- ext_modules = [Extension("ccpi.filters.cpu_regularisers",
- sources=[os.path.join("." , "src", "cpu_regularisers.pyx" ) ],
- include_dirs=extra_include_dirs,
- library_dirs=extra_library_dirs,
- extra_compile_args=extra_compile_args,
- libraries=extra_libraries ),
-
- ],
- zip_safe = False,
- packages = {'ccpi','ccpi.filters'},
-)
-
-
-@SETUP_GPU_WRAPPERS@
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
deleted file mode 100644
index 11a0617..0000000
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ /dev/null
@@ -1,685 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
-cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
-cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
-cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-cdef extern float PatchSelect_CPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM);
-cdef extern float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb);
-
-cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ);
-cdef extern float TV_energy2D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY);
-cdef extern float TV_energy3D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY, int dimZ);
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter):
- if inputData.ndim == 2:
- return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
- elif inputData.ndim == 3:
- return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
-
-def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float marching_step_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run ROF iterations for 2D data
- TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[1], dims[0], 1)
-
- return outputData
-
-def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float marching_step_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run ROF iterations for 3D data
- TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
- if inputData.ndim == 2:
- return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
- elif inputData.ndim == 3:
- return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
-
-def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run FGP-TV iterations for 2D data */
- TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[1],dims[0],1)
-
- return outputData
-
-def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run FGP-TV iterations for 3D data */
- TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#********************** Total-variation SB *********************#
-#***************************************************************#
-#*************** Total-variation Split Bregman (SB)*************#
-def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM):
- if inputData.ndim == 2:
- return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM)
- elif inputData.ndim == 3:
- return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM)
-
-def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run SB-TV iterations for 2D data */
- SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- printM,
- dims[1],dims[0],1)
-
- return outputData
-
-def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run SB-TV iterations for 3D data */
- SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#***************** Total Generalised Variation *****************#
-#***************************************************************#
-def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
- if inputData.ndim == 2:
- return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,
- iterations, LipshitzConst)
- elif inputData.ndim == 3:
- return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,
- iterations, LipshitzConst)
-
-def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run TGV iterations for 2D data */
- TGV_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[1],dims[0],1)
- return outputData
-def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run TGV iterations for 3D data */
- TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#******************* ROF - LLT regularisation ******************#
-#***************************************************************#
-def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
- if inputData.ndim == 2:
- return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif inputData.ndim == 3:
- return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
-
-def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run ROF-LLT iterations for 2D data */
- LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)
- return outputData
-
-def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run ROF-LLT iterations for 3D data */
- LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])
- return outputData
-
-#****************************************************************#
-#**************Directional Total-variation FGP ******************#
-#****************************************************************#
-#******** Directional TV Fast-Gradient-Projection (FGP)*********#
-def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM):
- if inputData.ndim == 2:
- return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
- elif inputData.ndim == 3:
- return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
-
-def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run FGP-dTV iterations for 2D data */
- dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)
-
- return outputData
-
-def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run FGP-dTV iterations for 3D data */
- dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#****************************************************************#
-#*********************Total Nuclear Variation********************#
-#****************************************************************#
-def TNV_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param):
- if inputData.ndim == 2:
- return
- elif inputData.ndim == 3:
- return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param)
-
-def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run TNV iterations for 3D (X,Y,Channels) data
- TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0])
- return outputData
-#****************************************************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type):
- if inputData.ndim == 2:
- return NDF_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
- elif inputData.ndim == 3:
- return NDF_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
-
-def NDF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 2D data
- Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)
- return outputData
-
-def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 3D data
- Diffusion_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#*************Anisotropic Fourth-Order diffusion*****************#
-#****************************************************************#
-def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter):
- if inputData.ndim == 2:
- return Diff4th_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter)
- elif inputData.ndim == 3:
- return Diff4th_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter)
-
-def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 2D data
- Diffus4th_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1)
- return outputData
-
-def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 3D data
- Diffus4th_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#***************Patch-based weights calculation******************#
-#****************************************************************#
-def PATCHSEL_CPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter):
- if inputData.ndim == 2:
- return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter)
- elif inputData.ndim == 3:
- return 1
-def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[3]
- dims[0] = neighbours
- dims[1] = inputData.shape[0]
- dims[2] = inputData.shape[1]
-
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- PatchSelect_CPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], 0, searchwindow, patchwindow, neighbours, edge_parameter, 1)
- return H_i, H_j, Weights
-"""
-def PatchSel_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[4]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
- dims[3] = neighbours
-
- cdef np.ndarray[np.float32_t, ndim=4, mode="c"] Weights = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_i = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_j = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_k = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- PatchSelect_CPU_main(&inputData[0,0,0], &H_i[0,0,0,0], &H_j[0,0,0,0], &H_k[0,0,0,0], &Weights[0,0,0,0], dims[2], dims[1], dims[0], searchwindow, patchwindow, neighbours, edge_parameter, 1)
- return H_i, H_j, H_k, Weights
-"""
-
-#****************************************************************#
-#***************Non-local Total Variation******************#
-#****************************************************************#
-def NLTV_CPU(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations):
- if inputData.ndim == 2:
- return NLTV_2D(inputData, H_i, H_j, Weights, regularisation_parameter, iterations)
- elif inputData.ndim == 3:
- return 1
-def NLTV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i,
- np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j,
- np.ndarray[np.float32_t, ndim=3, mode="c"] Weights,
- float regularisation_parameter,
- int iterations):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- neighbours = H_i.shape[0]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run nonlocal TV regularisation
- Nonlocal_TV_CPU_main(&inputData[0,0], &outputData[0,0], &H_i[0,0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[1], dims[0], 0, neighbours, regularisation_parameter, iterations)
- return outputData
-
-#*********************Inpainting WITH****************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type):
- if inputData.ndim == 2:
- return NDF_INP_2D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
- elif inputData.ndim == 3:
- return NDF_INP_3D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
-
-def NDF_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Inpaiting by Diffusion iterations for 2D data
- Diffusion_Inpaint_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)
- return outputData
-
-def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=3, mode="c"] maskData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Inpaiting by Diffusion iterations for 3D data
- Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])
-
- return outputData
-#*********************Inpainting WITH****************************#
-#***************Nonlocal Vertical Marching method****************#
-#****************************************************************#
-def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb):
- if inputData.ndim == 2:
- return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb)
- elif inputData.ndim == 3:
- return
-
-def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
- int SW_increment,
- int iterationsNumb):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \
- np.zeros([dims[0],dims[1]], dtype='uint8')
-
- # Run Inpaiting by Nonlocal vertical marching method for 2D data
- NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0],
- &maskData_upd[0,0],
- SW_increment, iterationsNumb, 1, dims[1], dims[0], 1)
-
- return (outputData, maskData_upd)
-
-
-#****************************************************************#
-#***************Calculation of TV-energy functional**************#
-#****************************************************************#
-def TV_ENERGY(inputData, inputData0, regularisation_parameter, typeFunctional):
- if inputData.ndim == 2:
- return TV_ENERGY_2D(inputData, inputData0, regularisation_parameter, typeFunctional)
- elif inputData.ndim == 3:
- return TV_ENERGY_3D(inputData, inputData0, regularisation_parameter, typeFunctional)
-
-def TV_ENERGY_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] inputData0,
- float regularisation_parameter,
- int typeFunctional):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
- np.zeros([1], dtype='float32')
-
- # run function
- TV_energy2D(&inputData[0,0], &inputData0[0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[1], dims[0])
-
- return outputData
-
-def TV_ENERGY_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] inputData0,
- float regularisation_parameter,
- int typeFunctional):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
- np.zeros([1], dtype='float32')
-
- # Run function
- TV_energy3D(&inputData[0,0,0], &inputData0[0,0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[2], dims[1], dims[0])
-
- return outputData
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
deleted file mode 100644
index b52f669..0000000
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ /dev/null
@@ -1,640 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-CUDAErrorMessage = 'CUDA error'
-
-cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
-cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
-cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
-cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
-cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
-cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
-cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
-cdef extern int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
-cdef extern int PatchSelect_GPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h);
-
-# Total-variation Rudin-Osher-Fatemi (ROF)
-def TV_ROF_GPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter):
- if inputData.ndim == 2:
- return ROFTV2D(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- elif inputData.ndim == 3:
- return ROFTV3D(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
-
-# Total-variation Fast-Gradient-Projection (FGP)
-def TV_FGP_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM):
- if inputData.ndim == 2:
- return FGPTV2D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- elif inputData.ndim == 3:
- return FGPTV3D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
-# Total-variation Split Bregman (SB)
-def TV_SB_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM):
- if inputData.ndim == 2:
- return SBTV2D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- elif inputData.ndim == 3:
- return SBTV3D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
-# LLT-ROF model
-def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
- if inputData.ndim == 2:
- return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif inputData.ndim == 3:
- return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
-# Total Generilised Variation (TGV)
-def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
- if inputData.ndim == 2:
- return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
- elif inputData.ndim == 3:
- return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
-# Directional Total-variation Fast-Gradient-Projection (FGP)
-def dTV_FGP_GPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM):
- if inputData.ndim == 2:
- return FGPdTV2D(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- elif inputData.ndim == 3:
- return FGPdTV3D(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
-# Nonlocal Isotropic Diffusion (NDF)
-def NDF_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type):
- if inputData.ndim == 2:
- return NDF_GPU_2D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- elif inputData.ndim == 3:
- return NDF_GPU_3D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
-# Anisotropic Fourth-Order diffusion
-def Diff4th_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter):
- if inputData.ndim == 2:
- return Diff4th_2D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- elif inputData.ndim == 3:
- return Diff4th_3D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
-
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_ROF_GPU_main(
- &inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations ,
- time_marching_parameter,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_ROF_GPU_main(
- &inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter,
- iterations ,
- time_marching_parameter,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_FGP_GPU_main(&inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#***************************************************************#
-#********************** Total-variation SB *********************#
-#***************************************************************#
-#*************** Total-variation Split Bregman (SB)*************#
-def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_SB_GPU_main(&inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_SB_GPU_main(&inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- methodTV,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#***************************************************************#
-#************************ LLT-ROF model ************************#
-#***************************************************************#
-#************Joint LLT-ROF model for higher order **************#
-def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#***************************************************************#
-#***************** Total Generalised Variation *****************#
-#***************************************************************#
-def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run TGV iterations for 2D data */
- if (TGV_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[1],dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TGV_GPU_main(
- &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#****************************************************************#
-#**************Directional Total-variation FGP ******************#
-#****************************************************************#
-#******** Directional TV Fast-Gradient-Projection (FGP)*********#
-def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#****************************************************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_GPU_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #rangecheck = penalty_type < 1 and penalty_type > 3
- #if not rangecheck:
-# raise ValueError('Choose penalty type as 1 for Huber, 2 - Perona-Malik, 3 - Tukey Biweight')
-
- # Run Nonlinear Diffusion iterations for 2D data
- # Running CUDA code here
- if (NonlDiff_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def NDF_GPU_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 3D data
- # Running CUDA code here
- if (NonlDiff_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#****************************************************************#
-#************Anisotropic Fourth-Order diffusion******************#
-#****************************************************************#
-def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 2D data
- # Running CUDA code here
- if (Diffus4th_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 3D data
- # Running CUDA code here
- if (Diffus4th_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#****************************************************************#
-#************Patch-based weights pre-selection******************#
-#****************************************************************#
-def PATCHSEL_GPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter):
- if inputData.ndim == 2:
- return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter)
- elif inputData.ndim == 3:
- return 1
-def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[3]
- dims[0] = neighbours
- dims[1] = inputData.shape[0]
- dims[2] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- if (PatchSelect_GPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], searchwindow, patchwindow, neighbours, edge_parameter)==0):
- return H_i, H_j, Weights;
- else:
- raise ValueError(CUDAErrorMessage);
-
diff --git a/data/SinoInpaint.mat b/data/SinoInpaint.mat
deleted file mode 100644
index d748fb4..0000000
--- a/data/SinoInpaint.mat
+++ /dev/null
Binary files differ
diff --git a/data/lena_gray_512.tif b/data/lena_gray_512.tif
deleted file mode 100644
index f80cafc..0000000
--- a/data/lena_gray_512.tif
+++ /dev/null
Binary files differ
diff --git a/recipes/regularisers/bld.bat b/recipes/regularisers/bld.bat
deleted file mode 100644
index 43a5286..0000000
--- a/recipes/regularisers/bld.bat
+++ /dev/null
@@ -1,21 +0,0 @@
-IF NOT DEFINED CIL_VERSION (
-ECHO CIL_VERSION Not Defined.
-exit 1
-)
-
-mkdir "%SRC_DIR%\build"
-ROBOCOPY /E "%RECIPE_DIR%\..\..\Core" "%SRC_DIR%\build"
-::ROBOCOPY /E "%RECIPE_DIR%\..\..\Wrappers\python\src" "%SRC_DIR%\build\module"
-cd "%SRC_DIR%\build"
-
-echo "we should be in %SRC_DIR%\build"
-
-cmake -G "NMake Makefiles" "%RECIPE_DIR%\..\..\" -DLIBRARY_LIB="%CONDA_PREFIX%\lib" -DLIBRARY_INC="%CONDA_PREFIX%" -DCMAKE_INSTALL_PREFIX="%PREFIX%\Library" -DCONDA_BUILD=ON -DBUILD_WRAPPERS=OFF
-
-::-DBOOST_LIBRARYDIR="%CONDA_PREFIX%\Library\lib" -DBOOST_INCLUDEDIR="%CONDA_PREFIX%\Library\include" -DBOOST_ROOT="%CONDA_PREFIX%\Library\lib"
-
-:: Build C library
-nmake install
-if errorlevel 1 exit 1
-
-:: Install step
diff --git a/recipes/regularisers/build.sh b/recipes/regularisers/build.sh
deleted file mode 100644
index eaa778e..0000000
--- a/recipes/regularisers/build.sh
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env bash
-
-echo build.sh CIL_VERSION: $CIL_VERSION
-#if [ -z "$CIL_VERSION" ]; then
-# echo "Need to set CIL_VERSION"
-# exit 1
-#fi
-#export CIL_VERSION=0.9.1
-
-
-
-mkdir ${SRC_DIR}/build
-cp -rv ${RECIPE_DIR}/../../Core/ ${SRC_DIR}/build
-mkdir ${SRC_DIR}/build/build
-cd ${SRC_DIR}/build/build
-cmake -G "Unix Makefiles" -DLIBRARY_LIB="${CONDA_PREFIX}/lib" -DLIBRARY_INC="${CONDA_PREFIX}" -DCMAKE_INSTALL_PREFIX="${PREFIX}" ../Core
-
-make -j2 VERBOSE=1
-make install
diff --git a/recipes/regularisers/meta.yaml b/recipes/regularisers/meta.yaml
deleted file mode 100644
index 3ffcd1d..0000000
--- a/recipes/regularisers/meta.yaml
+++ /dev/null
@@ -1,27 +0,0 @@
-package:
- name: cil_regulariser
- version: {{ environ['CIL_VERSION'] }}
-
-
-build:
- preserve_egg_dir: False
- script_env:
- - CIL_VERSION
-
-requirements:
- build:
- - cmake >=3.1
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
-
- run:
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
-
-
-about:
- home: http://www.ccpi.ac.uk
- license: Apache v2.0
- summary: Regulariser package from CCPi
diff --git a/run.sh b/run.sh
deleted file mode 100644
index a8e5555..0000000
--- a/run.sh
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/bin/bash
-echo "Building CCPi-regularisation Toolkit using CMake"
-# rm -r build
-# Requires Cython, install it first:
-# pip install cython
-# mkdir build
-cd build/
-make clean
-# install Python modules only without CUDA
-cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
-# install Python modules only with CUDA
-# cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
-make install
-# cp install/lib/libcilreg.so install/python/ccpi/filters
-cd install/python
-export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib
-# spyder
-# one can also run Matlab in Linux as:
-# PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab