From 3caa686662f7d937cf7eb852dde437cd66e79a6e Mon Sep 17 00:00:00 2001 From: Tomas Kulhanek Date: Thu, 21 Feb 2019 02:10:14 -0500 Subject: restructured sources --- CMake/FindAnacondaEnvironment.cmake | 154 ---- CMakeLists.txt | 4 +- Core/CCPiDefines.h | 35 - Core/CMakeLists.txt | 151 ---- Core/inpainters_CPU/Diffusion_Inpaint_core.c | 322 -------- Core/inpainters_CPU/Diffusion_Inpaint_core.h | 61 -- .../inpainters_CPU/NonlocalMarching_Inpaint_core.c | 188 ----- .../inpainters_CPU/NonlocalMarching_Inpaint_core.h | 54 -- Core/regularisers_CPU/Diffus4th_order_core.c | 250 ------- Core/regularisers_CPU/Diffus4th_order_core.h | 55 -- Core/regularisers_CPU/Diffusion_core.c | 307 -------- Core/regularisers_CPU/Diffusion_core.h | 59 -- Core/regularisers_CPU/FGP_TV_core.c | 321 -------- Core/regularisers_CPU/FGP_TV_core.h | 63 -- Core/regularisers_CPU/FGP_dTV_core.c | 441 ----------- Core/regularisers_CPU/FGP_dTV_core.h | 72 -- Core/regularisers_CPU/LLT_ROF_core.c | 410 ----------- Core/regularisers_CPU/LLT_ROF_core.h | 65 -- Core/regularisers_CPU/Nonlocal_TV_core.c | 173 ----- Core/regularisers_CPU/Nonlocal_TV_core.h | 61 -- Core/regularisers_CPU/PatchSelect_core.c | 345 --------- Core/regularisers_CPU/PatchSelect_core.h | 63 -- Core/regularisers_CPU/ROF_TV_core.c | 289 -------- Core/regularisers_CPU/ROF_TV_core.h | 57 -- Core/regularisers_CPU/SB_TV_core.c | 368 --------- Core/regularisers_CPU/SB_TV_core.h | 61 -- Core/regularisers_CPU/TGV_core.c | 487 ------------ Core/regularisers_CPU/TGV_core.h | 73 -- Core/regularisers_CPU/TNV_core.c | 452 ------------ Core/regularisers_CPU/TNV_core.h | 47 -- Core/regularisers_CPU/utils.c | 117 --- Core/regularisers_CPU/utils.h | 34 - Core/regularisers_GPU/Diffus_4thO_GPU_core.cu | 268 ------- Core/regularisers_GPU/Diffus_4thO_GPU_core.h | 8 - Core/regularisers_GPU/LLT_ROF_GPU_core.cu | 473 ------------ Core/regularisers_GPU/LLT_ROF_GPU_core.h | 8 - Core/regularisers_GPU/NonlDiff_GPU_core.cu | 345 --------- Core/regularisers_GPU/NonlDiff_GPU_core.h | 8 - Core/regularisers_GPU/PatchSelect_GPU_core.cu | 460 ------------ Core/regularisers_GPU/PatchSelect_GPU_core.h | 8 - Core/regularisers_GPU/TGV_GPU_core.cu | 625 ---------------- Core/regularisers_GPU/TGV_GPU_core.h | 8 - Core/regularisers_GPU/TV_FGP_GPU_core.cu | 564 -------------- Core/regularisers_GPU/TV_FGP_GPU_core.h | 9 - Core/regularisers_GPU/TV_ROF_GPU_core.cu | 358 --------- Core/regularisers_GPU/TV_ROF_GPU_core.h | 8 - Core/regularisers_GPU/TV_SB_GPU_core.cu | 552 -------------- Core/regularisers_GPU/TV_SB_GPU_core.h | 10 - Core/regularisers_GPU/dTV_FGP_GPU_core.cu | 741 ------------------- Core/regularisers_GPU/dTV_FGP_GPU_core.h | 9 - Core/regularisers_GPU/shared.h | 42 -- Wrappers/CMakeLists.txt | 19 - Wrappers/Matlab/CMakeLists.txt | 147 ---- Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 178 ----- Wrappers/Matlab/demos/demoMatlab_denoise.m | 189 ----- Wrappers/Matlab/demos/demoMatlab_inpaint.m | 35 - Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m | 81 -- .../Matlab/mex_compile/compileCPU_mex_WINDOWS.m | 135 ---- Wrappers/Matlab/mex_compile/compileGPU_mex.m | 74 -- .../mex_compile/installed/MEXed_files_location.txt | 0 .../mex_compile/regularisers_CPU/Diffusion_4thO.c | 77 -- .../Matlab/mex_compile/regularisers_CPU/FGP_TV.c | 97 --- .../Matlab/mex_compile/regularisers_CPU/FGP_dTV.c | 114 --- .../Matlab/mex_compile/regularisers_CPU/LLT_ROF.c | 82 --- .../Matlab/mex_compile/regularisers_CPU/NonlDiff.c | 89 --- .../mex_compile/regularisers_CPU/NonlDiff_Inp.c | 103 --- .../regularisers_CPU/NonlocalMarching_Inpaint.c | 84 --- .../mex_compile/regularisers_CPU/Nonlocal_TV.c | 88 --- .../mex_compile/regularisers_CPU/PatchSelect.c | 92 --- .../Matlab/mex_compile/regularisers_CPU/ROF_TV.c | 77 -- .../Matlab/mex_compile/regularisers_CPU/SB_TV.c | 91 --- Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c | 83 --- Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c | 74 -- .../mex_compile/regularisers_CPU/TV_energy.c | 72 -- .../regularisers_GPU/Diffusion_4thO_GPU.cpp | 77 -- .../mex_compile/regularisers_GPU/FGP_TV_GPU.cpp | 97 --- .../mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp | 113 --- .../mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp | 83 --- .../mex_compile/regularisers_GPU/NonlDiff_GPU.cpp | 92 --- .../mex_compile/regularisers_GPU/ROF_TV_GPU.cpp | 74 -- .../mex_compile/regularisers_GPU/SB_TV_GPU.cpp | 91 --- .../mex_compile/regularisers_GPU/TGV_GPU.cpp | 79 -- Wrappers/Matlab/supp/RMSE.m | 7 - Wrappers/Matlab/supp/my_red_yellowMAP.mat | Bin 1761 -> 0 bytes Wrappers/Python/CMakeLists.txt | 141 ---- Wrappers/Python/ccpi/__init__.py | 0 Wrappers/Python/ccpi/filters/__init__.py | 0 Wrappers/Python/ccpi/filters/regularisers.py | 214 ------ Wrappers/Python/conda-recipe/bld.bat | 20 - Wrappers/Python/conda-recipe/build.sh | 17 - .../Python/conda-recipe/conda_build_config.yaml | 9 - Wrappers/Python/conda-recipe/meta.yaml | 40 - Wrappers/Python/conda-recipe/run_test.py | 819 --------------------- Wrappers/Python/demos/demo_cpu_inpainters.py | 192 ----- Wrappers/Python/demos/demo_cpu_regularisers.py | 572 -------------- Wrappers/Python/demos/demo_cpu_regularisers3D.py | 458 ------------ .../Python/demos/demo_cpu_vs_gpu_regularisers.py | 790 -------------------- Wrappers/Python/demos/demo_gpu_regularisers.py | 518 ------------- Wrappers/Python/demos/demo_gpu_regularisers3D.py | 460 ------------ Wrappers/Python/demos/qualitymetrics.py | 18 - Wrappers/Python/setup-regularisers.py.in | 75 -- Wrappers/Python/src/cpu_regularisers.pyx | 685 ----------------- Wrappers/Python/src/gpu_regularisers.pyx | 640 ---------------- data/SinoInpaint.mat | Bin 3335061 -> 0 bytes data/lena_gray_512.tif | Bin 262598 -> 0 bytes recipes/regularisers/bld.bat | 21 - recipes/regularisers/build.sh | 19 - recipes/regularisers/meta.yaml | 27 - run.sh | 19 - 109 files changed, 2 insertions(+), 18689 deletions(-) delete mode 100644 CMake/FindAnacondaEnvironment.cmake delete mode 100644 Core/CCPiDefines.h delete mode 100644 Core/CMakeLists.txt delete mode 100644 Core/inpainters_CPU/Diffusion_Inpaint_core.c delete mode 100644 Core/inpainters_CPU/Diffusion_Inpaint_core.h delete mode 100644 Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c delete mode 100644 Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h delete mode 100644 Core/regularisers_CPU/Diffus4th_order_core.c delete mode 100644 Core/regularisers_CPU/Diffus4th_order_core.h delete mode 100644 Core/regularisers_CPU/Diffusion_core.c delete mode 100644 Core/regularisers_CPU/Diffusion_core.h delete mode 100644 Core/regularisers_CPU/FGP_TV_core.c delete mode 100644 Core/regularisers_CPU/FGP_TV_core.h delete mode 100644 Core/regularisers_CPU/FGP_dTV_core.c delete mode 100644 Core/regularisers_CPU/FGP_dTV_core.h delete mode 100644 Core/regularisers_CPU/LLT_ROF_core.c delete mode 100644 Core/regularisers_CPU/LLT_ROF_core.h delete mode 100644 Core/regularisers_CPU/Nonlocal_TV_core.c delete mode 100644 Core/regularisers_CPU/Nonlocal_TV_core.h delete mode 100644 Core/regularisers_CPU/PatchSelect_core.c delete mode 100644 Core/regularisers_CPU/PatchSelect_core.h delete mode 100644 Core/regularisers_CPU/ROF_TV_core.c delete mode 100644 Core/regularisers_CPU/ROF_TV_core.h delete mode 100755 Core/regularisers_CPU/SB_TV_core.c delete mode 100644 Core/regularisers_CPU/SB_TV_core.h delete mode 100644 Core/regularisers_CPU/TGV_core.c delete mode 100644 Core/regularisers_CPU/TGV_core.h delete mode 100755 Core/regularisers_CPU/TNV_core.c delete mode 100644 Core/regularisers_CPU/TNV_core.h delete mode 100644 Core/regularisers_CPU/utils.c delete mode 100644 Core/regularisers_CPU/utils.h delete mode 100644 Core/regularisers_GPU/Diffus_4thO_GPU_core.cu delete mode 100644 Core/regularisers_GPU/Diffus_4thO_GPU_core.h delete mode 100644 Core/regularisers_GPU/LLT_ROF_GPU_core.cu delete mode 100644 Core/regularisers_GPU/LLT_ROF_GPU_core.h delete mode 100644 Core/regularisers_GPU/NonlDiff_GPU_core.cu delete mode 100644 Core/regularisers_GPU/NonlDiff_GPU_core.h delete mode 100644 Core/regularisers_GPU/PatchSelect_GPU_core.cu delete mode 100644 Core/regularisers_GPU/PatchSelect_GPU_core.h delete mode 100644 Core/regularisers_GPU/TGV_GPU_core.cu delete mode 100644 Core/regularisers_GPU/TGV_GPU_core.h delete mode 100755 Core/regularisers_GPU/TV_FGP_GPU_core.cu delete mode 100755 Core/regularisers_GPU/TV_FGP_GPU_core.h delete mode 100755 Core/regularisers_GPU/TV_ROF_GPU_core.cu delete mode 100755 Core/regularisers_GPU/TV_ROF_GPU_core.h delete mode 100755 Core/regularisers_GPU/TV_SB_GPU_core.cu delete mode 100755 Core/regularisers_GPU/TV_SB_GPU_core.h delete mode 100644 Core/regularisers_GPU/dTV_FGP_GPU_core.cu delete mode 100644 Core/regularisers_GPU/dTV_FGP_GPU_core.h delete mode 100644 Core/regularisers_GPU/shared.h delete mode 100644 Wrappers/CMakeLists.txt delete mode 100755 Wrappers/Matlab/CMakeLists.txt delete mode 100644 Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m delete mode 100644 Wrappers/Matlab/demos/demoMatlab_denoise.m delete mode 100644 Wrappers/Matlab/demos/demoMatlab_inpaint.m delete mode 100644 Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m delete mode 100644 Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m delete mode 100644 Wrappers/Matlab/mex_compile/compileGPU_mex.m delete mode 100644 Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp delete mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp delete mode 100644 Wrappers/Matlab/supp/RMSE.m delete mode 100644 Wrappers/Matlab/supp/my_red_yellowMAP.mat delete mode 100644 Wrappers/Python/CMakeLists.txt delete mode 100644 Wrappers/Python/ccpi/__init__.py delete mode 100644 Wrappers/Python/ccpi/filters/__init__.py delete mode 100644 Wrappers/Python/ccpi/filters/regularisers.py delete mode 100644 Wrappers/Python/conda-recipe/bld.bat delete mode 100644 Wrappers/Python/conda-recipe/build.sh delete mode 100644 Wrappers/Python/conda-recipe/conda_build_config.yaml delete mode 100644 Wrappers/Python/conda-recipe/meta.yaml delete mode 100755 Wrappers/Python/conda-recipe/run_test.py delete mode 100644 Wrappers/Python/demos/demo_cpu_inpainters.py delete mode 100644 Wrappers/Python/demos/demo_cpu_regularisers.py delete mode 100644 Wrappers/Python/demos/demo_cpu_regularisers3D.py delete mode 100644 Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py delete mode 100644 Wrappers/Python/demos/demo_gpu_regularisers.py delete mode 100644 Wrappers/Python/demos/demo_gpu_regularisers3D.py delete mode 100644 Wrappers/Python/demos/qualitymetrics.py delete mode 100644 Wrappers/Python/setup-regularisers.py.in delete mode 100644 Wrappers/Python/src/cpu_regularisers.pyx delete mode 100644 Wrappers/Python/src/gpu_regularisers.pyx delete mode 100644 data/SinoInpaint.mat delete mode 100644 data/lena_gray_512.tif delete mode 100644 recipes/regularisers/bld.bat delete mode 100644 recipes/regularisers/build.sh delete mode 100644 recipes/regularisers/meta.yaml delete mode 100644 run.sh diff --git a/CMake/FindAnacondaEnvironment.cmake b/CMake/FindAnacondaEnvironment.cmake deleted file mode 100644 index 6475128..0000000 --- a/CMake/FindAnacondaEnvironment.cmake +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright 2017 Edoardo Pasca -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# #.rst: -# FindAnacondaEnvironment -# -------------- -# -# Find Python executable and library for a specific Anaconda environment -# -# This module finds the Python interpreter for a specific Anaconda enviroment, -# if installed and determines where the include files and libraries are. -# This code sets the following variables: -# -# :: -# PYTHONINTERP_FOUND - if the Python interpret has been found -# PYTHON_EXECUTABLE - the Python interpret found -# PYTHON_LIBRARY - path to the python library -# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) -# PYTHON_INCLUDE_DIRS - path to where Python.h is found -# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) -# PYTHON_VERSION_MAJOR - major Python version -# PYTHON_VERSION_MINOR - minor Python version -# PYTHON_VERSION_PATCH - patch Python version - - - -function (findPythonForAnacondaEnvironment env) - if (WIN32) - file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE) - elseif (UNIX) - file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE) - endif() - - - message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE}) - ####### FROM FindPythonInterpr ######## - # determine python version string - if(PYTHON_EXECUTABLE) - execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c - "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))" - OUTPUT_VARIABLE _VERSION - RESULT_VARIABLE _PYTHON_VERSION_RESULT - ERROR_QUIET) - if(NOT _PYTHON_VERSION_RESULT) - string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}") - list(GET _VERSION 0 _PYTHON_VERSION_MAJOR) - list(GET _VERSION 1 _PYTHON_VERSION_MINOR) - list(GET _VERSION 2 _PYTHON_VERSION_PATCH) - if(PYTHON_VERSION_PATCH EQUAL 0) - # it's called "Python 2.7", not "2.7.0" - string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}") - endif() - else() - # sys.version predates sys.version_info, so use that - execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)" - OUTPUT_VARIABLE _VERSION - RESULT_VARIABLE _PYTHON_VERSION_RESULT - ERROR_QUIET) - if(NOT _PYTHON_VERSION_RESULT) - string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}") - string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}") - string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}") - if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)") - set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}") - else() - set(PYTHON_VERSION_PATCH "0") - endif() - else() - # sys.version was first documented for Python 1.5, so assume - # this is older. - set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE) - set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE) - set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE) - set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE) - endif() - endif() - unset(_PYTHON_VERSION_RESULT) - unset(_VERSION) - endif() - ############################################### - - set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE) - set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE) - set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE) - set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE) - set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE) - set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE) - message("My version found " ${PYTHON_VERSION_STRING}) - ## find conda executable - if (WIN32) - set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE) - elseif(UNIX) - set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE) - endif() -endfunction() - - - -set(Python_ADDITIONAL_VERSIONS 3.5) - -find_package(PythonInterp) -if (PYTHONINTERP_FOUND) - - message("Found interpret " ${PYTHON_EXECUTABLE}) - message("Python Library " ${PYTHON_LIBRARY}) - message("Python Include Dir " ${PYTHON_INCLUDE_DIR}) - message("Python Include Path " ${PYTHON_INCLUDE_PATH}) - - foreach(pv ${PYTHON_VERSION_STRING}) - message("Found interpret " ${pv}) - endforeach() -endif() - - - -find_package(PythonLibs) -if (PYTHONLIB_FOUND) - message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES}) - message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH}) - message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS}) - message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} ) -else() - message("No PythonLibs Found") -endif() - - - - -function(findPythonPackagesPath) - execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())" - RESULT_VARIABLE PYTHON_CVPY_PROCESS - OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH - OUTPUT_STRIP_TRAILING_WHITESPACE) - #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH}) - if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages") - set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages") - endif() - - SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE) - -endfunction() - - diff --git a/CMakeLists.txt b/CMakeLists.txt index b95107a..5d3bbbd 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -55,5 +55,5 @@ endif() message(STATUS "Python wrappers will be installed in " ${PYTHON_DEST}) -add_subdirectory(Core) -add_subdirectory(Wrappers) +add_subdirectory(src/Core) +add_subdirectory(src) diff --git a/Core/CCPiDefines.h b/Core/CCPiDefines.h deleted file mode 100644 index d3038f9..0000000 --- a/Core/CCPiDefines.h +++ /dev/null @@ -1,35 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Srikanth Nagella, Edoardo Pasca, Daniil Kazantsev - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - -http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ -#ifndef CCPIDEFINES_H -#define CCPIDEFINES_H - -#if defined(_WIN32) || defined(__WIN32__) - #if defined(CCPiCore_EXPORTS) || defined(CCPiNexusWidget_EXPORTS) || defined(ContourTreeSegmentation_EXPORTS) || defined(ContourTree_EXPORTS)// add by CMake - #define CCPI_EXPORT __declspec(dllexport) - #define EXPIMP_TEMPLATE - #else - #define CCPI_EXPORT __declspec(dllimport) - #define EXPIMP_TEMPLATE extern - #endif /* CCPi_EXPORTS */ -#elif defined(linux) || defined(__linux) || defined(__APPLE__) - #define CCPI_EXPORT -#endif - -#endif diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt deleted file mode 100644 index b3c0dfb..0000000 --- a/Core/CMakeLists.txt +++ /dev/null @@ -1,151 +0,0 @@ -# Copyright 2018 Edoardo Pasca -#cmake_minimum_required (VERSION 3.0) - -project(RGL_core) -#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py - -# The version number. - -set (CIL_VERSION $ENV{CIL_VERSION} CACHE INTERNAL "Core Imaging Library version" FORCE) - -# conda orchestrated build -message("CIL_VERSION ${CIL_VERSION}") -#include (GenerateExportHeader) - - -find_package(OpenMP) -if (OPENMP_FOUND) - set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") - set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}") - set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}") - set (CMAKE_SHARED_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_SHARED_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}") - set (CMAKE_STATIC_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_STATIC_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}") - -endif() - -## Build the regularisers package as a library -message("Creating Regularisers as a shared library") - -message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") -message("CMAKE_C_FLAGS ${CMAKE_C_FLAGS}") -message("CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS}") -message("CMAKE_SHARED_LINKER_FLAGS ${CMAKE_SHARED_LINKER_FLAGS}") -message("CMAKE_STATIC_LINKER_FLAGS ${CMAKE_STATIC_LINKER_FLAGS}") - -set(CMAKE_BUILD_TYPE "Release") - -if(WIN32) - set (FLAGS "/DWIN32 /EHsc /DCCPiCore_EXPORTS /openmp") - set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}") - set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}") - set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /NODEFAULTLIB:MSVCRT.lib") - - set (EXTRA_LIBRARIES) - - message("library lib: ${LIBRARY_LIB}") - -elseif(UNIX) - set (FLAGS "-O2 -funsigned-char -Wall -Wl,--no-undefined -DCCPiReconstructionIterative_EXPORTS ") - set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}") - set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} ${FLAGS}") - - set (EXTRA_LIBRARIES - "gomp" - "m" - ) - -endif() -message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") - -## Build the regularisers package as a library -message("Adding regularisers as a shared library") - -#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc) -#set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp") -#set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC") -add_library(cilreg SHARED - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_TV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/SB_TV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TGV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffusion_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffus4th_order_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/LLT_ROF_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ROF_TV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_dTV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TNV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Nonlocal_TV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/PatchSelect_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/utils.c - ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/Diffusion_Inpaint_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/NonlocalMarching_Inpaint_core.c - ) -target_link_libraries(cilreg ${EXTRA_LIBRARIES} ) -include_directories(cilreg PUBLIC - ${LIBRARY_INC}/include - ${CMAKE_CURRENT_SOURCE_DIR} - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ - ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/ ) - -## Install - -if (UNIX) -message ("I'd install into ${CMAKE_INSTALL_PREFIX}/lib") -install(TARGETS cilreg - LIBRARY DESTINATION lib - CONFIGURATIONS ${CMAKE_BUILD_TYPE} - ) -elseif(WIN32) -message ("I'd install into ${CMAKE_INSTALL_PREFIX} lib bin") - install(TARGETS cilreg - RUNTIME DESTINATION bin - ARCHIVE DESTINATION lib - CONFIGURATIONS ${CMAKE_BUILD_TYPE} - ) -endif() - - - -# GPU Regularisers -if (BUILD_CUDA) - find_package(CUDA) - if (CUDA_FOUND) - set(CUDA_NVCC_FLAGS "-Xcompiler -fPIC -shared -D_FORCE_INLINES") - message("CUDA FLAGS ${CUDA_NVCC_FLAGS}") - CUDA_ADD_LIBRARY(cilregcuda SHARED - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_ROF_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_FGP_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TV_SB_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/LLT_ROF_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/TGV_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/dTV_FGP_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/NonlDiff_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/Diffus_4thO_GPU_core.cu - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_GPU/PatchSelect_GPU_core.cu - ) - if (UNIX) - message ("I'd install into ${CMAKE_INSTALL_PREFIX}/lib") - install(TARGETS cilregcuda - LIBRARY DESTINATION lib - CONFIGURATIONS ${CMAKE_BUILD_TYPE} - ) - elseif(WIN32) - message ("I'd install into ${CMAKE_INSTALL_PREFIX} lib bin") - install(TARGETS cilregcuda - RUNTIME DESTINATION bin - ARCHIVE DESTINATION lib - CONFIGURATIONS ${CMAKE_BUILD_TYPE} - ) - endif() - else() - message("CUDA NOT FOUND") - endif() -endif() - -if (${BUILD_MATLAB_WRAPPER}) - if (WIN32) - install(TARGETS cilreg DESTINATION ${MATLAB_DEST}) - if (CUDA_FOUND) - install(TARGETS cilregcuda DESTINATION ${MATLAB_DEST}) - endif() - endif() -endif() diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.c b/Core/inpainters_CPU/Diffusion_Inpaint_core.c deleted file mode 100644 index 08b168a..0000000 --- a/Core/inpainters_CPU/Diffusion_Inpaint_core.c +++ /dev/null @@ -1,322 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "Diffusion_Inpaint_core.h" -#include "utils.h" - -/*sign function*/ -int signNDF_inc(float x) { - return (x > 0) - (x < 0); -} - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Image/volume to inpaint - * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. lambda - regularization parameter - * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 5. Number of iterations, for explicit scheme >= 150 is recommended - * 6. tau - time-marching step for explicit scheme - * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Inpainted image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ) -{ - long i, pointsone; - float sigmaPar2; - sigmaPar2 = sigmaPar/sqrt(2.0f); - - /* copy into output */ - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); - - pointsone = 0; - for (i=0; i 0) { - /*inpainting process*/ - e = Output[j*dimX+i1]; - w = Output[j*dimX+i2]; - n = Output[j1*dimX+i]; - s = Output[j2*dimX+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); - } - }} - return *Output; -} - -/* nonlinear diffusion */ -float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY) -{ - long i,j,i1,i2,j1,j2,index; - float e,w,n,s,e1,w1,n1,s1; - -#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1) - for(i=0; i 0) { - /*inpainting process*/ - e = Output[j*dimX+i1]; - w = Output[j*dimX+i2]; - n = Output[j1*dimX+i]; - s = Output[j2*dimX+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - - if (penaltytype == 1){ - /* Huber penalty */ - if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1); - else e1 = e1/sigmaPar; - - if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1); - else w1 = w1/sigmaPar; - - if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1); - else n1 = n1/sigmaPar; - - if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1); - else s1 = s1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - } - else { - printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - break; - } - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); - } - }} - return *Output; -} -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ -/* linear diffusion (heat equation) */ -float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ) -{ - long i,j,k,i1,i2,j1,j2,k1,k2,index; - float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; - -#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d) -for(k=0; k 0) { - /*inpainting process*/ - - e = Output[(dimX*dimY)*k + j*dimX+i1]; - w = Output[(dimX*dimY)*k + j*dimX+i2]; - n = Output[(dimX*dimY)*k + j1*dimX+i]; - s = Output[(dimX*dimY)*k + j2*dimX+i]; - u = Output[(dimX*dimY)*k1 + j*dimX+i]; - d = Output[(dimX*dimY)*k2 + j*dimX+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - u1 = u - Output[index]; - d1 = d - Output[index]; - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); - } - }}} - return *Output; -} - -float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ) -{ - long i,j,k,i1,i2,j1,j2,k1,k2,index; - float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; - -#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d) -for(k=0; k 0) { - /*inpainting process*/ - e = Output[(dimX*dimY)*k + j*dimX+i1]; - w = Output[(dimX*dimY)*k + j*dimX+i2]; - n = Output[(dimX*dimY)*k + j1*dimX+i]; - s = Output[(dimX*dimY)*k + j2*dimX+i]; - u = Output[(dimX*dimY)*k1 + j*dimX+i]; - d = Output[(dimX*dimY)*k2 + j*dimX+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - u1 = u - Output[index]; - d1 = d - Output[index]; - - if (penaltytype == 1){ - /* Huber penalty */ - if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1); - else e1 = e1/sigmaPar; - - if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1); - else w1 = w1/sigmaPar; - - if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1); - else n1 = n1/sigmaPar; - - if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1); - else s1 = s1/sigmaPar; - - if (fabs(u1) > sigmaPar) u1 = signNDF_inc(u1); - else u1 = u1/sigmaPar; - - if (fabs(d1) > sigmaPar) d1 = signNDF_inc(d1); - else d1 = d1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); - u1 = (u1)/(1.0f + powf((u1/sigmaPar),2)); - d1 = (d1)/(1.0f + powf((d1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - if (fabs(u1) <= sigmaPar) u1 = u1*powf((1.0f - powf((u1/sigmaPar),2)), 2); - else u1 = 0.0f; - if (fabs(d1) <= sigmaPar) d1 = d1*powf((1.0f - powf((d1/sigmaPar),2)), 2); - else d1 = 0.0f; - } - else { - printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - break; - } - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); - } - }}} - return *Output; -} diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.h b/Core/inpainters_CPU/Diffusion_Inpaint_core.h deleted file mode 100644 index a96fe79..0000000 --- a/Core/inpainters_CPU/Diffusion_Inpaint_core.h +++ /dev/null @@ -1,61 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Image/volume to inpaint - * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. lambda - regularization parameter - * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 5. Number of iterations, for explicit scheme >= 150 is recommended - * 6. tau - time-marching step for explicit scheme - * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Inpainted image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float LinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY); -CCPI_EXPORT float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY); -CCPI_EXPORT float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ); -CCPI_EXPORT float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c deleted file mode 100644 index b488ca4..0000000 --- a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c +++ /dev/null @@ -1,188 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "NonlocalMarching_Inpaint_core.h" -#include "utils.h" - - -/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) - * The method is heuristic but computationally efficent (especially for larger images). - * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms - * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data - * - * Input: - * 1. 2D image or sinogram with horizontal or inclined regions of missing data - * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice - * - * Output: - * 1. Inpainted image or a sinogram - * 2. updated mask - * - * Reference: D. Kazantsev (paper in preparation) - */ - -float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ) -{ - int i, j, i_m, j_m, counter, iter, iterations_number, W_fullsize, switchmask, switchcurr, counterElements; - float *Gauss_weights; - - /* copying M to M_upd */ - copyIm_unchar(M, M_upd, dimX, dimY, 1); - - /* Copying the image */ - copyIm(Input, Output, dimX, dimY, 1); - - /* Find how many inpainting iterations (equal to the number of ones) required based on a mask */ - if (iterationsNumb == 0) { - iterations_number = 0; - for (i=0; i dimX) iterations_number = dimX; - } - else iterations_number = iterationsNumb; - - if (iterations_number == 0) printf("%s \n", "Nothing to inpaint, zero mask!"); - else { - - printf("%s %i \n", "Max iteration number equals to:", iterations_number); - - /* Inpainting iterations run here*/ - int W_halfsize = 1; - for(iter=0; iter < iterations_number; iter++) { - - //if (mod (iter, 2) == 0) {W_halfsize += 1;} - // printf("%i \n", W_halfsize); - - /* pre-calculation of Gaussian distance weights */ - W_fullsize = (int)(2*W_halfsize + 1); /*full size of similarity window */ - Gauss_weights = (float*)calloc(W_fullsize*W_fullsize,sizeof(float )); - counter = 0; - for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) { - for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) { - Gauss_weights[counter] = exp(-(pow((i_m), 2) + pow((j_m), 2))/(2*W_halfsize*W_halfsize)); - counter++; - } - } - - if (trigger == 0) { - /*Matlab*/ -#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr) - for(j=0; j= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - if (M_upd[j1*dimX + i1] == 0) { - sumweight += Gauss_weights[counter]; - } - } - counter++; - } - } - counter = 0; sum_val = 0.0f; - for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) { - i1 = i+i_m; - for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) { - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - if ((M_upd[j1*dimX + i1] == 0) && (sumweight != 0.0f)) { - /* we have data so add it with Euc weight */ - sum_val += (Gauss_weights[counter]/sumweight)*U[j1*dimX + i1]; - } - } - counter++; - } - } - U[j*dimX + i] = sum_val; - return *U; -} - diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h deleted file mode 100644 index 0f99ed4..0000000 --- a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h +++ /dev/null @@ -1,54 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - - -/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) - * The method is heuristic but computationally efficent (especially for larger images). - * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms - * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data - * - * Inputs: - * 1. 2D image or sinogram with horizontal or inclined regions of missing data - * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice - - * Output: - * 1. Inpainted image or a sinogram - * 2. updated mask - * - * Reference: TBA - */ - - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ); -CCPI_EXPORT float inpaint_func(float *U, unsigned char *M_upd, float *Gauss_weights, int i, int j, int dimX, int dimY, int W_halfsize, int W_fullsize); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/Diffus4th_order_core.c b/Core/regularisers_CPU/Diffus4th_order_core.c deleted file mode 100644 index 01f4f64..0000000 --- a/Core/regularisers_CPU/Diffus4th_order_core.c +++ /dev/null @@ -1,250 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "Diffus4th_order_core.h" -#include "utils.h" - -#define EPS 1.0e-7 - -/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma) - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for the explicit scheme - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ) -{ - int i,DimTotal; - float sigmaPar2; - float *W_Lapl=NULL; - sigmaPar2 = sigmaPar*sigmaPar; - DimTotal = dimX*dimY*dimZ; - - W_Lapl = calloc(DimTotal, sizeof(float)); - - /* copy into output */ - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); - - if (dimZ == 1) { - /* running 2D diffusion iterations */ - for(i=0; i < iterationsNumb; i++) { - /* Calculating weighted Laplacian */ - Weighted_Laplc2D(W_Lapl, Output, sigmaPar2, dimX, dimY); - /* Perform iteration step */ - Diffusion_update_step2D(Output, Input, W_Lapl, lambdaPar, sigmaPar2, tau, (long)(dimX), (long)(dimY)); - } - } - else { - /* running 3D diffusion iterations */ - for(i=0; i < iterationsNumb; i++) { - /* Calculating weighted Laplacian */ - Weighted_Laplc3D(W_Lapl, Output, sigmaPar2, dimX, dimY, dimZ); - /* Perform iteration step */ - Diffusion_update_step3D(Output, Input, W_Lapl, lambdaPar, sigmaPar2, tau, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - } - free(W_Lapl); - return *Output; -} -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -float Weighted_Laplc2D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY) -{ - long i,j,i1,i2,j1,j2,index; - float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq; - - #pragma omp parallel for shared(W_Lapl) private(i,j,i1,i2,j1,j2,index,gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq) - for(i=0; i -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma) - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -CCPI_EXPORT float Weighted_Laplc2D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY); -CCPI_EXPORT float Diffusion_update_step2D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY); -CCPI_EXPORT float Weighted_Laplc3D(float *W_Lapl, float *U0, float sigma, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Diffusion_update_step3D(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/Diffusion_core.c b/Core/regularisers_CPU/Diffusion_core.c deleted file mode 100644 index b765796..0000000 --- a/Core/regularisers_CPU/Diffusion_core.c +++ /dev/null @@ -1,307 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "Diffusion_core.h" -#include "utils.h" - -#define EPS 1.0e-5 -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -/*sign function*/ -int signNDFc(float x) { - return (x > 0) - (x < 0); -} - -/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ) -{ - int i; - float sigmaPar2; - sigmaPar2 = sigmaPar/sqrt(2.0f); - - /* copy into output */ - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); - - if (dimZ == 1) { - /* running 2D diffusion iterations */ - for(i=0; i < iterationsNumb; i++) { - if (sigmaPar == 0.0f) LinearDiff2D(Input, Output, lambdaPar, tau, (long)(dimX), (long)(dimY)); /* linear diffusion (heat equation) */ - else NonLinearDiff2D(Input, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY)); /* nonlinear diffusion */ - } - } - else { - /* running 3D diffusion iterations */ - for(i=0; i < iterationsNumb; i++) { - if (sigmaPar == 0.0f) LinearDiff3D(Input, Output, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ)); - else NonLinearDiff3D(Input, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - } - return *Output; -} - - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -/* linear diffusion (heat equation) */ -float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY) -{ - long i,j,i1,i2,j1,j2,index; - float e,w,n,s,e1,w1,n1,s1; - -#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1) - for(i=0; i sigmaPar) e1 = signNDFc(e1); - else e1 = e1/sigmaPar; - - if (fabs(w1) > sigmaPar) w1 = signNDFc(w1); - else w1 = w1/sigmaPar; - - if (fabs(n1) > sigmaPar) n1 = signNDFc(n1); - else n1 = n1/sigmaPar; - - if (fabs(s1) > sigmaPar) s1 = signNDFc(s1); - else s1 = s1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - } - else { - printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - break; - } - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); - }} - return *Output; -} -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ -/* linear diffusion (heat equation) */ -float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ) -{ - long i,j,k,i1,i2,j1,j2,k1,k2,index; - float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; - -#pragma omp parallel for shared(Input) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d) -for(k=0; k sigmaPar) e1 = signNDFc(e1); - else e1 = e1/sigmaPar; - - if (fabs(w1) > sigmaPar) w1 = signNDFc(w1); - else w1 = w1/sigmaPar; - - if (fabs(n1) > sigmaPar) n1 = signNDFc(n1); - else n1 = n1/sigmaPar; - - if (fabs(s1) > sigmaPar) s1 = signNDFc(s1); - else s1 = s1/sigmaPar; - - if (fabs(u1) > sigmaPar) u1 = signNDFc(u1); - else u1 = u1/sigmaPar; - - if (fabs(d1) > sigmaPar) d1 = signNDFc(d1); - else d1 = d1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); - u1 = (u1)/(1.0f + powf((u1/sigmaPar),2)); - d1 = (d1)/(1.0f + powf((d1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - if (fabs(u1) <= sigmaPar) u1 = u1*powf((1.0f - powf((u1/sigmaPar),2)), 2); - else u1 = 0.0f; - if (fabs(d1) <= sigmaPar) d1 = d1*powf((1.0f - powf((d1/sigmaPar),2)), 2); - else d1 = 0.0f; - } - else { - printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - break; - } - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); - }}} - return *Output; -} diff --git a/Core/regularisers_CPU/Diffusion_core.h b/Core/regularisers_CPU/Diffusion_core.h deleted file mode 100644 index cc36dad..0000000 --- a/Core/regularisers_CPU/Diffusion_core.h +++ /dev/null @@ -1,59 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - - -/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); -CCPI_EXPORT float LinearDiff2D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY); -CCPI_EXPORT float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY); -CCPI_EXPORT float LinearDiff3D(float *Input, float *Output, float lambdaPar, float tau, long dimX, long dimY, long dimZ); -CCPI_EXPORT float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/FGP_TV_core.c b/Core/regularisers_CPU/FGP_TV_core.c deleted file mode 100644 index 68d58b7..0000000 --- a/Core/regularisers_CPU/FGP_TV_core.c +++ /dev/null @@ -1,321 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - -float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ) -{ - int ll; - long j, DimTotal; - float re, re1; - float tk = 1.0f; - float tkp1=1.0f; - int count = 0; - - if (dimZ <= 1) { - /*2D case */ - float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL; - DimTotal = (long)(dimX*dimY); - - Output_prev = calloc(DimTotal, sizeof(float)); - P1 = calloc(DimTotal, sizeof(float)); - P2 = calloc(DimTotal, sizeof(float)); - P1_prev = calloc(DimTotal, sizeof(float)); - P2_prev = calloc(DimTotal, sizeof(float)); - R1 = calloc(DimTotal, sizeof(float)); - R2 = calloc(DimTotal, sizeof(float)); - - /* begin iterations */ - for(ll=0; ll 4) break; - - /*storing old values*/ - copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l); - copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), 1l); - copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), 1l); - tk = tkp1; - } - if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(P1); free(P2); free(P1_prev); free(P2_prev); free(R1); free(R2); - } - else { - /*3D case*/ - float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL; - DimTotal = (long)(dimX*dimY*dimZ); - - Output_prev = calloc(DimTotal, sizeof(float)); - P1 = calloc(DimTotal, sizeof(float)); - P2 = calloc(DimTotal, sizeof(float)); - P3 = calloc(DimTotal, sizeof(float)); - P1_prev = calloc(DimTotal, sizeof(float)); - P2_prev = calloc(DimTotal, sizeof(float)); - P3_prev = calloc(DimTotal, sizeof(float)); - R1 = calloc(DimTotal, sizeof(float)); - R2 = calloc(DimTotal, sizeof(float)); - R3 = calloc(DimTotal, sizeof(float)); - - /* begin iterations */ - for(ll=0; ll 4) break; - - /*storing old values*/ - copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P3, P3_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - tk = tkp1; - } - if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(P1); free(P2); free(P3); free(P1_prev); free(P2_prev); free(P3_prev); free(R1); free(R2); free(R3); - } - return *Output; -} - -float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY) -{ - float val1, val2; - long i,j,index; -#pragma omp parallel for shared(A,D,R1,R2) private(index,i,j,val1,val2) - for(i=0; i 1.0f) { - sq_denom = 1.0f/sqrtf(denom); - P1[i] = P1[i]*sq_denom; - P2[i] = P2[i]*sq_denom; - } - } - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,val1,val2) - for(i=0; i 1.0f) { - sq_denom = 1.0f/sqrtf(denom); - P1[i] = P1[i]*sq_denom; - P2[i] = P2[i]*sq_denom; - P3[i] = P3[i]*sq_denom; - } - } - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3) - for(i=0; i -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY); -CCPI_EXPORT float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, long dimX, long dimY); -CCPI_EXPORT float Proj_func2D(float *P1, float *P2, int methTV, long DimTotal); -CCPI_EXPORT float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal); - -CCPI_EXPORT float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Proj_func3D(float *P1, float *P2, float *P3, int methTV, long DimTotal); -CCPI_EXPORT float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/FGP_dTV_core.c b/Core/regularisers_CPU/FGP_dTV_core.c deleted file mode 100644 index 17b75ff..0000000 --- a/Core/regularisers_CPU/FGP_dTV_core.c +++ /dev/null @@ -1,441 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "FGP_dTV_core.h" - -/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ - -float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ) -{ - int ll; - long j, DimTotal; - float re, re1; - float tk = 1.0f; - float tkp1=1.0f; - int count = 0; - - if (dimZ <= 1) { - /*2D case */ - float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL, *InputRef_x=NULL, *InputRef_y=NULL; - DimTotal = (long)(dimX*dimY); - - Output_prev = calloc(DimTotal, sizeof(float)); - P1 = calloc(DimTotal, sizeof(float)); - P2 = calloc(DimTotal, sizeof(float)); - P1_prev = calloc(DimTotal, sizeof(float)); - P2_prev = calloc(DimTotal, sizeof(float)); - R1 = calloc(DimTotal, sizeof(float)); - R2 = calloc(DimTotal, sizeof(float)); - InputRef_x = calloc(DimTotal, sizeof(float)); - InputRef_y = calloc(DimTotal, sizeof(float)); - - /* calculate gradient field (smoothed) for the reference image */ - GradNorm_func2D(InputRef, InputRef_x, InputRef_y, eta, (long)(dimX), (long)(dimY)); - - /* begin iterations */ - for(ll=0; ll 4) break; - - /*storing old values*/ - copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l); - copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), 1l); - copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), 1l); - tk = tkp1; - } - if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(P1); free(P2); free(P1_prev); free(P2_prev); free(R1); free(R2); free(InputRef_x); free(InputRef_y); - } - else { - /*3D case*/ - float *Output_prev=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *InputRef_z=NULL; - DimTotal = (long)(dimX*dimY*dimZ); - - Output_prev = calloc(DimTotal, sizeof(float)); - P1 = calloc(DimTotal, sizeof(float)); - P2 = calloc(DimTotal, sizeof(float)); - P3 = calloc(DimTotal, sizeof(float)); - P1_prev = calloc(DimTotal, sizeof(float)); - P2_prev = calloc(DimTotal, sizeof(float)); - P3_prev = calloc(DimTotal, sizeof(float)); - R1 = calloc(DimTotal, sizeof(float)); - R2 = calloc(DimTotal, sizeof(float)); - R3 = calloc(DimTotal, sizeof(float)); - InputRef_x = calloc(DimTotal, sizeof(float)); - InputRef_y = calloc(DimTotal, sizeof(float)); - InputRef_z = calloc(DimTotal, sizeof(float)); - - /* calculate gradient field (smoothed) for the reference volume */ - GradNorm_func3D(InputRef, InputRef_x, InputRef_y, InputRef_z, eta, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /* begin iterations */ - for(ll=0; ll 4) break; - - /*storing old values*/ - copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(P3, P3_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - tk = tkp1; - } - if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(P1); free(P2); free(P3); free(P1_prev); free(P2_prev); free(P3_prev); free(R1); free(R2); free(R3); free(InputRef_x); free(InputRef_y); free(InputRef_z); - } - return *Output; -} - - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ - -float GradNorm_func2D(float *B, float *B_x, float *B_y, float eta, long dimX, long dimY) -{ - long i,j,index; - float val1, val2, gradX, gradY, magn; -#pragma omp parallel for shared(B, B_x, B_y) private(i,j,index,val1,val2,gradX,gradY,magn) - for(i=0; i 1.0f) { - sq_denom = 1.0f/sqrtf(denom); - P1[i] = P1[i]*sq_denom; - P2[i] = P2[i]*sq_denom; - } - } - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,val1,val2) - for(i=0; i 1.0f) { - sq_denom = 1.0f/sqrtf(denom); - P1[i] = P1[i]*sq_denom; - P2[i] = P2[i]*sq_denom; - P3[i] = P3[i]*sq_denom; - } - } - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2,P3) private(i,val1,val2,val3) - for(i=0; i -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float GradNorm_func2D(float *B, float *B_x, float *B_y, float eta, long dimX, long dimY); -CCPI_EXPORT float ProjectVect_func2D(float *R1, float *R2, float *B_x, float *B_y, long dimX, long dimY); -CCPI_EXPORT float Obj_dfunc2D(float *A, float *D, float *R1, float *R2, float lambda, long dimX, long dimY); -CCPI_EXPORT float Grad_dfunc2D(float *P1, float *P2, float *D, float *R1, float *R2, float *B_x, float *B_y, float lambda, long dimX, long dimY); -CCPI_EXPORT float Proj_dfunc2D(float *P1, float *P2, int methTV, long DimTotal); -CCPI_EXPORT float Rupd_dfunc2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, long DimTotal); - -CCPI_EXPORT float GradNorm_func3D(float *B, float *B_x, float *B_y, float *B_z, float eta, long dimX, long dimY, long dimZ); -CCPI_EXPORT float ProjectVect_func3D(float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Obj_dfunc3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Grad_dfunc3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float *B_x, float *B_y, float *B_z, float lambda, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Proj_dfunc3D(float *P1, float *P2, float *P3, int methTV, long DimTotal); -CCPI_EXPORT float Rupd_dfunc3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, long DimTotal); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/LLT_ROF_core.c b/Core/regularisers_CPU/LLT_ROF_core.c deleted file mode 100644 index 8416a14..0000000 --- a/Core/regularisers_CPU/LLT_ROF_core.c +++ /dev/null @@ -1,410 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "LLT_ROF_core.h" -#define EPS_LLT 0.01 -#define EPS_ROF 1.0e-12 -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -/*sign function*/ -int signLLT(float x) { - return (x > 0) - (x < 0); -} - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. - * -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ) -{ - long DimTotal; - int ll; - float *D1_LLT=NULL, *D2_LLT=NULL, *D3_LLT=NULL, *D1_ROF=NULL, *D2_ROF=NULL, *D3_ROF=NULL; - - DimTotal = (long)(dimX*dimY*dimZ); - - D1_ROF = calloc(DimTotal, sizeof(float)); - D2_ROF = calloc(DimTotal, sizeof(float)); - D3_ROF = calloc(DimTotal, sizeof(float)); - - D1_LLT = calloc(DimTotal, sizeof(float)); - D2_LLT = calloc(DimTotal, sizeof(float)); - D3_LLT = calloc(DimTotal, sizeof(float)); - - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize */ - - for(ll = 0; ll < iterationsNumb; ll++) { - if (dimZ == 1) { - /* 2D case */ - /****************ROF******************/ - /* calculate first-order differences */ - D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), 1l); - D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), 1l); - /****************LLT******************/ - /* estimate second-order derrivatives */ - der2D_LLT(Output, D1_LLT, D2_LLT, (long)(dimX), (long)(dimY), 1l); - /* Joint update for ROF and LLT models */ - Update2D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D1_ROF, D2_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), 1l); - } - else { - /* 3D case */ - /* calculate first-order differences */ - D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), (long)(dimZ)); - D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), (long)(dimZ)); - D3_func_ROF(Output, D3_ROF, (long)(dimX), (long)(dimY), (long)(dimZ)); - /****************LLT******************/ - /* estimate second-order derrivatives */ - der3D_LLT(Output, D1_LLT, D2_LLT, D3_LLT,(long)(dimX), (long)(dimY), (long)(dimZ)); - /* Joint update for ROF and LLT models */ - Update3D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D3_LLT, D1_ROF, D2_ROF, D3_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - } /*end of iterations*/ - free(D1_LLT);free(D2_LLT);free(D3_LLT); - free(D1_ROF);free(D2_ROF);free(D3_ROF); - return *Output; -} - -/*************************************************************************/ -/**********************LLT-related functions *****************************/ -/*************************************************************************/ -float der2D_LLT(float *U, float *D1, float *D2, long dimX, long dimY, long dimZ) -{ - long i, j, index, i_p, i_m, j_m, j_p; - float dxx, dyy, denom_xx, denom_yy; -#pragma omp parallel for shared(U,D1,D2) private(i, j, index, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy) - for (i = 0; i 1) { -#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + j*dimX + i1] - A[index]; /* y+ */ - /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ - NOMy_0 = A[index] - A[(dimX*dimY)*k + j*dimX + i2]; /* y- */ - - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - NOMz_0 = A[index] - A[(dimX*dimY)*k2 + j*dimX + i]; /* z- */ - - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); - denom3 = denom3*denom3; - T1 = sqrt(denom1 + denom2 + denom3 + EPS_ROF); - D1[index] = NOMx_1/T1; - }}} - } - else { -#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1,index) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */ - /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ - NOMy_0 = A[index] - A[(j)*dimX + i2]; /* y- */ - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom2 = denom2*denom2; - T1 = sqrtf(denom1 + denom2 + EPS_ROF); - D1[index] = NOMx_1/T1; - }} - } - return *D1; -} -/* calculate differences 2 */ -float D2_func_ROF(float *A, float *D2, long dimX, long dimY, long dimZ) -{ - float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2; - long i,j,k,i1,i2,k1,j1,j2,k2,index; - - if (dimZ > 1) { -#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */ - NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - NOMz_0 = A[index] - A[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */ - - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); - denom3 = denom3*denom3; - T2 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF); - D2[index] = NOMy_1/T2; - }}} - } - else { -#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2,index) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */ - NOMx_0 = A[index] - A[j2*dimX + i]; /* x- */ - /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */ /* y- */ - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - T2 = sqrtf(denom1 + denom2 + EPS_ROF); - D2[index] = NOMy_1/T2; - }} - } - return *D2; -} - -/* calculate differences 3 */ -float D3_func_ROF(float *A, float *D3, long dimX, long dimY, long dimZ) -{ - float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3; - long index,i,j,k,i1,i2,k1,j1,j2,k2; - -#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */ - NOMy_0 = A[index] - A[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */ - NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */ - - denom1 = NOMz_1*NOMz_1; - denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom3 = denom3*denom3; - T3 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF); - D3[index] = NOMz_1/T3; - }}} - return *D3; -} - -/*************************************************************************/ -/**********************ROF-LLT-related functions *************************/ -/*************************************************************************/ - -float Update2D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ) -{ - long i, j, index, i_p, i_m, j_m, j_p; - float div, laplc, dxx, dyy, dv1, dv2; -#pragma omp parallel for shared(U,U0) private(i, j, index, i_p, i_m, j_m, j_p, laplc, div, dxx, dyy, dv1, dv2) - for (i = 0; i -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. - * -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float der2D_LLT(float *U, float *D1, float *D2, long dimX, long dimY, long dimZ); -CCPI_EXPORT float der3D_LLT(float *U, float *D1, float *D2, float *D3, long dimX, long dimY, long dimZ); - -CCPI_EXPORT float D1_func_ROF(float *A, float *D1, long dimX, long dimY, long dimZ); -CCPI_EXPORT float D2_func_ROF(float *A, float *D2, long dimX, long dimY, long dimZ); -CCPI_EXPORT float D3_func_ROF(float *A, float *D3, long dimX, long dimY, long dimZ); - -CCPI_EXPORT float Update2D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ); -CCPI_EXPORT float Update3D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/Nonlocal_TV_core.c b/Core/regularisers_CPU/Nonlocal_TV_core.c deleted file mode 100644 index c4c9118..0000000 --- a/Core/regularisers_CPU/Nonlocal_TV_core.c +++ /dev/null @@ -1,173 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "Nonlocal_TV_core.h" - -/* C-OMP implementation of non-local regulariser - * Weights and associated indices must be given as an input. - * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort - * goes in pre-calculation of weights and selection of patches - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. AR_i - indeces of i neighbours - * 3. AR_j - indeces of j neighbours - * 4. AR_k - indeces of k neighbours (0 - for 2D case) - * 5. Weights_ij(k) - associated weights - * 6. regularisation parameter - * 7. iterations number - - * Output: - * 1. denoised image/volume - * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060. - - */ -/*****************************************************************************/ - -float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb) -{ - - long i, j, k; - int iter; - lambdaReg = 1.0f/lambdaReg; - - /*****2D INPUT *****/ - if (dimZ == 0) { - copyIm(A_orig, Output, (long)(dimX), (long)(dimY), 1l); - /* for each pixel store indeces of the most similar neighbours (patches) */ - for(iter=0; iter>>>**********/ -float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg) -{ - long x, i1, j1, index, index_m; - float value = 0.0f, normweight = 0.0f; - - index_m = j*dimX+i; - for(x=0; x < NumNeighb; x++) { - index = (dimX*dimY*x) + j*dimX+i; - i1 = H_i[index]; - j1 = H_j[index]; - value += A[j1*dimX+i1]*Weights[index]; - normweight += Weights[index]; - } - A[index_m] = (lambdaReg*A_orig[index_m] + value)/(lambdaReg + normweight); - return *A; -} -/*3D version*/ -float NLM_H1_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg) -{ - long x, i1, j1, k1, index; - float value = 0.0f, normweight = 0.0f; - - for(x=0; x < NumNeighb; x++) { - index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i; - i1 = H_i[index]; - j1 = H_j[index]; - k1 = H_k[index]; - value += A[(dimX*dimY*k1) + j1*dimX+i1]*Weights[index]; - normweight += Weights[index]; - } - A[(dimX*dimY*k) + j*dimX+i] = (lambdaReg*A_orig[(dimX*dimY*k) + j*dimX+i] + value)/(lambdaReg + normweight); - return *A; -} - - -/***********<<<
>>>**********/ -float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg) -{ - long x, i1, j1, index, index_m; - float value = 0.0f, normweight = 0.0f, NLgrad_magn = 0.0f, NLCoeff; - - index_m = j*dimX+i; - - for(x=0; x < NumNeighb; x++) { - index = (dimX*dimY*x) + j*dimX+i; /*c*/ - i1 = H_i[index]; - j1 = H_j[index]; - NLgrad_magn += powf((A[j1*dimX+i1] - A[index_m]),2)*Weights[index]; - } - - NLgrad_magn = sqrtf(NLgrad_magn); /*Non Local Gradients Magnitude */ - NLCoeff = 2.0f*(1.0f/(NLgrad_magn + EPS)); - - for(x=0; x < NumNeighb; x++) { - index = (dimX*dimY*x) + j*dimX+i; /*c*/ - i1 = H_i[index]; - j1 = H_j[index]; - value += A[j1*dimX+i1]*NLCoeff*Weights[index]; - normweight += Weights[index]*NLCoeff; - } - A[index_m] = (lambdaReg*A_orig[index_m] + value)/(lambdaReg + normweight); - return *A; -} -/*3D version*/ -float NLM_TV_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg) -{ - long x, i1, j1, k1, index; - float value = 0.0f, normweight = 0.0f, NLgrad_magn = 0.0f, NLCoeff; - - for(x=0; x < NumNeighb; x++) { - index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i; - i1 = H_i[index]; - j1 = H_j[index]; - k1 = H_k[index]; - NLgrad_magn += powf((A[(dimX*dimY*k1) + j1*dimX+i1] - A[(dimX*dimY*k1) + j*dimX+i]),2)*Weights[index]; - } - - NLgrad_magn = sqrtf(NLgrad_magn); /*Non Local Gradients Magnitude */ - NLCoeff = 2.0f*(1.0f/(NLgrad_magn + EPS)); - - for(x=0; x < NumNeighb; x++) { - index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i; - i1 = H_i[index]; - j1 = H_j[index]; - k1 = H_k[index]; - value += A[(dimX*dimY*k1) + j1*dimX+i1]*NLCoeff*Weights[index]; - normweight += Weights[index]*NLCoeff; - } - A[(dimX*dimY*k) + j*dimX+i] = (lambdaReg*A_orig[(dimX*dimY*k) + j*dimX+i] + value)/(lambdaReg + normweight); - return *A; -} diff --git a/Core/regularisers_CPU/Nonlocal_TV_core.h b/Core/regularisers_CPU/Nonlocal_TV_core.h deleted file mode 100644 index 6d55101..0000000 --- a/Core/regularisers_CPU/Nonlocal_TV_core.h +++ /dev/null @@ -1,61 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -#define EPS 1.0000e-9 - -/* C-OMP implementation of non-local regulariser - * Weights and associated indices must be given as an input. - * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort - * goes in pre-calculation of weights and selection of patches - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. AR_i - indeces of i neighbours - * 3. AR_j - indeces of j neighbours - * 4. AR_k - indeces of k neighbours (0 - for 2D case) - * 5. Weights_ij(k) - associated weights - * 6. regularisation parameter - * 7. iterations number - - * Output: - * 1. denoised image/volume - * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060. - */ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb); -CCPI_EXPORT float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg); -CCPI_EXPORT float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, int NumNeighb, float lambdaReg); -CCPI_EXPORT float NLM_H1_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg); -CCPI_EXPORT float NLM_TV_3D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimX, long dimY, long dimZ, int NumNeighb, float lambdaReg); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/PatchSelect_core.c b/Core/regularisers_CPU/PatchSelect_core.c deleted file mode 100644 index cf5cdc7..0000000 --- a/Core/regularisers_CPU/PatchSelect_core.c +++ /dev/null @@ -1,345 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "PatchSelect_core.h" - -/* C-OMP implementation of non-local weight pre-calculation for non-local priors - * Weights and associated indices are stored into pre-allocated arrays and passed - * to the regulariser - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. Searching window (half-size of the main bigger searching window, e.g. 11) - * 3. Similarity window (half-size of the patch window, e.g. 2) - * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) - * 5. noise-related parameter to calculate non-local weights - * - * Output [2D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. Weights_ij - associated weights - * - * Output [3D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. AR_k - indeces of j neighbours - * 4. Weights_ijk - associated weights - */ - -void swap(float *xp, float *yp) -{ - float temp = *xp; - *xp = *yp; - *yp = temp; -} - -void swapUS(unsigned short *xp, unsigned short *yp) -{ - unsigned short temp = *xp; - *xp = *yp; - *yp = temp; -} -/**************************************************/ - -float PatchSelect_CPU_main(float *A, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM) -{ - int counterG; - long i, j, k; - float *Eucl_Vec, h2; - h2 = h*h; - /****************2D INPUT ***************/ - if (dimZ == 0) { - /* generate a 2D Gaussian kernel for NLM procedure */ - Eucl_Vec = (float*) calloc ((2*SimilarWin+1)*(2*SimilarWin+1),sizeof(float)); - counterG = 0; - for(i=-SimilarWin; i<=SimilarWin; i++) { - for(j=-SimilarWin; j<=SimilarWin; j++) { - Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2))/(2*SimilarWin*SimilarWin)); - counterG++; - }} /*main neighb loop */ - /* for each pixel store indeces of the most similar neighbours (patches) */ - if (switchM == 1) { -#pragma omp parallel for shared (A, Weights, H_i, H_j) private(i,j) - for(i=0; i<(long)(dimX); i++) { - for(j=0; j<(long)(dimY); j++) { - Indeces2D_p(A, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2); - }} - } - else { -#pragma omp parallel for shared (A, Weights, H_i, H_j) private(i,j) - for(i=0; i<(long)(dimX); i++) { - for(j=0; j<(long)(dimY); j++) { - Indeces2D(A, H_i, H_j, Weights, i, j, (long)(dimX), (long)(dimY), Eucl_Vec, NumNeighb, SearchWindow, SimilarWin, h2); - }} - } - } - else { - /****************3D INPUT ***************/ - /* generate a 3D Gaussian kernel for NLM procedure */ - Eucl_Vec = (float*) calloc ((2*SimilarWin+1)*(2*SimilarWin+1)*(2*SimilarWin+1),sizeof(float)); - counterG = 0; - for(i=-SimilarWin; i<=SimilarWin; i++) { - for(j=-SimilarWin; j<=SimilarWin; j++) { - for(k=-SimilarWin; k<=SimilarWin; k++) { - Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2) + pow(((float) k), 2))/(2*SimilarWin*SimilarWin*SimilarWin)); - counterG++; - }}} /*main neighb loop */ - - /* for each voxel store indeces of the most similar neighbours (patches) */ - if (switchM == 1) { -#pragma omp parallel for shared (A, Weights, H_i, H_j, H_k) private(i,j,k) - for(i=0; i= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) { - if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) { - normsum += Eucl_Vec[counterG]*pow(Aorig[j3*dimX + (i3)] - Aorig[j2*dimX + (i2)], 2); - counterG++; - }} - - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into pre-allocated arrays */ - for(x=0; x < NumNeighb; x++) { - index = (dimX*dimY*x) + j*dimX+i; - H_i[index] = ind_i[x]; - H_j[index] = ind_j[x]; - Weights[index] = Weight_Vec[x]; - } - free(ind_i); - free(ind_j); - free(Weight_Vec); - return 1; -} -float Indeces2D_p(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2) -{ - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, index, sizeWin_tot, counterG; - float *Weight_Vec, normsum; - unsigned short *ind_i, *ind_j; - - sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1); - - Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float)); - ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); - ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) { - if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) { - //normsum += Eucl_Vec[counterG]*pow(Aorig[j3*dimX + (i3)] - Aorig[j2*dimX + (i2)], 2); - normsum += Eucl_Vec[counterG]*pow(Aorig[i3*dimY + (j3)] - Aorig[i2*dimY + (j2)], 2); - counterG++; - }} - - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - - /*now select the NumNeighb more prominent weights and store into pre-allocated arrays */ - for(x=0; x < NumNeighb; x++) { - index = (dimX*dimY*x) + i*dimY+j; - H_i[index] = ind_i[x]; - H_j[index] = ind_j[x]; - Weights[index] = Weight_Vec[x]; - } - free(ind_i); - free(ind_j); - free(Weight_Vec); - return 1; -} - -float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2) -{ - long i1, j1, k1, i_m, j_m, k_m, i_c, j_c, k_c, i2, j2, k2, i3, j3, k3, counter, x, y, index, sizeWin_tot, counterG; - float *Weight_Vec, normsum, temp; - unsigned short *ind_i, *ind_j, *ind_k, temp_i, temp_j, temp_k; - - sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1)*(2*SearchWindow + 1); - - Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float)); - ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); - ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); - ind_k = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); - - counter = 0l; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - for(k_m=-SearchWindow; k_m<=SearchWindow; k_m++) { - k1 = k+k_m; - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY)) && ((k1 >= 0) && (k1 < dimZ))) { - normsum = 0.0f; counterG = 0l; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - for(k_c=-SimilarWin; k_c<=SimilarWin; k_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - k2 = k1 + k_c; - i3 = i + i_c; - j3 = j + j_c; - k3 = k + k_c; - if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY)) && ((k2 >= 0) && (k2 < dimZ))) { - if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY)) && ((k3 >= 0) && (k3 < dimZ))) { - normsum += Eucl_Vec[counterG]*pow(Aorig[(dimX*dimY*k3) + j3*dimX + (i3)] - Aorig[(dimX*dimY*k2) + j2*dimX + (i2)], 2); - counterG++; - }} - }}} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - ind_k[counter] = k1; - counter ++; - } - } - }}} - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter; x++) { - for (y = 0; y < counter; y++) { - if (Weight_Vec[y] < Weight_Vec[x]) { - temp = Weight_Vec[y+1]; - temp_i = ind_i[y+1]; - temp_j = ind_j[y+1]; - temp_k = ind_k[y+1]; - Weight_Vec[y+1] = Weight_Vec[y]; - Weight_Vec[y] = temp; - ind_i[y+1] = ind_i[y]; - ind_i[y] = temp_i; - ind_j[y+1] = ind_j[y]; - ind_j[y] = temp_j; - ind_k[y+1] = ind_k[y]; - ind_k[y] = temp_k; - }}} - /*sorting loop finished*/ - - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i; - - H_i[index] = ind_i[x]; - H_j[index] = ind_j[x]; - H_k[index] = ind_k[x]; - - Weights[index] = Weight_Vec[x]; - } - - free(ind_i); - free(ind_j); - free(ind_k); - free(Weight_Vec); - return 1; -} - diff --git a/Core/regularisers_CPU/PatchSelect_core.h b/Core/regularisers_CPU/PatchSelect_core.h deleted file mode 100644 index ddaa428..0000000 --- a/Core/regularisers_CPU/PatchSelect_core.h +++ /dev/null @@ -1,63 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" -#define EPS 1.0000e-12 - -/* C-OMP implementation of non-local weight pre-calculation for non-local priors - * Weights and associated indices are stored into pre-allocated arrays and passed - * to the regulariser - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. Searching window (half-size of the main bigger searching window, e.g. 11) - * 3. Similarity window (half-size of the patch window, e.g. 2) - * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) - * 5. noise-related parameter to calculate non-local weights - * - * Output [2D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. Weights_ij - associated weights - * - * Output [3D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. AR_k - indeces of j neighbours - * 4. Weights_ijk - associated weights - */ -/*****************************************************************************/ -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float PatchSelect_CPU_main(float *A, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM); -CCPI_EXPORT float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2); -CCPI_EXPORT float Indeces2D_p(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimX, long dimY, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2); -CCPI_EXPORT float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/ROF_TV_core.c b/Core/regularisers_CPU/ROF_TV_core.c deleted file mode 100644 index 1858442..0000000 --- a/Core/regularisers_CPU/ROF_TV_core.c +++ /dev/null @@ -1,289 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "ROF_TV_core.h" - -#define EPS 1.0e-12 -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -/*sign function*/ -int sign(float x) { - return (x > 0) - (x < 0); -} - - -/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) - * - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - */ - -/* Running iterations of TV-ROF function */ -float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ) -{ - float *D1, *D2, *D3; - int i; - long DimTotal; - DimTotal = (long)(dimX*dimY*dimZ); - - D1 = calloc(DimTotal, sizeof(float)); - D2 = calloc(DimTotal, sizeof(float)); - D3 = calloc(DimTotal, sizeof(float)); - - /* copy into output */ - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /* start TV iterations */ - for(i=0; i < iterationsNumb; i++) { - /* calculate differences */ - D1_func(Output, D1, (long)(dimX), (long)(dimY), (long)(dimZ)); - D2_func(Output, D2, (long)(dimX), (long)(dimY), (long)(dimZ)); - if (dimZ > 1) D3_func(Output, D3, (long)(dimX), (long)(dimY), (long)(dimZ)); - TV_kernel(D1, D2, D3, Output, Input, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - free(D1);free(D2); free(D3); - return *Output; -} - -/* calculate differences 1 */ -float D1_func(float *A, float *D1, long dimX, long dimY, long dimZ) -{ - float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1; - long i,j,k,i1,i2,k1,j1,j2,k2,index; - - if (dimZ > 1) { -#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + j*dimX + i1] - A[index]; /* y+ */ - /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ - NOMy_0 = A[index] - A[(dimX*dimY)*k + j*dimX + i2]; /* y- */ - - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - NOMz_0 = A[index] - A[(dimX*dimY)*k2 + j*dimX + i]; /* z- */ - - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); - denom3 = denom3*denom3; - T1 = sqrt(denom1 + denom2 + denom3 + EPS); - D1[index] = NOMx_1/T1; - }}} - } - else { -#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1,index) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */ - /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ - NOMy_0 = A[index] - A[(j)*dimX + i2]; /* y- */ - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom2 = denom2*denom2; - T1 = sqrtf(denom1 + denom2 + EPS); - D1[index] = NOMx_1/T1; - }} - } - return *D1; -} -/* calculate differences 2 */ -float D2_func(float *A, float *D2, long dimX, long dimY, long dimZ) -{ - float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2; - long i,j,k,i1,i2,k1,j1,j2,k2,index; - - if (dimZ > 1) { -#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */ - NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - NOMz_0 = A[index] - A[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */ - - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); - denom3 = denom3*denom3; - T2 = sqrtf(denom1 + denom2 + denom3 + EPS); - D2[index] = NOMy_1/T2; - }}} - } - else { -#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2,index) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */ - NOMx_0 = A[index] - A[j2*dimX + i]; /* x- */ - /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */ /* y- */ - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - T2 = sqrtf(denom1 + denom2 + EPS); - D2[index] = NOMy_1/T2; - }} - } - return *D2; -} - -/* calculate differences 3 */ -float D3_func(float *A, float *D3, long dimX, long dimY, long dimZ) -{ - float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3; - long index,i,j,k,i1,i2,k1,j1,j2,k2; - -#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */ - NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */ - NOMy_0 = A[index] - A[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */ - NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */ - /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */ - - denom1 = NOMz_1*NOMz_1; - denom2 = 0.5f*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5f*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); - denom3 = denom3*denom3; - T3 = sqrtf(denom1 + denom2 + denom3 + EPS); - D3[index] = NOMz_1/T3; - }}} - return *D3; -} - -/* calculate divergence */ -float TV_kernel(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, long dimX, long dimY, long dimZ) -{ - float dv1, dv2, dv3; - long index,i,j,k,i1,i2,k1,j1,j2,k2; - - if (dimZ > 1) { -#pragma omp parallel for shared (D1, D2, D3, B, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, dv1,dv2,dv3) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /*divergence components */ - dv1 = D1[index] - D1[(dimX*dimY)*k + j2*dimX+i]; - dv2 = D2[index] - D2[(dimX*dimY)*k + j*dimX+i2]; - dv3 = D3[index] - D3[(dimX*dimY)*k2 + j*dimX+i]; - - B[index] += tau*(2.0f*lambda*(dv1 + dv2 + dv3) - (B[index] - A[index])); - }}} - } - else { -#pragma omp parallel for shared (D1, D2, B, dimX, dimY) private(index, i, j, i1, j1, i2, j2,dv1,dv2) - for(j=0; j= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* divergence components */ - dv1 = D1[index] - D1[j2*dimX + i]; - dv2 = D2[index] - D2[j*dimX + i2]; - - B[index] += tau*(2.0f*lambda*(dv1 + dv2) - (B[index] - A[index])); - }} - } - return *B; -} diff --git a/Core/regularisers_CPU/ROF_TV_core.h b/Core/regularisers_CPU/ROF_TV_core.h deleted file mode 100644 index 4e320e9..0000000 --- a/Core/regularisers_CPU/ROF_TV_core.h +++ /dev/null @@ -1,57 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) - * - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - * - * D. Kazantsev, 2016-18 - */ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float TV_kernel(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, long dimX, long dimY, long dimZ); -CCPI_EXPORT float D1_func(float *A, float *D1, long dimX, long dimY, long dimZ); -CCPI_EXPORT float D2_func(float *A, float *D2, long dimX, long dimY, long dimZ); -CCPI_EXPORT float D3_func(float *A, float *D3, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif \ No newline at end of file diff --git a/Core/regularisers_CPU/SB_TV_core.c b/Core/regularisers_CPU/SB_TV_core.c deleted file mode 100755 index 769ea67..0000000 --- a/Core/regularisers_CPU/SB_TV_core.c +++ /dev/null @@ -1,368 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "SB_TV_core.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -float SB_TV_CPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ) -{ - int ll; - long j, DimTotal; - float re, re1, lambda; - int count = 0; - mu = 1.0f/mu; - lambda = 2.0f*mu; - - if (dimZ <= 1) { - /* 2D case */ - float *Output_prev=NULL, *Dx=NULL, *Dy=NULL, *Bx=NULL, *By=NULL; - DimTotal = (long)(dimX*dimY); - - Output_prev = calloc(DimTotal, sizeof(float)); - Dx = calloc(DimTotal, sizeof(float)); - Dy = calloc(DimTotal, sizeof(float)); - Bx = calloc(DimTotal, sizeof(float)); - By = calloc(DimTotal, sizeof(float)); - - copyIm(Input, Output, (long)(dimX), (long)(dimY), 1l); /*initialize */ - - /* begin outer SB iterations */ - for(ll=0; ll 4) break; - } - /*printf("%f %i %i \n", re, ll, count); */ - } - if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(Dx); free(Dy); free(Bx); free(By); - } - else { - /* 3D case */ - float *Output_prev=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL; - DimTotal = (long)(dimX*dimY*dimZ); - - Output_prev = calloc(DimTotal, sizeof(float)); - Dx = calloc(DimTotal, sizeof(float)); - Dy = calloc(DimTotal, sizeof(float)); - Dz = calloc(DimTotal, sizeof(float)); - Bx = calloc(DimTotal, sizeof(float)); - By = calloc(DimTotal, sizeof(float)); - Bz = calloc(DimTotal, sizeof(float)); - - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); /*initialize */ - - /* begin outer SB iterations */ - for(ll=0; ll 4) break; - } - /*printf("%f %i %i \n", re, ll, count); */ - } - if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll); - free(Output_prev); free(Dx); free(Dy); free(Dz); free(Bx); free(By); free(Bz); - } - return *Output; -} - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -float gauss_seidel2D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda, float mu) -{ - float sum, normConst; - long i,j,i1,i2,j1,j2,index; - normConst = 1.0f/(mu + 4.0f*lambda); - -#pragma omp parallel for shared(U) private(index,i,j,i1,i2,j1,j2,sum) - for(i=0; i -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - - -/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float SB_TV_CPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); - -CCPI_EXPORT float gauss_seidel2D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda, float mu); -CCPI_EXPORT float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda); -CCPI_EXPORT float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY, float lambda); -CCPI_EXPORT float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, long dimX, long dimY); - -CCPI_EXPORT float gauss_seidel3D(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda, float mu); -CCPI_EXPORT float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda); -CCPI_EXPORT float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ, float lambda); -CCPI_EXPORT float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/TGV_core.c b/Core/regularisers_CPU/TGV_core.c deleted file mode 100644 index 805c3d4..0000000 --- a/Core/regularisers_CPU/TGV_core.c +++ /dev/null @@ -1,487 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TGV_core.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume (2D/3D) - * 2. lambda - regularisation parameter - * 3. parameter to control the first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regularised image/volume - * - * References: - * [1] K. Bredies "Total Generalized Variation" - * - */ - -float TGV_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iter, float L2, int dimX, int dimY, int dimZ) -{ - long DimTotal; - int ll; - float *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma; - - DimTotal = (long)(dimX*dimY*dimZ); - copyIm(U0, U, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize */ - tau = pow(L2,-0.5); - sigma = pow(L2,-0.5); - - /* dual variables */ - P1 = calloc(DimTotal, sizeof(float)); - P2 = calloc(DimTotal, sizeof(float)); - - Q1 = calloc(DimTotal, sizeof(float)); - Q2 = calloc(DimTotal, sizeof(float)); - Q3 = calloc(DimTotal, sizeof(float)); - - U_old = calloc(DimTotal, sizeof(float)); - - V1 = calloc(DimTotal, sizeof(float)); - V1_old = calloc(DimTotal, sizeof(float)); - V2 = calloc(DimTotal, sizeof(float)); - V2_old = calloc(DimTotal, sizeof(float)); - - if (dimZ == 1) { - /*2D case*/ - - /* Primal-dual iterations begin here */ - for(ll = 0; ll < iter; ll++) { - - /* Calculate Dual Variable P */ - DualP_2D(U, V1, V2, P1, P2, (long)(dimX), (long)(dimY), sigma); - - /*Projection onto convex set for P*/ - ProjP_2D(P1, P2, (long)(dimX), (long)(dimY), alpha1); - - /* Calculate Dual Variable Q */ - DualQ_2D(V1, V2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), sigma); - - /*Projection onto convex set for Q*/ - ProjQ_2D(Q1, Q2, Q3, (long)(dimX), (long)(dimY), alpha0); - - /*saving U into U_old*/ - copyIm(U, U_old, (long)(dimX), (long)(dimY), 1l); - - /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D(U, U0, P1, P2, (long)(dimX), (long)(dimY), lambda, tau); - - /*get updated solution U*/ - newU(U, U_old, (long)(dimX), (long)(dimY)); - - /*saving V into V_old*/ - copyIm(V1, V1_old, (long)(dimX), (long)(dimY), 1l); - copyIm(V2, V2_old, (long)(dimX), (long)(dimY), 1l); - - /* upd V*/ - UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), tau); - - /*get new V*/ - newU(V1, V1_old, (long)(dimX), (long)(dimY)); - newU(V2, V2_old, (long)(dimX), (long)(dimY)); - } /*end of iterations*/ - } - else { - /*3D case*/ - float *P3, *Q4, *Q5, *Q6, *V3, *V3_old; - - P3 = calloc(DimTotal, sizeof(float)); - Q4 = calloc(DimTotal, sizeof(float)); - Q5 = calloc(DimTotal, sizeof(float)); - Q6 = calloc(DimTotal, sizeof(float)); - V3 = calloc(DimTotal, sizeof(float)); - V3_old = calloc(DimTotal, sizeof(float)); - - /* Primal-dual iterations begin here */ - for(ll = 0; ll < iter; ll++) { - - /* Calculate Dual Variable P */ - DualP_3D(U, V1, V2, V3, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), sigma); - - /*Projection onto convex set for P*/ - ProjP_3D(P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), alpha1); - - /* Calculate Dual Variable Q */ - DualQ_3D(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), sigma); - - /*Projection onto convex set for Q*/ - ProjQ_3D(Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), alpha0); - - /*saving U into U_old*/ - copyIm(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /*adjoint operation -> divergence and projection of P*/ - DivProjP_3D(U, U0, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, tau); - - /*get updated solution U*/ - newU3D(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /*saving V into V_old*/ - copyIm_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /* upd V*/ - UpdV_3D(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), tau); - - /*get new V*/ - newU3D_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - } /*end of iterations*/ - free(P3);free(Q4);free(Q5);free(Q6);free(V3);free(V3_old); - } - - /*freeing*/ - free(P1);free(P2);free(Q1);free(Q2);free(Q3);free(U_old); - free(V1);free(V2);free(V1_old);free(V2_old); - return *U; -} - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ - -/*Calculating dual variable P (using forward differences)*/ -float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma) -{ - long i,j, index; -#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j,index) - for(i=0; i 1.0f) { - P1[index] /= grad_magn; - P2[index] /= grad_magn; - } - }} - return 1; -} -/*Calculating dual variable Q (using forward differences)*/ -float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma) -{ - long i,j,index; - float q1, q2, q11, q22; -#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,index,q1,q2,q11,q22) - for(i=0; i 1.0f) { - Q1[index] /= grad_magn; - Q2[index] /= grad_magn; - Q3[index] /= grad_magn; - } - }} - return 1; -} -/* Divergence and projection for P*/ -float DivProjP_2D(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau) -{ - long i,j,index; - float P_v1, P_v2, div; -#pragma omp parallel for shared(U,U0,P1,P2) private(i,j,index,P_v1,P_v2,div) - for(i=0; i 1.0f) { - P1[index] /= grad_magn; - P2[index] /= grad_magn; - P3[index] /= grad_magn; - } - }}} - return 1; -} -/*Calculating dual variable Q (using forward differences)*/ -float DualQ_3D(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma) -{ - long i,j,k,index; - float q1, q2, q3, q11, q22, q33, q44, q55, q66; -#pragma omp parallel for shared(Q1,Q2,Q3,Q4,Q5,Q6,V1,V2,V3) private(i,j,k,index,q1,q2,q3,q11,q22,q33,q44,q55,q66) - for(i=0; i 1.0f) { - Q1[index] /= grad_magn; - Q2[index] /= grad_magn; - Q3[index] /= grad_magn; - Q4[index] /= grad_magn; - Q5[index] /= grad_magn; - Q6[index] /= grad_magn; - } - }}} - return 1; -} -/* Divergence and projection for P*/ -float DivProjP_3D(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau) -{ - long i,j,k,index; - float P_v1, P_v2, P_v3, div; -#pragma omp parallel for shared(U,U0,P1,P2,P3) private(i,j,k,index,P_v1,P_v2,P_v3,div) - for(i=0; i -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D/3D) - * - * Input Parameters: - * 1. Noisy image/volume (2D/3D) - * 2. lambda - regularisation parameter - * 3. parameter to control the first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regularised image/volume - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - - -#ifdef __cplusplus -extern "C" { -#endif - -CCPI_EXPORT float TGV_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iter, float L2, int dimX, int dimY, int dimZ); - -/* 2D functions */ -CCPI_EXPORT float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma); -CCPI_EXPORT float ProjP_2D(float *P1, float *P2, long dimX, long dimY, float alpha1); -CCPI_EXPORT float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma); -CCPI_EXPORT float ProjQ_2D(float *Q1, float *Q2, float *Q3, long dimX, long dimY, float alpha0); -CCPI_EXPORT float DivProjP_2D(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau); -CCPI_EXPORT float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float tau); -CCPI_EXPORT float newU(float *U, float *U_old, long dimX, long dimY); -/* 3D functions */ -CCPI_EXPORT float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float sigma); -CCPI_EXPORT float ProjP_3D(float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float alpha1); -CCPI_EXPORT float DualQ_3D(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma); -CCPI_EXPORT float ProjQ_3D(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float alpha0); -CCPI_EXPORT float DivProjP_3D(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau); -CCPI_EXPORT float UpdV_3D(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float tau); -CCPI_EXPORT float newU3D(float *U, float *U_old, long dimX, long dimY, long dimZ); -CCPI_EXPORT float copyIm_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ); -CCPI_EXPORT float newU3D_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_CPU/TNV_core.c b/Core/regularisers_CPU/TNV_core.c deleted file mode 100755 index 753cc5f..0000000 --- a/Core/regularisers_CPU/TNV_core.c +++ /dev/null @@ -1,452 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "TNV_core.h" - -/* - * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] - * The code is modified from the implementation by Joan Duran see - * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package - * - * Input Parameters: - * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume - * 2. lambda - regularisation parameter - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon - tolerance constant [OPTIONAL parameter] - * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] - * - * Output: - * 1. Filtered/regularized image - * - * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. - */ - -float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ) -{ - long k, p, q, r, DimTotal; - float taulambda; - float *u_upd, *gx, *gy, *gx_upd, *gy_upd, *qx, *qy, *qx_upd, *qy_upd, *v, *vx, *vy, *gradx, *grady, *gradx_upd, *grady_upd, *gradx_ubar, *grady_ubar, *div, *div_upd; - - p = 1l; - q = 1l; - r = 0l; - - lambda = 1.0f/(2.0f*lambda); - DimTotal = (long)(dimX*dimY*dimZ); - /* PDHG algorithm parameters*/ - float tau = 0.5f; - float sigma = 0.5f; - float theta = 1.0f; - - // Auxiliar vectors - u_upd = calloc(DimTotal, sizeof(float)); - gx = calloc(DimTotal, sizeof(float)); - gy = calloc(DimTotal, sizeof(float)); - gx_upd = calloc(DimTotal, sizeof(float)); - gy_upd = calloc(DimTotal, sizeof(float)); - qx = calloc(DimTotal, sizeof(float)); - qy = calloc(DimTotal, sizeof(float)); - qx_upd = calloc(DimTotal, sizeof(float)); - qy_upd = calloc(DimTotal, sizeof(float)); - v = calloc(DimTotal, sizeof(float)); - vx = calloc(DimTotal, sizeof(float)); - vy = calloc(DimTotal, sizeof(float)); - gradx = calloc(DimTotal, sizeof(float)); - grady = calloc(DimTotal, sizeof(float)); - gradx_upd = calloc(DimTotal, sizeof(float)); - grady_upd = calloc(DimTotal, sizeof(float)); - gradx_ubar = calloc(DimTotal, sizeof(float)); - grady_ubar = calloc(DimTotal, sizeof(float)); - div = calloc(DimTotal, sizeof(float)); - div_upd = calloc(DimTotal, sizeof(float)); - - // Backtracking parameters - float s = 1.0f; - float gamma = 0.75f; - float beta = 0.95f; - float alpha0 = 0.2f; - float alpha = alpha0; - float delta = 1.5f; - float eta = 0.95f; - - // PDHG algorithm parameters - taulambda = tau * lambda; - float divtau = 1.0f / tau; - float divsigma = 1.0f / sigma; - float theta1 = 1.0f + theta; - - /*allocate memory for taulambda */ - //taulambda = (float*) calloc(dimZ, sizeof(float)); - //for(k=0; k < dimZ; k++) {taulambda[k] = tau*lambda[k];} - - // Apply Primal-Dual Hybrid Gradient scheme - int iter = 0; - float residual = fLarge; - float ubarx, ubary; - - for(iter = 0; iter < maxIter; iter++) { - // Argument of proximal mapping of fidelity term -#pragma omp parallel for shared(v, u) private(k) - for(k=0; k 1) -{ - // Decrease step-sizes to fit balancing principle - tau = (beta * tau) / b; - sigma = (beta * sigma) / b; - alpha = alpha0; - - copyIm(u, u_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gx, gx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gy, gy_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(qx, qx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(qy, qy_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gradx, gradx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(grady, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(div, div_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - -} else if(resprimal > dual_dot_delta) -{ - // Increase primal step-size and decrease dual step-size - tau = tau / (1.0f - alpha); - sigma = sigma * (1.0f - alpha); - alpha = alpha * eta; - -} else if(resprimal < dual_div_delta) -{ - // Decrease primal step-size and increase dual step-size - tau = tau * (1.0f - alpha); - sigma = sigma / (1.0f - alpha); - alpha = alpha * eta; -} - -// Update variables -taulambda = tau * lambda; -//for(k=0; k < dimZ; k++) taulambda[k] = tau*lambda[k]; - -divsigma = 1.0f / sigma; -divtau = 1.0f / tau; - -copyIm(u_upd, u, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gx_upd, gx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gy_upd, gy, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(qx_upd, qx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(qy_upd, qy, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gradx_upd, gradx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(grady_upd, grady, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(div_upd, div, (long)(dimX), (long)(dimY), (long)(dimZ)); - -// Compute residual at current iteration -residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ)); - -// printf("%f \n", residual); -if (residual < tol) { - printf("Iterations stopped at %i with the residual %f \n", iter, residual); - break; } - - } - printf("Iterations stopped at %i with the residual %f \n", iter, residual); - free (u_upd); free(gx); free(gy); free(gx_upd); free(gy_upd); - free(qx); free(qy); free(qx_upd); free(qy_upd); free(v); free(vx); free(vy); - free(gradx); free(grady); free(gradx_upd); free(grady_upd); free(gradx_ubar); - free(grady_ubar); free(div); free(div_upd); - return *u; -} - -float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ) -{ - float constant; - long k; - constant = 1.0f + taulambda; -#pragma omp parallel for shared(v, f, u_upd) private(k) - for(k=0; k fTiny) - { - V1 = v1 / mu1; - V3 = v0 / mu1; - } - - if(mu2 > fTiny) - { - V2 = v2 / mu2; - V4 = v0 / mu2; - } - - } else - { - if(M1 > M3) - { - V1 = V4 = 1.0f; - V2 = V3 = 0.0f; - - } else - { - V1 = V4 = 0.0f; - V2 = V3 = 1.0f; - } - } - - // Compute prox_p of the diagonal entries - sig1_upd = sig2_upd = 0.0f; - - if(p == 1) - { - sig1_upd = MAX(sig1 - divsigma, 0.0f); - sig2_upd = MAX(sig2 - divsigma, 0.0f); - - } else if(p == INFNORM) - { - proj[0] = sigma * fabs(sig1); - proj[1] = sigma * fabs(sig2); - - /*l1 projection part */ - sum = fLarge; - num = 0l; - shrinkfactor = 0.0f; - while(sum > 1.0f) - { - sum = 0.0f; - num = 0; - - for(ii = 0; ii < 2; ii++) - { - proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f); - - sum += fabs(proj[ii]); - if(proj[ii]!= 0.0f) - num++; - } - - if(num > 0) - shrinkfactor = (sum - 1.0f) / num; - else - break; - } - /*l1 proj ends*/ - - sig1_upd = sig1 - divsigma * proj[0]; - sig2_upd = sig2 - divsigma * proj[1]; - } - - // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$ - if(sig1 > fTiny) - sig1_upd /= sig1; - - if(sig2 > fTiny) - sig2_upd /= sig2; - - // Compute solution - t1 = sig1_upd * V1 * V1 + sig2_upd * V2 * V2; - t2 = sig1_upd * V1 * V3 + sig2_upd * V2 * V4; - t3 = sig1_upd * V3 * V3 + sig2_upd * V4 * V4; - - for(k = 0; k < dimZ; k++) - { - gx[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t1 + vy[(dimX*dimY)*k + j*dimX + i] * t2; - gy[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t2 + vy[(dimX*dimY)*k + j*dimX + i] * t3; - } - - // Delete allocated memory - free(proj); - }} - - return 1; -} - -float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ) -{ - long i, j, k, l; -#pragma omp parallel for shared(qx_upd,qy_upd,div_upd) private(i, j, k, l) - for(k = 0; k < dimZ; k++) { - for(j = 0; j < dimY; j++) { - l = j * dimX; - for(i = 0; i < dimX; i++) { - if(i != dimX-1) - { - // ux[k][i+l] = u[k][i+1+l] - u[k][i+l] - div_upd[(dimX*dimY)*k + i+1+l] -= qx_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+l] += qx_upd[(dimX*dimY)*k + i+l]; - } - - if(j != dimY-1) - { - // uy[k][i+l] = u[k][i+width+l] - u[k][i+l] - //div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+(j+1)*dimX] -= qy_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+l] += qy_upd[(dimX*dimY)*k + i+l]; - } - } - } - } - return *div_upd; -} diff --git a/Core/regularisers_CPU/TNV_core.h b/Core/regularisers_CPU/TNV_core.h deleted file mode 100644 index aa050a4..0000000 --- a/Core/regularisers_CPU/TNV_core.h +++ /dev/null @@ -1,47 +0,0 @@ -#include -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - -#define fTiny 0.00000001f -#define fLarge 100000000.0f -#define INFNORM -1 - -#define MAX(i,j) ((i)<(j) ? (j):(i)) -#define MIN(i,j) ((i)<(j) ? (i):(j)) - -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ); - -/*float PDHG(float *A, float *B, float tau, float sigma, float theta, float lambda, int p, int q, int r, float tol, int maxIter, int d_c, int d_w, int d_h);*/ -CCPI_EXPORT float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ); -CCPI_EXPORT float gradient(float *u_upd, float *gradx_upd, float *grady_upd, long dimX, long dimY, long dimZ); -CCPI_EXPORT float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int q, int r, long dimX, long dimY, long dimZ); -CCPI_EXPORT float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ); -#ifdef __cplusplus -} -#endif \ No newline at end of file diff --git a/Core/regularisers_CPU/utils.c b/Core/regularisers_CPU/utils.c deleted file mode 100644 index 7a4e80b..0000000 --- a/Core/regularisers_CPU/utils.c +++ /dev/null @@ -1,117 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "utils.h" -#include - -/* Copy Image (float) */ -float copyIm(float *A, float *U, long dimX, long dimY, long dimZ) -{ - long j; -#pragma omp parallel for shared(A, U) private(j) - for (j = 0; j -#include -#include "CCPiDefines.h" -#include "omp.h" -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float copyIm(float *A, float *U, long dimX, long dimY, long dimZ); -CCPI_EXPORT unsigned char copyIm_unchar(unsigned char *A, unsigned char *U, int dimX, int dimY, int dimZ); -CCPI_EXPORT float copyIm_roll(float *A, float *U, int dimX, int dimY, int roll_value, int switcher); -CCPI_EXPORT float TV_energy2D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY); -CCPI_EXPORT float TV_energy3D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY, int dimZ); -#ifdef __cplusplus -} -#endif diff --git a/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu b/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu deleted file mode 100644 index a4dbe70..0000000 --- a/Core/regularisers_GPU/Diffus_4thO_GPU_core.cu +++ /dev/null @@ -1,268 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "Diffus_4thO_GPU_core.h" -#include "shared.h" - -/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma) - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 -#define EPS 1.0e-7 -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -__global__ void Weighted_Laplc2D_kernel(float *W_Lapl, float *U0, float sigma, int dimX, int dimY) -{ - int i1,i2,j1,j2; - float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - gradX = 0.5f*(U0[j*dimX+i2] - U0[j*dimX+i1]); - gradX_sq = powf(gradX,2); - - gradY = 0.5f*(U0[j2*dimX+i] - U0[j1*dimX+i]); - gradY_sq = powf(gradY,2); - - gradXX = U0[j*dimX+i2] + U0[j*dimX+i1] - 2*U0[index]; - gradYY = U0[j2*dimX+i] + U0[j1*dimX+i] - 2*U0[index]; - - gradXY = 0.25f*(U0[j2*dimX+i2] + U0[j1*dimX+i1] - U0[j1*dimX+i2] - U0[j2*dimX+i1]); - xy_2 = 2.0f*gradX*gradY*gradXY; - - denom = gradX_sq + gradY_sq; - - if (denom <= EPS) { - V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/EPS; - V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/EPS; - } - else { - V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/denom; - V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/denom; - } - - c = 1.0f/(1.0f + denom/sigma); - c_sq = c*c; - - W_Lapl[index] = c_sq*V_norm + c*V_orth; - } - return; -} - -__global__ void Diffusion_update_step2D_kernel(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, int dimX, int dimY) -{ - int i1,i2,j1,j2; - float gradXXc, gradYYc; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - gradXXc = W_Lapl[j*dimX+i2] + W_Lapl[j*dimX+i1] - 2*W_Lapl[index]; - gradYYc = W_Lapl[j2*dimX+i] + W_Lapl[j1*dimX+i] - 2*W_Lapl[index]; - - Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc) - (Output[index] - Input[index])); - } - return; -} -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ -__global__ void Weighted_Laplc3D_kernel(float *W_Lapl, float *U0, float sigma, int dimX, int dimY, int dimZ) -{ - int i1,i2,j1,j2,k1,k2; - float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, xy_2, denom, V_norm, V_orth, c, c_sq, gradZ, gradZ_sq, gradZZ, gradXZ, gradYZ, xyz_1, xyz_2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - int index = (dimX*dimY)*k + j*dimX+i; - - gradX = 0.5f*(U0[(dimX*dimY)*k + j*dimX+i2] - U0[(dimX*dimY)*k + j*dimX+i1]); - gradX_sq = pow(gradX,2); - - gradY = 0.5f*(U0[(dimX*dimY)*k + j2*dimX+i] - U0[(dimX*dimY)*k + j1*dimX+i]); - gradY_sq = pow(gradY,2); - - gradZ = 0.5f*(U0[(dimX*dimY)*k2 + j*dimX+i] - U0[(dimX*dimY)*k1 + j*dimX+i]); - gradZ_sq = pow(gradZ,2); - - gradXX = U0[(dimX*dimY)*k + j*dimX+i2] + U0[(dimX*dimY)*k + j*dimX+i1] - 2*U0[index]; - gradYY = U0[(dimX*dimY)*k + j2*dimX+i] + U0[(dimX*dimY)*k + j1*dimX+i] - 2*U0[index]; - gradZZ = U0[(dimX*dimY)*k2 + j*dimX+i] + U0[(dimX*dimY)*k1 + j*dimX+i] - 2*U0[index]; - - gradXY = 0.25f*(U0[(dimX*dimY)*k + j2*dimX+i2] + U0[(dimX*dimY)*k + j1*dimX+i1] - U0[(dimX*dimY)*k + j1*dimX+i2] - U0[(dimX*dimY)*k + j2*dimX+i1]); - gradXZ = 0.25f*(U0[(dimX*dimY)*k2 + j*dimX+i2] - U0[(dimX*dimY)*k2+j*dimX+i1] - U0[(dimX*dimY)*k1+j*dimX+i2] + U0[(dimX*dimY)*k1+j*dimX+i1]); - gradYZ = 0.25f*(U0[(dimX*dimY)*k2 +j2*dimX+i] - U0[(dimX*dimY)*k2+j1*dimX+i] - U0[(dimX*dimY)*k1+j2*dimX+i] + U0[(dimX*dimY)*k1+j1*dimX+i]); - - xy_2 = 2.0f*gradX*gradY*gradXY; - xyz_1 = 2.0f*gradX*gradZ*gradXZ; - xyz_2 = 2.0f*gradY*gradZ*gradYZ; - - denom = gradX_sq + gradY_sq + gradZ_sq; - - if (denom <= EPS) { - V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/EPS; - V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/EPS; - } - else { - V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/denom; - V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/denom; - } - - c = 1.0f/(1.0f + denom/sigma); - c_sq = c*c; - - W_Lapl[index] = c_sq*V_norm + c*V_orth; - } - return; -} -__global__ void Diffusion_update_step3D_kernel(float *Output, float *Input, float *W_Lapl, float lambdaPar, float sigmaPar2, float tau, int dimX, int dimY, int dimZ) -{ - int i1,i2,j1,j2,k1,k2; - float gradXXc, gradYYc, gradZZc; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - int index = (dimX*dimY)*k + j*dimX+i; - - gradXXc = W_Lapl[(dimX*dimY)*k + j*dimX+i2] + W_Lapl[(dimX*dimY)*k + j*dimX+i1] - 2*W_Lapl[index]; - gradYYc = W_Lapl[(dimX*dimY)*k + j2*dimX+i] + W_Lapl[(dimX*dimY)*k + j1*dimX+i] - 2*W_Lapl[index]; - gradZZc = W_Lapl[(dimX*dimY)*k2 + j*dimX+i] + W_Lapl[(dimX*dimY)*k1 + j*dimX+i] - 2*W_Lapl[index]; - - Output[index] += tau*(-lambdaPar*(gradXXc + gradYYc + gradZZc) - (Output[index] - Input[index])); - } - return; -} -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -/********************* MAIN HOST FUNCTION ******************/ -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -extern "C" int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z) -{ - int dimTotal, dev = 0; - CHECK(cudaSetDevice(dev)); - float *d_input, *d_output, *d_W_Lapl; - float sigmaPar2; - sigmaPar2 = sigmaPar*sigmaPar; - dimTotal = N*M*Z; - - CHECK(cudaMalloc((void**)&d_input,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&d_output,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&d_W_Lapl,dimTotal*sizeof(float))); - - CHECK(cudaMemcpy(d_input,Input,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); - CHECK(cudaMemcpy(d_output,Input,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); - - if (Z == 1) { - /*2D case */ - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D)); - - for(int n=0; n < iterationsNumb; n++) { - /* Calculating weighted Laplacian */ - Weighted_Laplc2D_kernel<<>>(d_W_Lapl, d_output, sigmaPar2, N, M); - CHECK(cudaDeviceSynchronize()); - /* Perform iteration step */ - Diffusion_update_step2D_kernel<<>>(d_output, d_input, d_W_Lapl, lambdaPar, sigmaPar2, tau, N, M); - CHECK(cudaDeviceSynchronize()); - } - } - else { - /*3D case*/ - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKZSIZE)); - for(int n=0; n < iterationsNumb; n++) { - /* Calculating weighted Laplacian */ - Weighted_Laplc3D_kernel<<>>(d_W_Lapl, d_output, sigmaPar2, N, M, Z); - CHECK(cudaDeviceSynchronize()); - /* Perform iteration step */ - Diffusion_update_step3D_kernel<<>>(d_output, d_input, d_W_Lapl, lambdaPar, sigmaPar2, tau, N, M, Z); - CHECK(cudaDeviceSynchronize()); - } - } - CHECK(cudaMemcpy(Output,d_output,dimTotal*sizeof(float),cudaMemcpyDeviceToHost)); - CHECK(cudaFree(d_input)); - CHECK(cudaFree(d_output)); - CHECK(cudaFree(d_W_Lapl)); - return 0; -} diff --git a/Core/regularisers_GPU/Diffus_4thO_GPU_core.h b/Core/regularisers_GPU/Diffus_4thO_GPU_core.h deleted file mode 100644 index 77d5d79..0000000 --- a/Core/regularisers_GPU/Diffus_4thO_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __Diff_4thO_GPU_H__ -#define __Diff_4thO_GPU_H__ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z); - -#endif diff --git a/Core/regularisers_GPU/LLT_ROF_GPU_core.cu b/Core/regularisers_GPU/LLT_ROF_GPU_core.cu deleted file mode 100644 index 87871be..0000000 --- a/Core/regularisers_GPU/LLT_ROF_GPU_core.cu +++ /dev/null @@ -1,473 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "LLT_ROF_GPU_core.h" -#include "shared.h" - -/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. - * -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 - - -#define EPS_LLT 0.01 -#define EPS_ROF 1.0e-12 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) - -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -__host__ __device__ int signLLT (float x) -{ - return (x > 0) - (x < 0); -} - -/*************************************************************************/ -/**********************LLT-related functions *****************************/ -/*************************************************************************/ -__global__ void der2D_LLT_kernel(float *U, float *D1, float *D2, int dimX, int dimY) - { - int i_p, i_m, j_m, j_p; - float dxx, dyy, denom_xx, denom_yy; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - dxx = U[j*dimX+i_p] - 2.0f*U[index] + U[j*dimX+i_m]; - dyy = U[j_p*dimX+i] - 2.0f*U[index] + U[j_m*dimX+i]; - - denom_xx = abs(dxx) + EPS_LLT; - denom_yy = abs(dyy) + EPS_LLT; - - D1[index] = dxx / denom_xx; - D2[index] = dyy / denom_yy; - } - } - -__global__ void der3D_LLT_kernel(float* U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ) - { - int i_p, i_m, j_m, j_p, k_p, k_m; - float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; - - int index = (dimX*dimY)*k + j*dimX+i; - - dxx = U[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*U[index] + U[(dimX*dimY)*k + j*dimX+i_m]; - dyy = U[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k + j_m*dimX+i]; - dzz = U[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k_m + j*dimX+i]; - - denom_xx = abs(dxx) + EPS_LLT; - denom_yy = abs(dyy) + EPS_LLT; - denom_zz = abs(dzz) + EPS_LLT; - - D1[index] = dxx / denom_xx; - D2[index] = dyy / denom_yy; - D3[index] = dzz / denom_zz; - } - } - -/*************************************************************************/ -/**********************ROF-related functions *****************************/ -/*************************************************************************/ - -/* first-order differences 1 */ -__global__ void D1_func2D_ROF_kernel(float* Input, float* D1, int N, int M) - { - int i1, j1, i2; - float NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i + 1; if (i1 >= N) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= M) j1 = j-1; - - /* Forward-backward differences */ - NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */ - NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[j*N + i2]; /* y- */ - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(signLLT((float)NOMy_1) + signLLT((float)NOMy_0))*(MIN(abs((float)NOMy_1),abs((float)NOMy_0))); - denom2 = denom2*denom2; - T1 = sqrt(denom1 + denom2 + EPS_ROF); - D1[index] = NOMx_1/T1; - } - } - -/* differences 2 */ -__global__ void D2_func2D_ROF_kernel(float* Input, float* D2, int N, int M) - { - int i1, j1, j2; - float NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) { - - /* boundary conditions (Neumann reflections) */ - i1 = i + 1; if (i1 >= N) i1 = i-1; - j1 = j + 1; if (j1 >= M) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */ - NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */ - NOMx_0 = Input[index] - Input[j2*N + i]; /* x- */ - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(signLLT((float)NOMx_1) + signLLT((float)NOMx_0))*(MIN(abs((float)NOMx_1),abs((float)NOMx_0))); - denom2 = denom2*denom2; - T2 = sqrt(denom1 + denom2 + EPS_ROF); - D2[index] = NOMy_1/T2; - } - } - - - /* differences 1 */ -__global__ void D1_func3D_ROF_kernel(float* Input, float* D1, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* symmetric boundary conditions (Neuman) */ - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + j1*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + j*dimX + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[(dimX*dimY)*k + j*dimX + i2]; /* y- */ - - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + j*dimX + i]; /* z- */ - - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0))); - denom3 = denom3*denom3; - T1 = sqrt(denom1 + denom2 + denom3 + EPS_ROF); - D1[index] = NOMx_1/T1; - } - } - - /* differences 2 */ - __global__ void D2_func3D_ROF_kernel(float* Input, float* D2, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - /* symmetric boundary conditions (Neuman) */ - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */ - NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */ - - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0))); - denom3 = denom3*denom3; - T2 = sqrt(denom1 + denom2 + denom3 + EPS_ROF); - D2[index] = NOMy_1/T2; - } - } - - /* differences 3 */ - __global__ void D3_func3D_ROF_kernel(float* Input, float* D3, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */ - NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - - denom1 = NOMz_1*NOMz_1; - denom2 = 0.5*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0))); - denom3 = denom3*denom3; - T3 = sqrt(denom1 + denom2 + denom3 + EPS_ROF); - D3[index] = NOMz_1/T3; - } - } -/*************************************************************************/ -/**********************ROF-LLT-related functions *************************/ -/*************************************************************************/ - -__global__ void Update2D_LLT_ROF_kernel(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, int dimX, int dimY) -{ - - int i_p, i_m, j_m, j_p; - float div, laplc, dxx, dyy, dv1, dv2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - index = j*dimX+i; - - /*LLT-related part*/ - dxx = D1_LLT[j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[j*dimX+i_m]; - dyy = D2_LLT[j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[j_m*dimX+i]; - laplc = dxx + dyy; /*build Laplacian*/ - /*ROF-related part*/ - dv1 = D1_ROF[index] - D1_ROF[j_m*dimX + i]; - dv2 = D2_ROF[index] - D2_ROF[j*dimX + i_m]; - div = dv1 + dv2; /*build Divirgent*/ - - /*combine all into one cost function to minimise */ - U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index])); - } -} - -__global__ void Update3D_LLT_ROF_kernel(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, int dimX, int dimY, int dimZ) -{ - int i_p, i_m, j_m, j_p, k_p, k_m; - float div, laplc, dxx, dyy, dzz, dv1, dv2, dv3; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; - - int index = (dimX*dimY)*k + j*dimX+i; - - /*LLT-related part*/ - dxx = D1_LLT[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[(dimX*dimY)*k + j*dimX+i_m]; - dyy = D2_LLT[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[(dimX*dimY)*k + j_m*dimX+i]; - dzz = D3_LLT[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*D3_LLT[index] + D3_LLT[(dimX*dimY)*k_m + j*dimX+i]; - laplc = dxx + dyy + dzz; /*build Laplacian*/ - - /*ROF-related part*/ - dv1 = D1_ROF[index] - D1_ROF[(dimX*dimY)*k + j_m*dimX+i]; - dv2 = D2_ROF[index] - D2_ROF[(dimX*dimY)*k + j*dimX+i_m]; - dv3 = D3_ROF[index] - D3_ROF[(dimX*dimY)*k_m + j*dimX+i]; - div = dv1 + dv2 + dv3; /*build Divirgent*/ - - /*combine all into one cost function to minimise */ - U[index] += tau*(2.0f*lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index])); - } -} - -/*******************************************************************/ -/************************ HOST FUNCTION ****************************/ -/*******************************************************************/ - -extern "C" int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z) -{ - // set up device - int dev = 0; - int DimTotal; - DimTotal = N*M*Z; - CHECK(cudaSetDevice(dev)); - float *d_input, *d_update; - float *D1_LLT=NULL, *D2_LLT=NULL, *D3_LLT=NULL, *D1_ROF=NULL, *D2_ROF=NULL, *D3_ROF=NULL; - - if (Z == 0) {Z = 1;} - - CHECK(cudaMalloc((void**)&d_input,DimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&d_update,DimTotal*sizeof(float))); - - CHECK(cudaMalloc((void**)&D1_LLT,DimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&D2_LLT,DimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&D3_LLT,DimTotal*sizeof(float))); - - CHECK(cudaMalloc((void**)&D1_ROF,DimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&D2_ROF,DimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&D3_ROF,DimTotal*sizeof(float))); - - CHECK(cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - CHECK(cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - - if (Z == 1) { - // TV - 2D case - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D)); - - for(int n=0; n < iterationsNumb; n++) { - /****************ROF******************/ - /* calculate first-order differences */ - D1_func2D_ROF_kernel<<>>(d_update, D1_ROF, N, M); - CHECK(cudaDeviceSynchronize()); - D2_func2D_ROF_kernel<<>>(d_update, D2_ROF, N, M); - CHECK(cudaDeviceSynchronize()); - /****************LLT******************/ - /* estimate second-order derrivatives */ - der2D_LLT_kernel<<>>(d_update, D1_LLT, D2_LLT, N, M); - /* Joint update for ROF and LLT models */ - Update2D_LLT_ROF_kernel<<>>(d_input, d_update, D1_LLT, D2_LLT, D1_ROF, D2_ROF, lambdaROF, lambdaLLT, tau, N, M); - CHECK(cudaDeviceSynchronize()); - } - } - else { - // 3D case - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE)); - - for(int n=0; n < iterationsNumb; n++) { - /****************ROF******************/ - /* calculate first-order differences */ - D1_func3D_ROF_kernel<<>>(d_update, D1_ROF, N, M, Z); - CHECK(cudaDeviceSynchronize()); - D2_func3D_ROF_kernel<<>>(d_update, D2_ROF, N, M, Z); - CHECK(cudaDeviceSynchronize()); - D3_func3D_ROF_kernel<<>>(d_update, D3_ROF, N, M, Z); - CHECK(cudaDeviceSynchronize()); - /****************LLT******************/ - /* estimate second-order derrivatives */ - der3D_LLT_kernel<<>>(d_update, D1_LLT, D2_LLT, D3_LLT, N, M, Z); - /* Joint update for ROF and LLT models */ - Update3D_LLT_ROF_kernel<<>>(d_input, d_update, D1_LLT, D2_LLT, D3_LLT, D1_ROF, D2_ROF, D3_ROF, lambdaROF, lambdaLLT, tau, N, M, Z); - CHECK(cudaDeviceSynchronize()); - } - } - CHECK(cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost)); - CHECK(cudaFree(d_input)); - CHECK(cudaFree(d_update)); - CHECK(cudaFree(D1_LLT)); - CHECK(cudaFree(D2_LLT)); - CHECK(cudaFree(D3_LLT)); - CHECK(cudaFree(D1_ROF)); - CHECK(cudaFree(D2_ROF)); - CHECK(cudaFree(D3_ROF)); - return 0; -} diff --git a/Core/regularisers_GPU/LLT_ROF_GPU_core.h b/Core/regularisers_GPU/LLT_ROF_GPU_core.h deleted file mode 100644 index a6bfcc7..0000000 --- a/Core/regularisers_GPU/LLT_ROF_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __ROFLLTGPU_H__ -#define __ROFLLTGPU_H__ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z); - -#endif diff --git a/Core/regularisers_GPU/NonlDiff_GPU_core.cu b/Core/regularisers_GPU/NonlDiff_GPU_core.cu deleted file mode 100644 index ff7ce4d..0000000 --- a/Core/regularisers_GPU/NonlDiff_GPU_core.cu +++ /dev/null @@ -1,345 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "NonlDiff_GPU_core.h" -#include "shared.h" - -/* CUDA implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 -#define EPS 1.0e-5 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) - -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -__host__ __device__ int signNDF (float x) -{ - return (x > 0) - (x < 0); -} - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -__global__ void LinearDiff2D_kernel(float *Input, float *Output, float lambdaPar, float tau, int N, int M) - { - int i1,i2,j1,j2; - float e,w,n,s,e1,w1,n1,s1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - e = Output[j*N+i1]; - w = Output[j*N+i2]; - n = Output[j1*N+i]; - s = Output[j2*N+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); - } - } - - __global__ void NonLinearDiff2D_kernel(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int N, int M) - { - int i1,i2,j1,j2; - float e,w,n,s,e1,w1,n1,s1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - e = Output[j*N+i1]; - w = Output[j*N+i2]; - n = Output[j1*N+i]; - s = Output[j2*N+i]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - - if (penaltytype == 1){ - /* Huber penalty */ - if (abs(e1) > sigmaPar) e1 = signNDF(e1); - else e1 = e1/sigmaPar; - - if (abs(w1) > sigmaPar) w1 = signNDF(w1); - else w1 = w1/sigmaPar; - - if (abs(n1) > sigmaPar) n1 = signNDF(n1); - else n1 = n1/sigmaPar; - - if (abs(s1) > sigmaPar) s1 = signNDF(s1); - else s1 = s1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + pow((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + pow((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + pow((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + pow((s1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (abs(e1) <= sigmaPar) e1 = e1*pow((1.0f - pow((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (abs(w1) <= sigmaPar) w1 = w1*pow((1.0f - pow((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (abs(n1) <= sigmaPar) n1 = n1*pow((1.0f - pow((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (abs(s1) <= sigmaPar) s1 = s1*pow((1.0f - pow((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - } - else printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); - } - } -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ - -__global__ void LinearDiff3D_kernel(float *Input, float *Output, float lambdaPar, float tau, int N, int M, int Z) - { - int i1,i2,j1,j2,k1,k2; - float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M) && (k >= 0) && (k < Z)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == Z) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - e = Output[(N*M)*k + i1 + N*j]; - w = Output[(N*M)*k + i2 + N*j]; - n = Output[(N*M)*k + i + N*j1]; - s = Output[(N*M)*k + i + N*j2]; - u = Output[(N*M)*k1 + i + N*j]; - d = Output[(N*M)*k2 + i + N*j]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - u1 = u - Output[index]; - d1 = d - Output[index]; - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); - } - } - -__global__ void NonLinearDiff3D_kernel(float *Input, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int N, int M, int Z) - { - int i1,i2,j1,j2,k1,k2; - float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M) && (k >= 0) && (k < Z)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == Z) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - e = Output[(N*M)*k + i1 + N*j]; - w = Output[(N*M)*k + i2 + N*j]; - n = Output[(N*M)*k + i + N*j1]; - s = Output[(N*M)*k + i + N*j2]; - u = Output[(N*M)*k1 + i + N*j]; - d = Output[(N*M)*k2 + i + N*j]; - - e1 = e - Output[index]; - w1 = w - Output[index]; - n1 = n - Output[index]; - s1 = s - Output[index]; - u1 = u - Output[index]; - d1 = d - Output[index]; - - - if (penaltytype == 1){ - /* Huber penalty */ - if (abs(e1) > sigmaPar) e1 = signNDF(e1); - else e1 = e1/sigmaPar; - - if (abs(w1) > sigmaPar) w1 = signNDF(w1); - else w1 = w1/sigmaPar; - - if (abs(n1) > sigmaPar) n1 = signNDF(n1); - else n1 = n1/sigmaPar; - - if (abs(s1) > sigmaPar) s1 = signNDF(s1); - else s1 = s1/sigmaPar; - - if (abs(u1) > sigmaPar) u1 = signNDF(u1); - else u1 = u1/sigmaPar; - - if (abs(d1) > sigmaPar) d1 = signNDF(d1); - else d1 = d1/sigmaPar; - } - else if (penaltytype == 2) { - /* Perona-Malik */ - e1 = (e1)/(1.0f + pow((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + pow((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + pow((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + pow((s1/sigmaPar),2)); - u1 = (u1)/(1.0f + pow((u1/sigmaPar),2)); - d1 = (d1)/(1.0f + pow((d1/sigmaPar),2)); - } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (abs(e1) <= sigmaPar) e1 = e1*pow((1.0f - pow((e1/sigmaPar),2)), 2); - else e1 = 0.0f; - if (abs(w1) <= sigmaPar) w1 = w1*pow((1.0f - pow((w1/sigmaPar),2)), 2); - else w1 = 0.0f; - if (abs(n1) <= sigmaPar) n1 = n1*pow((1.0f - pow((n1/sigmaPar),2)), 2); - else n1 = 0.0f; - if (abs(s1) <= sigmaPar) s1 = s1*pow((1.0f - pow((s1/sigmaPar),2)), 2); - else s1 = 0.0f; - if (abs(u1) <= sigmaPar) u1 = u1*pow((1.0f - pow((u1/sigmaPar),2)), 2); - else u1 = 0.0f; - if (abs(d1) <= sigmaPar) d1 = d1*pow((1.0f - pow((d1/sigmaPar),2)), 2); - else d1 = 0.0f; - } - else printf("%s \n", "No penalty function selected! Use 1,2 or 3."); - - Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); - } - } - -///////////////////////////////////////////////// -// HOST FUNCTION -extern "C" int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z) -{ - // set up device - int dev = 0; - CHECK(cudaSetDevice(dev)); - float *d_input, *d_output; - float sigmaPar2; - sigmaPar2 = sigmaPar/sqrt(2.0f); - - CHECK(cudaMalloc((void**)&d_input,N*M*Z*sizeof(float))); - CHECK(cudaMalloc((void**)&d_output,N*M*Z*sizeof(float))); - - CHECK(cudaMemcpy(d_input,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); - CHECK(cudaMemcpy(d_output,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); - - if (Z == 1) { - /*2D case */ - - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D)); - - for(int n=0; n < iterationsNumb; n++) { - if (sigmaPar == 0.0f) { - /* linear diffusion (heat equation) */ - LinearDiff2D_kernel<<>>(d_input, d_output, lambdaPar, tau, N, M); - CHECK(cudaDeviceSynchronize()); - } - else { - /* nonlinear diffusion */ - NonLinearDiff2D_kernel<<>>(d_input, d_output, lambdaPar, sigmaPar2, tau, penaltytype, N, M); - CHECK(cudaDeviceSynchronize()); - } - } - } - else { - /*3D case*/ - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKZSIZE)); - for(int n=0; n < iterationsNumb; n++) { - if (sigmaPar == 0.0f) { - /* linear diffusion (heat equation) */ - LinearDiff3D_kernel<<>>(d_input, d_output, lambdaPar, tau, N, M, Z); - CHECK(cudaDeviceSynchronize()); - } - else { - /* nonlinear diffusion */ - NonLinearDiff3D_kernel<<>>(d_input, d_output, lambdaPar, sigmaPar2, tau, penaltytype, N, M, Z); - CHECK(cudaDeviceSynchronize()); - } - } - - } - CHECK(cudaMemcpy(Output,d_output,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost)); - CHECK(cudaFree(d_input)); - CHECK(cudaFree(d_output)); - //cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/NonlDiff_GPU_core.h b/Core/regularisers_GPU/NonlDiff_GPU_core.h deleted file mode 100644 index 5fe457e..0000000 --- a/Core/regularisers_GPU/NonlDiff_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __NonlDiffGPU_H__ -#define __NonlDiffGPU_H__ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z); - -#endif diff --git a/Core/regularisers_GPU/PatchSelect_GPU_core.cu b/Core/regularisers_GPU/PatchSelect_GPU_core.cu deleted file mode 100644 index 98c8488..0000000 --- a/Core/regularisers_GPU/PatchSelect_GPU_core.cu +++ /dev/null @@ -1,460 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "PatchSelect_GPU_core.h" -#include "shared.h" - -/* CUDA implementation of non-local weight pre-calculation for non-local priors - * Weights and associated indices are stored into pre-allocated arrays and passed - * to the regulariser - * - * - * Input Parameters: - * 1. 2D grayscale image (classical 3D version will not be supported but rather 2D + dim extension (TODO)) - * 2. Searching window (half-size of the main bigger searching window, e.g. 11) - * 3. Similarity window (half-size of the patch window, e.g. 2) - * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) - * 5. noise-related parameter to calculate non-local weights - * - * Output [2D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. Weights_ij - associated weights - */ - - -#define BLKXSIZE 16 -#define BLKYSIZE 16 -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) -#define M_PI 3.14159265358979323846 -#define EPS 1.0e-8 -#define CONSTVECSIZE5 121 -#define CONSTVECSIZE7 225 -#define CONSTVECSIZE9 361 -#define CONSTVECSIZE11 529 -#define CONSTVECSIZE13 729 - -__device__ void swap(float *xp, float *yp) -{ - float temp = *xp; - *xp = *yp; - *yp = temp; -} -__device__ void swapUS(unsigned short *xp, unsigned short *yp) -{ - unsigned short temp = *xp; - *xp = *yp; - *yp = temp; -} - -/********************************************************************************/ -__global__ void IndexSelect2D_5_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2) -{ - - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2; - float normsum; - - float Weight_Vec[CONSTVECSIZE5]; - unsigned short ind_i[CONSTVECSIZE5]; - unsigned short ind_j[CONSTVECSIZE5]; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - long index = i*M+j; - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) { - if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) { - normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2); - counterG++; - }} - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = __expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index2 = (N*M*x) + index; - H_i_d[index2] = ind_i[x]; - H_j_d[index2] = ind_j[x]; - Weights_d[index2] = Weight_Vec[x]; - } -} -/********************************************************************************/ -__global__ void IndexSelect2D_7_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2) -{ - - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2; - float normsum; - - float Weight_Vec[CONSTVECSIZE7]; - unsigned short ind_i[CONSTVECSIZE7]; - unsigned short ind_j[CONSTVECSIZE7]; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - long index = i*M+j; - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) { - if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) { - normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2); - counterG++; - }} - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = __expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index2 = (N*M*x) + index; - H_i_d[index2] = ind_i[x]; - H_j_d[index2] = ind_j[x]; - Weights_d[index2] = Weight_Vec[x]; - } -} -__global__ void IndexSelect2D_9_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2) -{ - - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2; - float normsum; - - float Weight_Vec[CONSTVECSIZE9]; - unsigned short ind_i[CONSTVECSIZE9]; - unsigned short ind_j[CONSTVECSIZE9]; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - long index = i*M+j; - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) { - if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) { - normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2); - counterG++; - }} - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index2 = (N*M*x) + index; - H_i_d[index2] = ind_i[x]; - H_j_d[index2] = ind_j[x]; - Weights_d[index2] = Weight_Vec[x]; - } -} -__global__ void IndexSelect2D_11_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2) -{ - - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2; - float normsum; - - float Weight_Vec[CONSTVECSIZE11]; - unsigned short ind_i[CONSTVECSIZE11]; - unsigned short ind_j[CONSTVECSIZE11]; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - long index = i*M+j; - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) { - if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) { - normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2); - counterG++; - }} - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = __expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index2 = (N*M*x) + index; - H_i_d[index2] = ind_i[x]; - H_j_d[index2] = ind_j[x]; - Weights_d[index2] = Weight_Vec[x]; - } -} -__global__ void IndexSelect2D_13_kernel(float *Ad, unsigned short *H_i_d, unsigned short *H_j_d, float *Weights_d, float *Eucl_Vec_d, int N, int M, int SearchWindow, int SearchW_full, int SimilarWin, int NumNeighb, float h2) -{ - - long i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, counter, x, y, counterG, index2; - float normsum; - - float Weight_Vec[CONSTVECSIZE13]; - unsigned short ind_i[CONSTVECSIZE13]; - unsigned short ind_j[CONSTVECSIZE13]; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - long index = i*M+j; - - counter = 0; - for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { - for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < N)) && ((j1 >= 0) && (j1 < M))) { - normsum = 0.0f; counterG = 0; - for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { - for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { - i2 = i1 + i_c; - j2 = j1 + j_c; - i3 = i + i_c; - j3 = j + j_c; - if (((i2 >= 0) && (i2 < N)) && ((j2 >= 0) && (j2 < M))) { - if (((i3 >= 0) && (i3 < N)) && ((j3 >= 0) && (j3 < M))) { - normsum += Eucl_Vec_d[counterG]*powf(Ad[i3*M + j3] - Ad[i2*M + j2], 2); - counterG++; - }} - }} - /* writing temporarily into vectors */ - if (normsum > EPS) { - Weight_Vec[counter] = __expf(-normsum/h2); - ind_i[counter] = i1; - ind_j[counter] = j1; - counter++; - } - } - }} - - /* do sorting to choose the most prominent weights [HIGH to LOW] */ - /* and re-arrange indeces accordingly */ - for (x = 0; x < counter-1; x++) { - for (y = 0; y < counter-x-1; y++) { - if (Weight_Vec[y] < Weight_Vec[y+1]) { - swap(&Weight_Vec[y], &Weight_Vec[y+1]); - swapUS(&ind_i[y], &ind_i[y+1]); - swapUS(&ind_j[y], &ind_j[y+1]); - } - } - } - /*sorting loop finished*/ - /*now select the NumNeighb more prominent weights and store into arrays */ - for(x=0; x < NumNeighb; x++) { - index2 = (N*M*x) + index; - H_i_d[index2] = ind_i[x]; - H_j_d[index2] = ind_j[x]; - Weights_d[index2] = Weight_Vec[x]; - } -} - - -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -/********************* MAIN HOST FUNCTION ******************/ -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -extern "C" int PatchSelect_GPU_main(float *A, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h) -{ - int deviceCount = -1; // number of devices - cudaGetDeviceCount(&deviceCount); - if (deviceCount == 0) { - fprintf(stderr, "No CUDA devices found\n"); - return -1; - } - - int SearchW_full, SimilW_full, counterG, i, j; - float *Ad, *Weights_d, h2, *Eucl_Vec, *Eucl_Vec_d; - unsigned short *H_i_d, *H_j_d; - h2 = h*h; - - dim3 dimBlock(BLKXSIZE,BLKYSIZE); - dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE)); - - SearchW_full = (2*SearchWindow + 1)*(2*SearchWindow + 1); /* the full searching window size */ - SimilW_full = (2*SimilarWin + 1)*(2*SimilarWin + 1); /* the full similarity window size */ - - /* generate a 2D Gaussian kernel for NLM procedure */ - Eucl_Vec = (float*) calloc (SimilW_full,sizeof(float)); - counterG = 0; - for(i=-SimilarWin; i<=SimilarWin; i++) { - for(j=-SimilarWin; j<=SimilarWin; j++) { - Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2))/(2.0*SimilarWin*SimilarWin)); - counterG++; - }} /*main neighb loop */ - - - /*allocate space on the device*/ - checkCudaErrors( cudaMalloc((void**)&Ad, N*M*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&H_i_d, N*M*NumNeighb*sizeof(unsigned short)) ); - checkCudaErrors( cudaMalloc((void**)&H_j_d, N*M*NumNeighb*sizeof(unsigned short)) ); - checkCudaErrors( cudaMalloc((void**)&Weights_d, N*M*NumNeighb*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d, SimilW_full*sizeof(float)) ); - - /* copy data from the host to the device */ - checkCudaErrors( cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice) ); - checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*sizeof(float),cudaMemcpyHostToDevice) ); - - /********************** Run CUDA kernel here ********************/ - if (SearchWindow == 5) IndexSelect2D_5_kernel<<>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2); - else if (SearchWindow == 7) IndexSelect2D_7_kernel<<>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2); - else if (SearchWindow == 9) IndexSelect2D_9_kernel<<>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2); - else if (SearchWindow == 11) IndexSelect2D_11_kernel<<>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2); - else if (SearchWindow == 13) IndexSelect2D_13_kernel<<>>(Ad, H_i_d, H_j_d, Weights_d, Eucl_Vec_d, N, M, SearchWindow, SearchW_full, SimilarWin, NumNeighb, h2); - else { - fprintf(stderr, "Select the searching window size from 5, 7, 9, 11 or 13\n"); - return -1;} - checkCudaErrors(cudaPeekAtLastError() ); - checkCudaErrors(cudaDeviceSynchronize()); - /***************************************************************/ - - checkCudaErrors(cudaMemcpy(H_i, H_i_d, N*M*NumNeighb*sizeof(unsigned short),cudaMemcpyDeviceToHost) ); - checkCudaErrors(cudaMemcpy(H_j, H_j_d, N*M*NumNeighb*sizeof(unsigned short),cudaMemcpyDeviceToHost) ); - checkCudaErrors(cudaMemcpy(Weights, Weights_d, N*M*NumNeighb*sizeof(float),cudaMemcpyDeviceToHost) ); - - - cudaFree(Ad); - cudaFree(H_i_d); - cudaFree(H_j_d); - cudaFree(Weights_d); - cudaFree(Eucl_Vec_d); - cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/PatchSelect_GPU_core.h b/Core/regularisers_GPU/PatchSelect_GPU_core.h deleted file mode 100644 index 8c124d3..0000000 --- a/Core/regularisers_GPU/PatchSelect_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __NLREG_KERNELS_H_ -#define __NLREG_KERNELS_H_ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int PatchSelect_GPU_main(float *A, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h); - -#endif diff --git a/Core/regularisers_GPU/TGV_GPU_core.cu b/Core/regularisers_GPU/TGV_GPU_core.cu deleted file mode 100644 index 58b2c41..0000000 --- a/Core/regularisers_GPU/TGV_GPU_core.cu +++ /dev/null @@ -1,625 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TGV_GPU_core.h" -#include "shared.h" - -/* CUDA implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume (2D/3D) - * 2. lambda - regularisation parameter - * 3. parameter to control the first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regulariaed image - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 -#define EPS 1.0e-7 -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) - - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, float sigma) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[index] += sigma*((U[j*dimX+(i-1)] - U[index]) - V1[index]); - else P1[index] += sigma*((U[j*dimX+(i+1)] - U[index]) - V1[index]); - if (j == dimY-1) P2[index] += sigma*((U[(j-1)*dimX+i] - U[index]) - V2[index]); - else P2[index] += sigma*((U[(j+1)*dimX+i] - U[index]) - V2[index]); - } - return; -} - -__global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float alpha1) -{ - float grad_magn; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - grad_magn = sqrt(pow(P1[index],2) + pow(P2[index],2)); - grad_magn = grad_magn/alpha1; - if (grad_magn > 1.0f) { - P1[index] /= grad_magn; - P2[index] /= grad_magn; - } - } - return; -} - -__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float sigma) -{ - float q1, q2, q11, q22; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - /* symmetric boundary conditions (Neuman) */ - q1 = 0.0f; q11 = 0.0f; q2 = 0.0f; q22 = 0.0f; - /* boundary conditions (Neuman) */ - if (i != dimX-1){ - q1 = V1[j*dimX+(i+1)] - V1[index]; - q11 = V2[j*dimX+(i+1)] - V2[index]; - } - if (j != dimY-1) { - q2 = V2[(j+1)*dimX+i] - V2[index]; - q22 = V1[(j+1)*dimX+i] - V1[index]; - } - Q1[index] += sigma*(q1); - Q2[index] += sigma*(q2); - Q3[index] += sigma*(0.5f*(q11 + q22)); - } - return; -} - -__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int dimY, float alpha0) -{ - float grad_magn; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - grad_magn = sqrt(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2)); - grad_magn = grad_magn/alpha0; - if (grad_magn > 1.0f) { - Q1[index] /= grad_magn; - Q2[index] /= grad_magn; - Q3[index] /= grad_magn; - } - } - return; -} - -__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, int dimX, int dimY, float lambda, float tau) -{ - float P_v1, P_v2, div; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - if (i == 0) P_v1 = P1[index]; - else P_v1 = P1[index] - P1[j*dimX+(i-1)]; - if (j == 0) P_v2 = P2[index]; - else P_v2 = P2[index] - P2[(j-1)*dimX+i]; - div = P_v1 + P_v2; - U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); - } - return; -} - -__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float tau) -{ - float q1, q3_x, q2, q3_y, div1, div2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + dimX*j; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - q2 = 0.0f; q3_y = 0.0f; q1 = 0.0f; q3_x = 0.0; - /* boundary conditions (Neuman) */ - if (i != 0) { - q1 = Q1[index] - Q1[j*dimX+(i-1)]; - q3_x = Q3[index] - Q3[j*dimX+(i-1)]; - } - if (j != 0) { - q2 = Q2[index] - Q2[(j-1)*dimX+i]; - q3_y = Q3[index] - Q3[(j-1)*dimX+i]; - } - div1 = q1 + q3_y; - div2 = q3_x + q2; - V1[index] += tau*(P1[index] + div1); - V2[index] += tau*(P2[index] + div2); - } - return; -} - -__global__ void copyIm_TGV_kernel(float *U, float *U_old, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - U_old[index] = U[index]; - } -} - -__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - V1_old[index] = V1[index]; - V2_old[index] = V2[index]; - } -} - -__global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - U[index] = 2.0f*U[index] - U_old[index]; - } -} - - -__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - V1[index] = 2.0f*V1[index] - V1_old[index]; - V2[index] = 2.0f*V2[index] - V2_old[index]; - } -} -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ -__global__ void DualP_3D_kernel(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) -{ - int index; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - index = (dimX*dimY)*k + j*dimX+i; - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i-1)] - U[index]) - V1[index]); - else P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i+1)] - U[index]) - V1[index]); - if (j == dimY-1) P2[index] += sigma*((U[(dimX*dimY)*k + (j-1)*dimX+i] - U[index]) - V2[index]); - else P2[index] += sigma*((U[(dimX*dimY)*k + (j+1)*dimX+i] - U[index]) - V2[index]); - if (k == dimZ-1) P3[index] += sigma*((U[(dimX*dimY)*(k-1) + j*dimX+i] - U[index]) - V3[index]); - else P3[index] += sigma*((U[(dimX*dimY)*(k+1) + j*dimX+i] - U[index]) - V3[index]); - } - return; -} - -__global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float alpha1) -{ - float grad_magn; - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - index = (dimX*dimY)*k + j*dimX+i; - - grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1; - if (grad_magn > 1.0f) { - P1[index] /= grad_magn; - P2[index] /= grad_magn; - P3[index] /= grad_magn; - } - } - return; -} - -__global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float sigma) -{ - int index; - float q1, q2, q3, q11, q22, q33, q44, q55, q66; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - index = (dimX*dimY)*k + j*dimX+i; - q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f; - /* symmetric boundary conditions (Neuman) */ - if (i != dimX-1){ - q1 = V1[(dimX*dimY)*k + j*dimX+(i+1)] - V1[index]; - q11 = V2[(dimX*dimY)*k + j*dimX+(i+1)] - V2[index]; - q33 = V3[(dimX*dimY)*k + j*dimX+(i+1)] - V3[index]; - } - if (j != dimY-1) { - q2 = V2[(dimX*dimY)*k + (j+1)*dimX+i] - V2[index]; - q22 = V1[(dimX*dimY)*k + (j+1)*dimX+i] - V1[index]; - q55 = V3[(dimX*dimY)*k + (j+1)*dimX+i] - V3[index]; - } - if (k != dimZ-1) { - q3 = V3[(dimX*dimY)*(k+1) + j*dimX+i] - V3[index]; - q44 = V1[(dimX*dimY)*(k+1) + j*dimX+i] - V1[index]; - q66 = V2[(dimX*dimY)*(k+1) + j*dimX+i] - V2[index]; - } - - Q1[index] += sigma*(q1); /*Q11*/ - Q2[index] += sigma*(q2); /*Q22*/ - Q3[index] += sigma*(q3); /*Q33*/ - Q4[index] += sigma*(0.5f*(q11 + q22)); /* Q21 / Q12 */ - Q5[index] += sigma*(0.5f*(q33 + q44)); /* Q31 / Q13 */ - Q6[index] += sigma*(0.5f*(q55 + q66)); /* Q32 / Q23 */ - } - return; -} - - -__global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float alpha0) -{ - float grad_magn; - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - index = (dimX*dimY)*k + j*dimX+i; - - grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2)); - grad_magn = grad_magn/alpha0; - if (grad_magn > 1.0f) { - Q1[index] /= grad_magn; - Q2[index] /= grad_magn; - Q3[index] /= grad_magn; - Q4[index] /= grad_magn; - Q5[index] /= grad_magn; - Q6[index] /= grad_magn; - } - } - return; -} -__global__ void DivProjP_3D_kernel(float *U, float *U0, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - float P_v1, P_v2, P_v3, div; - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - index = (dimX*dimY)*k + j*dimX+i; - - if (i == 0) P_v1 = P1[index]; - else P_v1 = P1[index] - P1[(dimX*dimY)*k + j*dimX+(i-1)]; - if (j == 0) P_v2 = P2[index]; - else P_v2 = P2[index] - P2[(dimX*dimY)*k + (j-1)*dimX+i]; - if (k == 0) P_v3 = P3[index]; - else P_v3 = P3[index] - P3[(dimX*dimY)*(k-1) + (j)*dimX+i]; - - div = P_v1 + P_v2 + P_v3; - U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); - } - return; -} -__global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float tau) -{ - float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3; - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - index = (dimX*dimY)*k + j*dimX+i; - - q1 = 0.0f; q4x= 0.0f; q5x= 0.0f; q2= 0.0f; q4y= 0.0f; q6y= 0.0f; q6z= 0.0f; q5z= 0.0f; q3= 0.0f; - /* Q1 - Q11, Q2 - Q22, Q3 - Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/ - /* symmetric boundary conditions (Neuman) */ - if (i != 0) { - q1 = Q1[index] - Q1[(dimX*dimY)*k + j*dimX+(i-1)]; - q4x = Q4[index] - Q4[(dimX*dimY)*k + j*dimX+(i-1)]; - q5x = Q5[index] - Q5[(dimX*dimY)*k + j*dimX+(i-1)]; - } - if (j != 0) { - q2 = Q2[index] - Q2[(dimX*dimY)*k + (j-1)*dimX+i]; - q4y = Q4[index] - Q4[(dimX*dimY)*k + (j-1)*dimX+i]; - q6y = Q6[index] - Q6[(dimX*dimY)*k + (j-1)*dimX+i]; - } - if (k != 0) { - q6z = Q6[index] - Q6[(dimX*dimY)*(k-1) + (j)*dimX+i]; - q5z = Q5[index] - Q5[(dimX*dimY)*(k-1) + (j)*dimX+i]; - q3 = Q3[index] - Q3[(dimX*dimY)*(k-1) + (j)*dimX+i]; - } - div1 = q1 + q4y + q5z; - div2 = q4x + q2 + q6z; - div3 = q5x + q6y + q3; - - V1[index] += tau*(P1[index] + div1); - V2[index] += tau*(P2[index] + div2); - V3[index] += tau*(P3[index] + div3); - } - return; -} - -__global__ void copyIm_TGV_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) -{ - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - index = (dimX*dimY)*k + j*dimX+i; - - if (index < num_total) { - U_old[index] = U[index]; - } -} - -__global__ void copyIm_TGV_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) -{ - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - index = (dimX*dimY)*k + j*dimX+i; - - if (index < num_total) { - V1_old[index] = V1[index]; - V2_old[index] = V2[index]; - V3_old[index] = V3[index]; - } -} - -__global__ void newU_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) -{ - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - index = (dimX*dimY)*k + j*dimX+i; - - if (index < num_total) { - U[index] = 2.0f*U[index] - U_old[index]; - } -} - -__global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) -{ - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - index = (dimX*dimY)*k + j*dimX+i; - - if (index < num_total) { - V1[index] = 2.0f*V1[index] - V1_old[index]; - V2[index] = 2.0f*V2[index] - V2_old[index]; - V3[index] = 2.0f*V3[index] - V3_old[index]; - } -} - -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -/************************ MAIN HOST FUNCTION ***********************/ -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ) -{ - int dimTotal, dev = 0; - CHECK(cudaSetDevice(dev)); - - dimTotal = dimX*dimY*dimZ; - - float *U_old, *d_U0, *d_U, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma; - tau = pow(L2,-0.5); - sigma = pow(L2,-0.5); - - CHECK(cudaMalloc((void**)&d_U0,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&d_U,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&U_old,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&P1,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&P2,dimTotal*sizeof(float))); - - CHECK(cudaMalloc((void**)&Q1,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&Q2,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&Q3,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V1,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V2,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V1_old,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V2_old,dimTotal*sizeof(float))); - - CHECK(cudaMemcpy(d_U0,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); - CHECK(cudaMemcpy(d_U,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); - - if (dimZ == 1) { - /*2D case */ - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); - - for(int n=0; n < iterationsNumb; n++) { - - /* Calculate Dual Variable P */ - DualP_2D_kernel<<>>(d_U, V1, V2, P1, P2, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); - /*Projection onto convex set for P*/ - ProjP_2D_kernel<<>>(P1, P2, dimX, dimY, alpha1); - CHECK(cudaDeviceSynchronize()); - /* Calculate Dual Variable Q */ - DualQ_2D_kernel<<>>(V1, V2, Q1, Q2, Q3, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); - /*Projection onto convex set for Q*/ - ProjQ_2D_kernel<<>>(Q1, Q2, Q3, dimX, dimY, alpha0); - CHECK(cudaDeviceSynchronize()); - /*saving U into U_old*/ - copyIm_TGV_kernel<<>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); - /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D_kernel<<>>(d_U, d_U0, P1, P2, dimX, dimY, lambda, tau); - CHECK(cudaDeviceSynchronize()); - /*get updated solution U*/ - newU_kernel<<>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); - /*saving V into V_old*/ - copyIm_TGV_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); - /* upd V*/ - UpdV_2D_kernel<<>>(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, tau); - CHECK(cudaDeviceSynchronize()); - /*get new V*/ - newU_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); - } - } - else { - /*3D case */ - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKXSIZE)); - - float *P3, *Q4, *Q5, *Q6, *V3, *V3_old; - - CHECK(cudaMalloc((void**)&P3,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&Q4,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&Q5,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&Q6,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V3,dimTotal*sizeof(float))); - CHECK(cudaMalloc((void**)&V3_old,dimTotal*sizeof(float))); - - for(int n=0; n < iterationsNumb; n++) { - - /* Calculate Dual Variable P */ - DualP_3D_kernel<<>>(d_U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); - /*Projection onto convex set for P*/ - ProjP_3D_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, alpha1); - CHECK(cudaDeviceSynchronize()); - /* Calculate Dual Variable Q */ - DualQ_3D_kernel<<>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); - /*Projection onto convex set for Q*/ - ProjQ_3D_kernel<<>>(Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, alpha0); - CHECK(cudaDeviceSynchronize()); - /*saving U into U_old*/ - copyIm_TGV_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); - /*adjoint operation -> divergence and projection of P*/ - DivProjP_3D_kernel<<>>(d_U, d_U0, P1, P2, P3, dimX, dimY, dimZ, lambda, tau); - CHECK(cudaDeviceSynchronize()); - /*get updated solution U*/ - newU_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); - /*saving V into V_old*/ - copyIm_TGV_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); - /* upd V*/ - UpdV_3D_kernel<<>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, tau); - CHECK(cudaDeviceSynchronize()); - /*get new V*/ - newU_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); - } - - CHECK(cudaFree(Q4)); - CHECK(cudaFree(Q5)); - CHECK(cudaFree(Q6)); - CHECK(cudaFree(P3)); - CHECK(cudaFree(V3)); - CHECK(cudaFree(V3_old)); - } - - CHECK(cudaMemcpy(U,d_U,dimTotal*sizeof(float),cudaMemcpyDeviceToHost)); - CHECK(cudaFree(d_U0)); - CHECK(cudaFree(d_U)); - CHECK(cudaFree(U_old)); - CHECK(cudaFree(P1)); - CHECK(cudaFree(P2)); - - CHECK(cudaFree(Q1)); - CHECK(cudaFree(Q2)); - CHECK(cudaFree(Q3)); - CHECK(cudaFree(V1)); - CHECK(cudaFree(V2)); - CHECK(cudaFree(V1_old)); - CHECK(cudaFree(V2_old)); - return 0; -} diff --git a/Core/regularisers_GPU/TGV_GPU_core.h b/Core/regularisers_GPU/TGV_GPU_core.h deleted file mode 100644 index 9f73d1c..0000000 --- a/Core/regularisers_GPU/TGV_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __TGV_GPU_H__ -#define __TGV_GPU_H__ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); - -#endif diff --git a/Core/regularisers_GPU/TV_FGP_GPU_core.cu b/Core/regularisers_GPU/TV_FGP_GPU_core.cu deleted file mode 100755 index b371c5d..0000000 --- a/Core/regularisers_GPU/TV_FGP_GPU_core.cu +++ /dev/null @@ -1,564 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TV_FGP_GPU_core.h" -#include "shared.h" -#include -#include - -/* CUDA implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) -struct square { __host__ __device__ float operator()(float x) { return x * x; } }; - -/************************************************/ -/*****************2D modules*********************/ -/************************************************/ -__global__ void Obj_func2D_kernel(float *Ad, float *D, float *R1, float *R2, int N, int M, int ImSize, float lambda) -{ - - float val1,val2; - - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - if (xIndex <= 0) {val1 = 0.0f;} else {val1 = R1[(xIndex-1) + N*yIndex];} - if (yIndex <= 0) {val2 = 0.0f;} else {val2 = R2[xIndex + N*(yIndex-1)];} - //Write final result to global memory - D[index] = Ad[index] - lambda*(R1[index] + R2[index] - val1 - val2); - } - return; -} - -__global__ void Grad_func2D_kernel(float *P1, float *P2, float *D, float *R1, float *R2, int N, int M, int ImSize, float multip) -{ - - float val1,val2; - - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - - /* boundary conditions */ - if (xIndex >= N-1) val1 = 0.0f; else val1 = D[index] - D[(xIndex+1) + N*yIndex]; - if (yIndex >= M-1) val2 = 0.0f; else val2 = D[index] - D[(xIndex) + N*(yIndex + 1)]; - - //Write final result to global memory - P1[index] = R1[index] + multip*val1; - P2[index] = R2[index] + multip*val2; - } - return; -} - -__global__ void Proj_func2D_iso_kernel(float *P1, float *P2, int N, int M, int ImSize) -{ - - float denom; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - denom = pow(P1[index],2) + pow(P2[index],2); - if (denom > 1.0f) { - P1[index] = P1[index]/sqrt(denom); - P2[index] = P2[index]/sqrt(denom); - } - } - return; -} -__global__ void Proj_func2D_aniso_kernel(float *P1, float *P2, int N, int M, int ImSize) -{ - - float val1, val2; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - val1 = abs(P1[index]); - val2 = abs(P2[index]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - P1[index] = P1[index]/val1; - P2[index] = P2[index]/val2; - } - return; -} -__global__ void Rupd_func2D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, float multip2, int N, int M, int ImSize) -{ - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]); - R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]); - } - return; -} -__global__ void nonneg2D_kernel(float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - if (Output[index] < 0.0f) Output[index] = 0.0f; - } -} -/************************************************/ -/*****************3D modules*********************/ -/************************************************/ -__global__ void Obj_func3D_kernel(float *Ad, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float lambda) -{ - - float val1,val2,val3; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - if (i <= 0) {val1 = 0.0f;} else {val1 = R1[(N*M)*(k) + (i-1) + N*j];} - if (j <= 0) {val2 = 0.0f;} else {val2 = R2[(N*M)*(k) + i + N*(j-1)];} - if (k <= 0) {val3 = 0.0f;} else {val3 = R3[(N*M)*(k-1) + i + N*j];} - //Write final result to global memory - D[index] = Ad[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3); - } - return; -} - -__global__ void Grad_func3D_kernel(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float multip) -{ - - float val1,val2,val3; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - /* boundary conditions */ - if (i >= N-1) val1 = 0.0f; else val1 = D[index] - D[(N*M)*(k) + (i+1) + N*j]; - if (j >= M-1) val2 = 0.0f; else val2 = D[index] - D[(N*M)*(k) + i + N*(j+1)]; - if (k >= Z-1) val3 = 0.0f; else val3 = D[index] - D[(N*M)*(k+1) + i + N*j]; - - //Write final result to global memory - P1[index] = R1[index] + multip*val1; - P2[index] = R2[index] + multip*val2; - P3[index] = R3[index] + multip*val3; - } - return; -} - -__global__ void Proj_func3D_iso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize) -{ - - float denom,sq_denom; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - denom = pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2); - - if (denom > 1.0f) { - sq_denom = 1.0f/sqrt(denom); - P1[index] = P1[index]*sq_denom; - P2[index] = P2[index]*sq_denom; - P3[index] = P3[index]*sq_denom; - } - } - return; -} - -__global__ void Proj_func3D_aniso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize) -{ - - float val1, val2, val3; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - val1 = abs(P1[index]); - val2 = abs(P2[index]); - val3 = abs(P3[index]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - if (val3 < 1.0f) {val3 = 1.0f;} - P1[index] = P1[index]/val1; - P2[index] = P2[index]/val2; - P3[index] = P3[index]/val3; - } - return; -} -__global__ void Rupd_func3D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, float multip2, int N, int M, int Z, int ImSize) -{ - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]); - R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]); - R3[index] = P3[index] + multip2*(P3[index] - P3_old[index]); - } - return; -} - -__global__ void nonneg3D_kernel(float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - if (Output[index] < 0.0f) Output[index] = 0.0f; - } -} -__global__ void FGPcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void FGPcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void FGPResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -__global__ void FGPResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ - -////////////MAIN HOST FUNCTION /////////////// -extern "C" int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ) -{ - int deviceCount = -1; // number of devices - cudaGetDeviceCount(&deviceCount); - if (deviceCount == 0) { - fprintf(stderr, "No CUDA devices found\n"); - return -1; - } - - int count = 0, i; - float re, multip,multip2; - float tk = 1.0f; - float tkp1=1.0f; - - if (dimZ <= 1) { - /*2D verson*/ - int ImSize = dimX*dimY; - float *d_input, *d_update=NULL, *d_update_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL; - - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) ); - if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - cudaMemset(P1, 0, ImSize*sizeof(float)); - cudaMemset(P2, 0, ImSize*sizeof(float)); - cudaMemset(P1_prev, 0, ImSize*sizeof(float)); - cudaMemset(P2_prev, 0, ImSize*sizeof(float)); - cudaMemset(R1, 0, ImSize*sizeof(float)); - cudaMemset(R2, 0, ImSize*sizeof(float)); - - /********************** Run CUDA 2D kernel here ********************/ - multip = (1.0f/(8.0f*lambdaPar)); - - /* The main kernel */ - for (i = 0; i < iter; i++) { - - /* computing the gradient of the objective function */ - Obj_func2D_kernel<<>>(d_input, d_update, R1, R2, dimX, dimY, ImSize, lambdaPar); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (nonneg != 0) { - nonneg2D_kernel<<>>(d_update, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); } - - /*Taking a step towards minus of the gradient*/ - Grad_func2D_kernel<<>>(P1, P2, d_update, R1, R2, dimX, dimY, ImSize, multip); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* projection step */ - if (methodTV == 0) Proj_func2D_iso_kernel<<>>(P1, P2, dimX, dimY, ImSize); /*isotropic TV*/ - else Proj_func2D_aniso_kernel<<>>(P1, P2, dimX, dimY, ImSize); /*anisotropic TV*/ - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - multip2 = ((tk-1.0f)/tkp1); - - Rupd_func2D_kernel<<>>(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, multip2, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (epsil != 0.0f) { - /* calculate norm - stopping rules using the Thrust library */ - FGPResidCalc2D_kernel<<>>(d_update, d_update_prev, P1_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - thrust::device_vector d_vec(P1_prev, P1_prev + ImSize); - float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus())); - thrust::device_vector d_vec2(d_update, d_update + ImSize); - float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus())); - - re = (reduction/reduction2); - if (re < epsil) count++; - if (count > 4) break; - - FGPcopy_kernel2D<<>>(d_update, d_update_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - } - - FGPcopy_kernel2D<<>>(P1, P1_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - FGPcopy_kernel2D<<>>(P2, P2_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tk = tkp1; - } - if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", i); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - if (epsil != 0.0f) cudaFree(d_update_prev); - cudaFree(P1); - cudaFree(P2); - cudaFree(P1_prev); - cudaFree(P2_prev); - cudaFree(R1); - cudaFree(R2); - } - else { - /*3D verson*/ - int ImSize = dimX*dimY*dimZ; - float *d_input, *d_update=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL; - - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P3,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P3_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R3,ImSize*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - cudaMemset(P1, 0, ImSize*sizeof(float)); - cudaMemset(P2, 0, ImSize*sizeof(float)); - cudaMemset(P3, 0, ImSize*sizeof(float)); - cudaMemset(P1_prev, 0, ImSize*sizeof(float)); - cudaMemset(P2_prev, 0, ImSize*sizeof(float)); - cudaMemset(P3_prev, 0, ImSize*sizeof(float)); - cudaMemset(R1, 0, ImSize*sizeof(float)); - cudaMemset(R2, 0, ImSize*sizeof(float)); - cudaMemset(R3, 0, ImSize*sizeof(float)); - /********************** Run CUDA 3D kernel here ********************/ - multip = (1.0f/(26.0f*lambdaPar)); - - /* The main kernel */ - for (i = 0; i < iter; i++) { - - /* computing the gradient of the objective function */ - Obj_func3D_kernel<<>>(d_input, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, lambdaPar); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (nonneg != 0) { - nonneg3D_kernel<<>>(d_update, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); } - - /*Taking a step towards minus of the gradient*/ - Grad_func3D_kernel<<>>(P1, P2, P3, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, multip); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* projection step */ - if (methodTV == 0) Proj_func3D_iso_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* isotropic kernel */ - else Proj_func3D_aniso_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* anisotropic kernel */ - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - multip2 = ((tk-1.0f)/tkp1); - - Rupd_func3D_kernel<<>>(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, multip2, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - FGPcopy_kernel3D<<>>(P1, P1_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - FGPcopy_kernel3D<<>>(P2, P2_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - FGPcopy_kernel3D<<>>(P3, P3_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tk = tkp1; - } - if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", i); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - cudaFree(P1); - cudaFree(P2); - cudaFree(P3); - cudaFree(P1_prev); - cudaFree(P2_prev); - cudaFree(P3_prev); - cudaFree(R1); - cudaFree(R2); - cudaFree(R3); - } - //cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/TV_FGP_GPU_core.h b/Core/regularisers_GPU/TV_FGP_GPU_core.h deleted file mode 100755 index bf13508..0000000 --- a/Core/regularisers_GPU/TV_FGP_GPU_core.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef _TV_FGP_GPU_ -#define _TV_FGP_GPU_ - -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); - -#endif diff --git a/Core/regularisers_GPU/TV_ROF_GPU_core.cu b/Core/regularisers_GPU/TV_ROF_GPU_core.cu deleted file mode 100755 index 76f5be9..0000000 --- a/Core/regularisers_GPU/TV_ROF_GPU_core.cu +++ /dev/null @@ -1,358 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TV_ROF_GPU_core.h" - -/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) -* -* Input Parameters: -* 1. Noisy image/volume [REQUIRED] -* 2. lambda - regularization parameter [REQUIRED] -* 3. tau - marching step for explicit scheme, ~0.1 is recommended [REQUIRED] -* 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] -* -* Output: -* [1] Regularized image/volume - - * This function is based on the paper by -* [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -* -* D. Kazantsev, 2016-18 -*/ -#include "shared.h" - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 -#define EPS 1.0e-12 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) - -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -__host__ __device__ int sign (float x) -{ - return (x > 0) - (x < 0); -} - -/*********************2D case****************************/ - - /* differences 1 */ - __global__ void D1_func2D(float* Input, float* D1, int N, int M) - { - int i1, j1, i2; - float NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < N) && (j >= 0) && (j < M)) { - - /* boundary conditions (Neumann reflections) */ - i1 = i + 1; if (i1 >= N) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= M) j1 = j-1; - - /* Forward-backward differences */ - NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */ - NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[j*N + i2]; /* y- */ - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5f*(sign((float)NOMy_1) + sign((float)NOMy_0))*(MIN(abs((float)NOMy_1), abs((float)NOMy_0))); - denom2 = denom2*denom2; - T1 = sqrt(denom1 + denom2 + EPS); - D1[index] = NOMx_1/T1; - } - } - - /* differences 2 */ - __global__ void D2_func2D(float* Input, float* D2, int N, int M) - { - int i1, j1, j2; - float NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) { - - /* boundary conditions (Neumann reflections) */ - i1 = i + 1; if (i1 >= N) i1 = i-1; - j1 = j + 1; if (j1 >= M) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* Forward-backward differences */ - NOMx_1 = Input[j1*N + i] - Input[index]; /* x+ */ - NOMy_1 = Input[j*N + i1] - Input[index]; /* y+ */ - NOMx_0 = Input[index] - Input[j2*N + i]; /* x- */ - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5f*(sign((float)NOMx_1) + sign((float)NOMx_0))*(MIN(abs((float)NOMx_1), abs((float)NOMx_0))); - denom2 = denom2*denom2; - T2 = sqrt(denom1 + denom2 + EPS); - D2[index] = NOMy_1/T2; - } - } - - __global__ void TV_kernel2D(float *D1, float *D2, float *Update, float *Input, float lambda, float tau, int N, int M) - { - int i2, j2; - float dv1,dv2; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - - int index = i + N*j; - - if ((i >= 0) && (i < (N)) && (j >= 0) && (j < (M))) { - - /* boundary conditions (Neumann reflections) */ - i2 = i - 1; if (i2 < 0) i2 = i+1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - - /* divergence components */ - dv1 = D1[index] - D1[j2*N + i]; - dv2 = D2[index] - D2[j*N + i2]; - - Update[index] += tau*(2.0f*lambda*(dv1 + dv2) - (Update[index] - Input[index])); - - } - } -/*********************3D case****************************/ - - /* differences 1 */ - __global__ void D1_func3D(float* Input, float* D1, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* symmetric boundary conditions (Neuman) */ - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + j1*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + j*dimX + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[(dimX*dimY)*k + j*dimX + i2]; /* y- */ - - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + j*dimX + i]; /* z- */ - - - denom1 = NOMx_1*NOMx_1; - denom2 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0))); - denom3 = denom3*denom3; - T1 = sqrt(denom1 + denom2 + denom3 + EPS); - D1[index] = NOMx_1/T1; - } - } - - /* differences 2 */ - __global__ void D2_func3D(float* Input, float* D2, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - /* symmetric boundary conditions (Neuman) */ - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */ - NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - NOMz_0 = Input[index] - Input[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */ - - - denom1 = NOMy_1*NOMy_1; - denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(abs(NOMz_1),abs(NOMz_0))); - denom3 = denom3*denom3; - T2 = sqrt(denom1 + denom2 + denom3 + EPS); - D2[index] = NOMy_1/T2; - } - } - - /* differences 3 */ - __global__ void D3_func3D(float* Input, float* D3, int dimX, int dimY, int dimZ) - { - float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3; - int i1,i2,k1,j1,j2,k2; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /* Forward-backward differences */ - NOMx_1 = Input[(dimX*dimY)*k + (j1)*dimX + i] - Input[index]; /* x+ */ - NOMy_1 = Input[(dimX*dimY)*k + (j)*dimX + i1] - Input[index]; /* y+ */ - NOMy_0 = Input[index] - Input[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */ - NOMx_0 = Input[index] - Input[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */ - NOMz_1 = Input[(dimX*dimY)*k1 + j*dimX + i] - Input[index]; /* z+ */ - - denom1 = NOMz_1*NOMz_1; - denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(abs(NOMx_1),abs(NOMx_0))); - denom2 = denom2*denom2; - denom3 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(abs(NOMy_1),abs(NOMy_0))); - denom3 = denom3*denom3; - T3 = sqrt(denom1 + denom2 + denom3 + EPS); - D3[index] = NOMz_1/T3; - } - } - - __global__ void TV_kernel3D(float *D1, float *D2, float *D3, float *Update, float *Input, float lambda, float tau, int dimX, int dimY, int dimZ) - { - float dv1, dv2, dv3; - int i1,i2,k1,j1,j2,k2; - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (dimX*dimY)*k + j*dimX+i; - - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { - - /* symmetric boundary conditions (Neuman) */ - i1 = i + 1; if (i1 >= dimX) i1 = i-1; - i2 = i - 1; if (i2 < 0) i2 = i+1; - j1 = j + 1; if (j1 >= dimY) j1 = j-1; - j2 = j - 1; if (j2 < 0) j2 = j+1; - k1 = k + 1; if (k1 >= dimZ) k1 = k-1; - k2 = k - 1; if (k2 < 0) k2 = k+1; - - /*divergence components */ - dv1 = D1[index] - D1[(dimX*dimY)*k + j2*dimX+i]; - dv2 = D2[index] - D2[(dimX*dimY)*k + j*dimX+i2]; - dv3 = D3[index] - D3[(dimX*dimY)*k2 + j*dimX+i]; - - Update[index] += tau*(2.0f*lambda*(dv1 + dv2 + dv3) - (Update[index] - Input[index])); - - } - } - -///////////////////////////////////////////////// -// HOST FUNCTION -extern "C" int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z) -{ - // set up device - int dev = 0; - CHECK(cudaSetDevice(dev)); - float *d_input, *d_update, *d_D1, *d_D2; - - if (Z == 0) Z = 1; - CHECK(cudaMalloc((void**)&d_input,N*M*Z*sizeof(float))); - CHECK(cudaMalloc((void**)&d_update,N*M*Z*sizeof(float))); - CHECK(cudaMalloc((void**)&d_D1,N*M*Z*sizeof(float))); - CHECK(cudaMalloc((void**)&d_D2,N*M*Z*sizeof(float))); - - CHECK(cudaMemcpy(d_input,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); - CHECK(cudaMemcpy(d_update,Input,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); - - if (Z > 1) { - // TV - 3D case - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE)); - - float *d_D3; - CHECK(cudaMalloc((void**)&d_D3,N*M*Z*sizeof(float))); - - for(int n=0; n < iter; n++) { - /* calculate differences */ - D1_func3D<<>>(d_update, d_D1, N, M, Z); - CHECK(cudaDeviceSynchronize()); - D2_func3D<<>>(d_update, d_D2, N, M, Z); - CHECK(cudaDeviceSynchronize()); - D3_func3D<<>>(d_update, d_D3, N, M, Z); - CHECK(cudaDeviceSynchronize()); - /*running main kernel*/ - TV_kernel3D<<>>(d_D1, d_D2, d_D3, d_update, d_input, lambdaPar, tau, N, M, Z); - CHECK(cudaDeviceSynchronize()); - } - - CHECK(cudaFree(d_D3)); - } - else { - // TV - 2D case - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(N,BLKXSIZE2D), idivup(M,BLKYSIZE2D)); - - for(int n=0; n < iter; n++) { - /* calculate differences */ - D1_func2D<<>>(d_update, d_D1, N, M); - CHECK(cudaDeviceSynchronize()); - D2_func2D<<>>(d_update, d_D2, N, M); - CHECK(cudaDeviceSynchronize()); - /*running main kernel*/ - TV_kernel2D<<>>(d_D1, d_D2, d_update, d_input, lambdaPar, tau, N, M); - CHECK(cudaDeviceSynchronize()); - } - } - CHECK(cudaMemcpy(Output,d_update,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost)); - CHECK(cudaFree(d_input)); - CHECK(cudaFree(d_update)); - CHECK(cudaFree(d_D1)); - CHECK(cudaFree(d_D2)); - //cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/TV_ROF_GPU_core.h b/Core/regularisers_GPU/TV_ROF_GPU_core.h deleted file mode 100755 index 3a09296..0000000 --- a/Core/regularisers_GPU/TV_ROF_GPU_core.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef __TVGPU_H__ -#define __TVGPU_H__ -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); - -#endif diff --git a/Core/regularisers_GPU/TV_SB_GPU_core.cu b/Core/regularisers_GPU/TV_SB_GPU_core.cu deleted file mode 100755 index 1f494ee..0000000 --- a/Core/regularisers_GPU/TV_SB_GPU_core.cu +++ /dev/null @@ -1,552 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TV_SB_GPU_core.h" -#include "shared.h" -#include -#include - -/* CUDA implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL parameter] -* 7. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -// This will output the proper CUDA error strings in the event that a CUDA host call returns an error - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) -struct square { __host__ __device__ float operator()(float x) { return x * x; } }; - -/************************************************/ -/*****************2D modules*********************/ -/************************************************/ -__global__ void gauss_seidel2D_kernel(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Bx, float *By, float lambda, float mu, float normConst, int N, int M, int ImSize) -{ - - float sum; - int i1,i2,j1,j2; - - //calculate each thread global index - const int i=blockIdx.x*blockDim.x+threadIdx.x; - const int j=blockIdx.y*blockDim.y+threadIdx.y; - - int index = j*N+i; - - if ((i < N) && (j < M)) { - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - sum = Dx[j*N+i2] - Dx[index] + Dy[j2*N+i] - Dy[index] - Bx[j*N+i2] + Bx[index] - By[j2*N+i] + By[index]; - sum += U_prev[j*N+i1] + U_prev[j*N+i2] + U_prev[j1*N+i] + U_prev[j2*N+i]; - sum *= lambda; - sum += mu*A[index]; - U[index] = normConst*sum; //Write final result to global memory - } - return; -} -__global__ void updDxDy_shrinkAniso2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, float lambda, int N, int M, int ImSize) -{ - - int i1,j1; - float val1, val11, val2, val22, denom_lam; - denom_lam = 1.0f/lambda; - - //calculate each thread global index - const int i=blockIdx.x*blockDim.x+threadIdx.x; - const int j=blockIdx.y*blockDim.y+threadIdx.y; - - int index = j*N+i; - - if ((i < N) && (j < M)) { - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - - val1 = (U[j*N+i1] - U[index]) + Bx[index]; - val2 = (U[j1*N+i] - U[index]) + By[index]; - - val11 = abs(val1) - denom_lam; if (val11 < 0) val11 = 0; - val22 = abs(val2) - denom_lam; if (val22 < 0) val22 = 0; - - if (val1 !=0) Dx[index] = (val1/abs(val1))*val11; else Dx[index] = 0; - if (val2 !=0) Dy[index] = (val2/abs(val2))*val22; else Dy[index] = 0; - } - return; -} - -__global__ void updDxDy_shrinkIso2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, float lambda, int N, int M, int ImSize) -{ - - int i1,j1; - float val1, val11, val2, denom_lam, denom; - denom_lam = 1.0f/lambda; - - //calculate each thread global index - const int i=blockIdx.x*blockDim.x+threadIdx.x; - const int j=blockIdx.y*blockDim.y+threadIdx.y; - - int index = j*N+i; - - if ((i < N) && (j < M)) { - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - - val1 = (U[j*N+i1] - U[index]) + Bx[index]; - val2 = (U[j1*N+i] - U[index]) + By[index]; - - denom = sqrt(val1*val1 + val2*val2); - - val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[index] = val11*(val1/denom); - Dy[index] = val11*(val2/denom); - } - else { - Dx[index] = 0; - Dy[index] = 0; - } - } - return; -} - -__global__ void updBxBy2D_kernel(float *U, float *Dx, float *Dy, float *Bx, float *By, int N, int M, int ImSize) -{ - int i1,j1; - - //calculate each thread global index - const int i=blockIdx.x*blockDim.x+threadIdx.x; - const int j=blockIdx.y*blockDim.y+threadIdx.y; - - int index = j*N+i; - - if ((i < N) && (j < M)) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - - Bx[index] += (U[j*N+i1] - U[index]) - Dx[index]; - By[index] += (U[j1*N+i] - U[index]) - Dy[index]; - } - return; -} - - -/************************************************/ -/*****************3D modules*********************/ -/************************************************/ -__global__ void gauss_seidel3D_kernel(float *U, float *A, float *U_prev, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, float mu, float normConst, int N, int M, int Z, int ImSize) -{ - - float sum,d_val,b_val; - int i1,i2,j1,j2,k1,k2; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - i1 = i+1; if (i1 == N) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == M) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == Z) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - d_val = Dx[(N*M)*k + j*N+i2] - Dx[index] + Dy[(N*M)*k + j2*N+i] - Dy[index] + Dz[(N*M)*k2 + j*N+i] - Dz[index]; - b_val = -Bx[(N*M)*k + j*N+i2] + Bx[index] - By[(N*M)*k + j2*N+i] + By[index] - Bz[(N*M)*k2 + j*N+i] + Bz[index]; - sum = d_val + b_val; - sum += U_prev[(N*M)*k + j*N+i1] + U_prev[(N*M)*k + j*N+i2] + U_prev[(N*M)*k + j1*N+i] + U_prev[(N*M)*k + j2*N+i] + U_prev[(N*M)*k1 + j*N+i] + U_prev[(N*M)*k2 + j*N+i]; - sum *= lambda; - sum += mu*A[index]; - U[index] = normConst*sum; - } - return; -} -__global__ void updDxDy_shrinkAniso3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, int N, int M, int Z, int ImSize) -{ - - int i1,j1,k1; - float val1, val11, val2, val3, val22, val33, denom_lam; - denom_lam = 1.0f/lambda; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - k1 = k+1; if (k1 == Z) k1 = k-1; - - val1 = (U[(N*M)*k + i1 + N*j] - U[index]) + Bx[index]; - val2 = (U[(N*M)*k + i + N*j1] - U[index]) + By[index]; - val3 = (U[(N*M)*k1 + i + N*j] - U[index]) + Bz[index]; - - val11 = abs(val1) - denom_lam; if (val11 < 0.0f) val11 = 0.0f; - val22 = abs(val2) - denom_lam; if (val22 < 0.0f) val22 = 0.0f; - val33 = abs(val3) - denom_lam; if (val33 < 0.0f) val33 = 0.0f; - - if (val1 !=0.0f) Dx[index] = (val1/abs(val1))*val11; else Dx[index] = 0.0f; - if (val2 !=0.0f) Dy[index] = (val2/abs(val2))*val22; else Dy[index] = 0.0f; - if (val3 !=0.0f) Dz[index] = (val3/abs(val3))*val33; else Dz[index] = 0.0f; - } - return; -} - -__global__ void updDxDy_shrinkIso3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, float lambda, int N, int M, int Z, int ImSize) -{ - - int i1,j1,k1; - float val1, val11, val2, val3, denom_lam, denom; - denom_lam = 1.0f/lambda; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - k1 = k+1; if (k1 == Z) k1 = k-1; - - val1 = (U[(N*M)*k + i1 + N*j] - U[index]) + Bx[index]; - val2 = (U[(N*M)*k + i + N*j1] - U[index]) + By[index]; - val3 = (U[(N*M)*k1 + i + N*j] - U[index]) + Bz[index]; - - denom = sqrt(val1*val1 + val2*val2 + val3*val3); - - val11 = (denom - denom_lam); if (val11 < 0.0f) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[index] = val11*(val1/denom); - Dy[index] = val11*(val2/denom); - Dz[index] = val11*(val3/denom); - } - else { - Dx[index] = 0.0f; - Dy[index] = 0.0f; - Dz[index] = 0.0f; - } - } - return; -} - -__global__ void updBxBy3D_kernel(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int N, int M, int Z, int ImSize) -{ - int i1,j1,k1; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == N) i1 = i-1; - j1 = j+1; if (j1 == M) j1 = j-1; - k1 = k+1; if (k1 == Z) k1 = k-1; - - Bx[index] += (U[(N*M)*k + i1 + N*j] - U[index]) - Dx[index]; - By[index] += (U[(N*M)*k + i + N*j1] - U[index]) - Dy[index]; - Bz[index] += (U[(N*M)*k1 + i + N*j] - U[index]) - Dz[index]; - } - return; -} - -__global__ void SBcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void SBcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void SBResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -__global__ void SBResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -/********************* MAIN HOST FUNCTION ******************/ -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -extern "C" int TV_SB_GPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ) -{ - int deviceCount = -1; // number of devices - cudaGetDeviceCount(&deviceCount); - if (deviceCount == 0) { - fprintf(stderr, "No CUDA devices found\n"); - return -1; - } - - int ll, DimTotal; - float re, lambda, normConst; - int count = 0; - mu = 1.0f/mu; - lambda = 2.0f*mu; - - if (dimZ <= 1) { - /*2D verson*/ - DimTotal = dimX*dimY; - normConst = 1.0f/(mu + 4.0f*lambda); - float *d_input, *d_update, *d_res, *d_update_prev=NULL, *Dx=NULL, *Dy=NULL, *Bx=NULL, *By=NULL; - - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update_prev,DimTotal*sizeof(float)) ); - if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_res,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Dx,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Dy,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Bx,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&By,DimTotal*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - checkCudaErrors( cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - cudaMemset(Dx, 0, DimTotal*sizeof(float)); - cudaMemset(Dy, 0, DimTotal*sizeof(float)); - cudaMemset(Bx, 0, DimTotal*sizeof(float)); - cudaMemset(By, 0, DimTotal*sizeof(float)); - - /********************** Run CUDA 2D kernels here ********************/ - /* The main kernel */ - for (ll = 0; ll < iter; ll++) { - - /* storing old value */ - SBcopy_kernel2D<<>>(d_update, d_update_prev, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* perform two GS iterations (normally 2 is enough for the convergence) */ - gauss_seidel2D_kernel<<>>(d_update, d_input, d_update_prev, Dx, Dy, Bx, By, lambda, mu, normConst, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - SBcopy_kernel2D<<>>(d_update, d_update_prev, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - /* 2nd GS iteration */ - gauss_seidel2D_kernel<<>>(d_update, d_input, d_update_prev, Dx, Dy, Bx, By, lambda, mu, normConst, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* TV-related step */ - if (methodTV == 1) updDxDy_shrinkAniso2D_kernel<<>>(d_update, Dx, Dy, Bx, By, lambda, dimX, dimY, DimTotal); - else updDxDy_shrinkIso2D_kernel<<>>(d_update, Dx, Dy, Bx, By, lambda, dimX, dimY, DimTotal); - - /* update for Bregman variables */ - updBxBy2D_kernel<<>>(d_update, Dx, Dy, Bx, By, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (epsil != 0.0f) { - /* calculate norm - stopping rules using the Thrust library */ - SBResidCalc2D_kernel<<>>(d_update, d_update_prev, d_res, dimX, dimY, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - thrust::device_vector d_vec(d_res, d_res + DimTotal); - float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus())); - thrust::device_vector d_vec2(d_update, d_update + DimTotal); - float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus())); - - re = (reduction/reduction2); - if (re < epsil) count++; - if (count > 4) break; - } - - } - if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - cudaFree(d_update_prev); - if (epsil != 0.0f) cudaFree(d_res); - cudaFree(Dx); - cudaFree(Dy); - cudaFree(Bx); - cudaFree(By); - } - else { - /*3D verson*/ - DimTotal = dimX*dimY*dimZ; - normConst = 1.0f/(mu + 6.0f*lambda); - float *d_input, *d_update, *d_res, *d_update_prev=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL; - - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update_prev,DimTotal*sizeof(float)) ); - if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_res,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Dx,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Dy,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Dz,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Bx,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&By,DimTotal*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&Bz,DimTotal*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - checkCudaErrors( cudaMemcpy(d_update,Input,DimTotal*sizeof(float),cudaMemcpyHostToDevice)); - cudaMemset(Dx, 0, DimTotal*sizeof(float)); - cudaMemset(Dy, 0, DimTotal*sizeof(float)); - cudaMemset(Dz, 0, DimTotal*sizeof(float)); - cudaMemset(Bx, 0, DimTotal*sizeof(float)); - cudaMemset(By, 0, DimTotal*sizeof(float)); - cudaMemset(Bz, 0, DimTotal*sizeof(float)); - - /********************** Run CUDA 3D kernels here ********************/ - /* The main kernel */ - for (ll = 0; ll < iter; ll++) { - - /* storing old value */ - SBcopy_kernel3D<<>>(d_update, d_update_prev, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* perform two GS iterations (normally 2 is enough for the convergence) */ - gauss_seidel3D_kernel<<>>(d_update, d_input, d_update_prev, Dx, Dy, Dz, Bx, By, Bz, lambda, mu, normConst, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - SBcopy_kernel3D<<>>(d_update, d_update_prev, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - /* 2nd GS iteration */ - gauss_seidel3D_kernel<<>>(d_update, d_input, d_update_prev, Dx, Dy, Dz, Bx, By, Bz, lambda, mu, normConst, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* TV-related step */ - if (methodTV == 1) updDxDy_shrinkAniso3D_kernel<<>>(d_update, Dx, Dy, Dz, Bx, By, Bz, lambda, dimX, dimY, dimZ, DimTotal); - else updDxDy_shrinkIso3D_kernel<<>>(d_update, Dx, Dy, Dz, Bx, By, Bz, lambda, dimX, dimY, dimZ, DimTotal); - - /* update for Bregman variables */ - updBxBy3D_kernel<<>>(d_update, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (epsil != 0.0f) { - /* calculate norm - stopping rules using the Thrust library */ - SBResidCalc3D_kernel<<>>(d_update, d_update_prev, d_res, dimX, dimY, dimZ, DimTotal); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - thrust::device_vector d_vec(d_res, d_res + DimTotal); - float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus())); - thrust::device_vector d_vec2(d_update, d_update + DimTotal); - float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus())); - - re = (reduction/reduction2); - if (re < epsil) count++; - if (count > 4) break; - } - } - if (printM == 1) printf("SB-TV iterations stopped at iteration %i \n", ll); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,DimTotal*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - cudaFree(d_update_prev); - if (epsil != 0.0f) cudaFree(d_res); - cudaFree(Dx); - cudaFree(Dy); - cudaFree(Dz); - cudaFree(Bx); - cudaFree(By); - cudaFree(Bz); - } - //cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/TV_SB_GPU_core.h b/Core/regularisers_GPU/TV_SB_GPU_core.h deleted file mode 100755 index 901b90f..0000000 --- a/Core/regularisers_GPU/TV_SB_GPU_core.h +++ /dev/null @@ -1,10 +0,0 @@ -#ifndef _SB_TV_GPU_ -#define _SB_TV_GPU_ - -#include "CCPiDefines.h" -#include - - -extern "C" CCPI_EXPORT int TV_SB_GPU_main(float *Input, float *Output, float mu, int iter, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); - -#endif diff --git a/Core/regularisers_GPU/dTV_FGP_GPU_core.cu b/Core/regularisers_GPU/dTV_FGP_GPU_core.cu deleted file mode 100644 index 7503ec7..0000000 --- a/Core/regularisers_GPU/dTV_FGP_GPU_core.cu +++ /dev/null @@ -1,741 +0,0 @@ - /* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ -#include "shared.h" -#include "dTV_FGP_GPU_core.h" -#include -#include - -/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ - - -#define BLKXSIZE2D 16 -#define BLKYSIZE2D 16 - -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) -struct square { __host__ __device__ float operator()(float x) { return x * x; } }; - -/************************************************/ -/*****************2D modules*********************/ -/************************************************/ - -__global__ void GradNorm_func2D_kernel(float *Refd, float *Refd_x, float *Refd_y, float eta, int N, int M, int ImSize) -{ - - float val1, val2, gradX, gradY, magn; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - /* boundary conditions */ - if (xIndex >= N-1) val1 = 0.0f; else val1 = Refd[(xIndex+1) + N*yIndex]; - if (yIndex >= M-1) val2 = 0.0f; else val2 = Refd[(xIndex) + N*(yIndex + 1)]; - - gradX = val1 - Refd[index]; - gradY = val2 - Refd[index]; - magn = pow(gradX,2) + pow(gradY,2); - magn = sqrt(magn + pow(eta,2)); - Refd_x[index] = gradX/magn; - Refd_y[index] = gradY/magn; - } - return; -} - -__global__ void ProjectVect_func2D_kernel(float *R1, float *R2, float *Refd_x, float *Refd_y, int N, int M, int ImSize) -{ - - float in_prod; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - in_prod = R1[index]*Refd_x[index] + R2[index]*Refd_y[index]; /* calculate inner product */ - R1[index] = R1[index] - in_prod*Refd_x[index]; - R2[index] = R2[index] - in_prod*Refd_y[index]; - } - return; -} - - -__global__ void Obj_dfunc2D_kernel(float *Ad, float *D, float *R1, float *R2, int N, int M, int ImSize, float lambda) -{ - - float val1,val2; - - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - if (xIndex <= 0) {val1 = 0.0f;} else {val1 = R1[(xIndex-1) + N*yIndex];} - if (yIndex <= 0) {val2 = 0.0f;} else {val2 = R2[xIndex + N*(yIndex-1)];} - - //Write final result to global memory - D[index] = Ad[index] - lambda*(R1[index] + R2[index] - val1 - val2); - } - return; -} - -__global__ void Grad_dfunc2D_kernel(float *P1, float *P2, float *D, float *R1, float *R2, float *Refd_x, float *Refd_y, int N, int M, int ImSize, float multip) -{ - - float val1,val2,in_prod; - - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - - /* boundary conditions */ - if (xIndex >= N-1) val1 = 0.0f; else val1 = D[index] - D[(xIndex+1) + N*yIndex]; - if (yIndex >= M-1) val2 = 0.0f; else val2 = D[index] - D[(xIndex) + N*(yIndex + 1)]; - - in_prod = val1*Refd_x[index] + val2*Refd_y[index]; /* calculate inner product */ - val1 = val1 - in_prod*Refd_x[index]; - val2 = val2 - in_prod*Refd_y[index]; - - //Write final result to global memory - P1[index] = R1[index] + multip*val1; - P2[index] = R2[index] + multip*val2; - } - return; -} - -__global__ void Proj_dfunc2D_iso_kernel(float *P1, float *P2, int N, int M, int ImSize) -{ - - float denom; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - denom = pow(P1[index],2) + pow(P2[index],2); - if (denom > 1.0f) { - P1[index] = P1[index]/sqrt(denom); - P2[index] = P2[index]/sqrt(denom); - } - } - return; -} -__global__ void Proj_dfunc2D_aniso_kernel(float *P1, float *P2, int N, int M, int ImSize) -{ - - float val1, val2; - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - val1 = abs(P1[index]); - val2 = abs(P2[index]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - P1[index] = P1[index]/val1; - P2[index] = P2[index]/val2; - } - return; -} -__global__ void Rupd_dfunc2D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, float multip2, int N, int M, int ImSize) -{ - //calculate each thread global index - const int xIndex=blockIdx.x*blockDim.x+threadIdx.x; - const int yIndex=blockIdx.y*blockDim.y+threadIdx.y; - - int index = xIndex + N*yIndex; - - if ((xIndex < N) && (yIndex < M)) { - R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]); - R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]); - } - return; -} -__global__ void dTVnonneg2D_kernel(float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - if (Output[index] < 0.0f) Output[index] = 0.0f; - } -} -__global__ void dTVcopy_kernel2D(float *Input, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void dTVcopy_kernel3D(float *Input, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input[index]; - } -} - -__global__ void dTVResidCalc2D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int num_total) -{ - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -__global__ void dTVResidCalc3D_kernel(float *Input1, float *Input2, float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - Output[index] = Input1[index] - Input2[index]; - } -} - -/************************************************/ -/*****************3D modules*********************/ -/************************************************/ -__global__ void GradNorm_func3D_kernel(float *Refd, float *Refd_x, float *Refd_y, float *Refd_z, float eta, int N, int M, int Z, int ImSize) -{ - - float val1, val2, val3, gradX, gradY, gradZ, magn; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - /* boundary conditions */ - if (i >= N-1) val1 = 0.0f; else val1 = Refd[(N*M)*k + (i+1) + N*j]; - if (j >= M-1) val2 = 0.0f; else val2 = Refd[(N*M)*k + i + N*(j+1)]; - if (k >= Z-1) val3 = 0.0f; else val3 = Refd[(N*M)*(k+1) + i + N*j]; - - gradX = val1 - Refd[index]; - gradY = val2 - Refd[index]; - gradZ = val3 - Refd[index]; - magn = pow(gradX,2) + pow(gradY,2) + pow(gradZ,2); - magn = sqrt(magn + pow(eta,2)); - Refd_x[index] = gradX/magn; - Refd_y[index] = gradY/magn; - Refd_z[index] = gradZ/magn; - } - return; -} - -__global__ void ProjectVect_func3D_kernel(float *R1, float *R2, float *R3, float *Refd_x, float *Refd_y, float *Refd_z, int N, int M, int Z, int ImSize) -{ - - float in_prod; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - in_prod = R1[index]*Refd_x[index] + R2[index]*Refd_y[index] + R3[index]*Refd_z[index]; /* calculate inner product */ - - R1[index] = R1[index] - in_prod*Refd_x[index]; - R2[index] = R2[index] - in_prod*Refd_y[index]; - R3[index] = R3[index] - in_prod*Refd_z[index]; - } - return; -} - - -__global__ void Obj_dfunc3D_kernel(float *Ad, float *D, float *R1, float *R2, float *R3, int N, int M, int Z, int ImSize, float lambda) -{ - - float val1,val2,val3; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - if (i <= 0) {val1 = 0.0f;} else {val1 = R1[(N*M)*(k) + (i-1) + N*j];} - if (j <= 0) {val2 = 0.0f;} else {val2 = R2[(N*M)*(k) + i + N*(j-1)];} - if (k <= 0) {val3 = 0.0f;} else {val3 = R3[(N*M)*(k-1) + i + N*j];} - //Write final result to global memory - D[index] = Ad[index] - lambda*(R1[index] + R2[index] + R3[index] - val1 - val2 - val3); - } - return; -} - -__global__ void Grad_dfunc3D_kernel(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float *Refd_x, float *Refd_y, float *Refd_z, int N, int M, int Z, int ImSize, float multip) -{ - - float val1,val2,val3,in_prod; - - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - /* boundary conditions */ - if (i >= N-1) val1 = 0.0f; else val1 = D[index] - D[(N*M)*(k) + (i+1) + N*j]; - if (j >= M-1) val2 = 0.0f; else val2 = D[index] - D[(N*M)*(k) + i + N*(j+1)]; - if (k >= Z-1) val3 = 0.0f; else val3 = D[index] - D[(N*M)*(k+1) + i + N*j]; - - in_prod = val1*Refd_x[index] + val2*Refd_y[index] + val3*Refd_z[index]; /* calculate inner product */ - val1 = val1 - in_prod*Refd_x[index]; - val2 = val2 - in_prod*Refd_y[index]; - val3 = val3 - in_prod*Refd_z[index]; - - //Write final result to global memory - P1[index] = R1[index] + multip*val1; - P2[index] = R2[index] + multip*val2; - P3[index] = R3[index] + multip*val3; - } - return; -} - -__global__ void Proj_dfunc3D_iso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize) -{ - - float denom,sq_denom; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - denom = pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2); - - if (denom > 1.0f) { - sq_denom = 1.0f/sqrt(denom); - P1[index] = P1[index]*sq_denom; - P2[index] = P2[index]*sq_denom; - P3[index] = P3[index]*sq_denom; - } - } - return; -} - -__global__ void Proj_dfunc3D_aniso_kernel(float *P1, float *P2, float *P3, int N, int M, int Z, int ImSize) -{ - - float val1, val2, val3; - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - val1 = abs(P1[index]); - val2 = abs(P2[index]); - val3 = abs(P3[index]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - if (val3 < 1.0f) {val3 = 1.0f;} - P1[index] = P1[index]/val1; - P2[index] = P2[index]/val2; - P3[index] = P3[index]/val3; - } - return; -} - - -__global__ void Rupd_dfunc3D_kernel(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, float multip2, int N, int M, int Z, int ImSize) -{ - //calculate each thread global index - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if ((i < N) && (j < M) && (k < Z)) { - R1[index] = P1[index] + multip2*(P1[index] - P1_old[index]); - R2[index] = P2[index] + multip2*(P2[index] - P2_old[index]); - R3[index] = P3[index] + multip2*(P3[index] - P3_old[index]); - } - return; -} - -__global__ void dTVnonneg3D_kernel(float* Output, int N, int M, int Z, int num_total) -{ - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; - - int index = (N*M)*k + i + N*j; - - if (index < num_total) { - if (Output[index] < 0.0f) Output[index] = 0.0f; - } -} -/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ - -////////////MAIN HOST FUNCTION /////////////// -extern "C" int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iter, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ) -{ - int deviceCount = -1; // number of devices - cudaGetDeviceCount(&deviceCount); - if (deviceCount == 0) { - fprintf(stderr, "No CUDA devices found\n"); - return -1; - } - - int count = 0, i; - float re, multip,multip2; - float tk = 1.0f; - float tkp1=1.0f; - - if (dimZ <= 1) { - /*2D verson*/ - int ImSize = dimX*dimY; - float *d_input, *d_update=NULL, *d_update_prev=NULL, *P1=NULL, *P2=NULL, *P1_prev=NULL, *P2_prev=NULL, *R1=NULL, *R2=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *d_InputRef=NULL; - - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) ); - if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_InputRef,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&InputRef_x,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&InputRef_y,ImSize*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - checkCudaErrors( cudaMemcpy(d_InputRef,InputRef,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - - cudaMemset(P1, 0, ImSize*sizeof(float)); - cudaMemset(P2, 0, ImSize*sizeof(float)); - cudaMemset(P1_prev, 0, ImSize*sizeof(float)); - cudaMemset(P2_prev, 0, ImSize*sizeof(float)); - cudaMemset(R1, 0, ImSize*sizeof(float)); - cudaMemset(R2, 0, ImSize*sizeof(float)); - cudaMemset(InputRef_x, 0, ImSize*sizeof(float)); - cudaMemset(InputRef_y, 0, ImSize*sizeof(float)); - - /******************** Run CUDA 2D kernel here ********************/ - multip = (1.0f/(8.0f*lambdaPar)); - /* calculate gradient vectors for the reference */ - GradNorm_func2D_kernel<<>>(d_InputRef, InputRef_x, InputRef_y, eta, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* The main kernel */ - for (i = 0; i < iter; i++) { - - /*projects a 2D vector field R-1,2 onto the orthogonal complement of another 2D vector field InputRef_xy*/ - ProjectVect_func2D_kernel<<>>(R1, R2, InputRef_x, InputRef_y, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* computing the gradient of the objective function */ - Obj_dfunc2D_kernel<<>>(d_input, d_update, R1, R2, dimX, dimY, ImSize, lambdaPar); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (nonneg != 0) { - dTVnonneg2D_kernel<<>>(d_update, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); } - - /*Taking a step towards minus of the gradient*/ - Grad_dfunc2D_kernel<<>>(P1, P2, d_update, R1, R2, InputRef_x, InputRef_y, dimX, dimY, ImSize, multip); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* projection step */ - if (methodTV == 0) Proj_dfunc2D_iso_kernel<<>>(P1, P2, dimX, dimY, ImSize); /*isotropic TV*/ - else Proj_dfunc2D_aniso_kernel<<>>(P1, P2, dimX, dimY, ImSize); /*anisotropic TV*/ - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - multip2 = ((tk-1.0f)/tkp1); - - Rupd_dfunc2D_kernel<<>>(P1, P1_prev, P2, P2_prev, R1, R2, tkp1, tk, multip2, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (epsil != 0.0f) { - /* calculate norm - stopping rules using the Thrust library */ - dTVResidCalc2D_kernel<<>>(d_update, d_update_prev, P1_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - thrust::device_vector d_vec(P1_prev, P1_prev + ImSize); - float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus())); - thrust::device_vector d_vec2(d_update, d_update + ImSize); - float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus())); - - re = (reduction/reduction2); - if (re < epsil) count++; - if (count > 4) break; - - dTVcopy_kernel2D<<>>(d_update, d_update_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - } - - dTVcopy_kernel2D<<>>(P1, P1_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - dTVcopy_kernel2D<<>>(P2, P2_prev, dimX, dimY, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tk = tkp1; - } - if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", i); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - if (epsil != 0.0f) cudaFree(d_update_prev); - cudaFree(P1); - cudaFree(P2); - cudaFree(P1_prev); - cudaFree(P2_prev); - cudaFree(R1); - cudaFree(R2); - - cudaFree(d_InputRef); - cudaFree(InputRef_x); - cudaFree(InputRef_y); - } - else { - /*3D verson*/ - int ImSize = dimX*dimY*dimZ; - float *d_input, *d_update=NULL, *d_update_prev, *P1=NULL, *P2=NULL, *P3=NULL, *P1_prev=NULL, *P2_prev=NULL, *P3_prev=NULL, *R1=NULL, *R2=NULL, *R3=NULL, *InputRef_x=NULL, *InputRef_y=NULL, *InputRef_z=NULL, *d_InputRef=NULL; - - dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); - dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKZSIZE)); - - /*allocate space for images on device*/ - checkCudaErrors( cudaMalloc((void**)&d_input,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_update,ImSize*sizeof(float)) ); - if (epsil != 0.0f) checkCudaErrors( cudaMalloc((void**)&d_update_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P3,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P1_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P2_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&P3_prev,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R1,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R2,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&R3,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&d_InputRef,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&InputRef_x,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&InputRef_y,ImSize*sizeof(float)) ); - checkCudaErrors( cudaMalloc((void**)&InputRef_z,ImSize*sizeof(float)) ); - - checkCudaErrors( cudaMemcpy(d_input,Input,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - checkCudaErrors( cudaMemcpy(d_InputRef,InputRef,ImSize*sizeof(float),cudaMemcpyHostToDevice)); - - cudaMemset(P1, 0, ImSize*sizeof(float)); - cudaMemset(P2, 0, ImSize*sizeof(float)); - cudaMemset(P3, 0, ImSize*sizeof(float)); - cudaMemset(P1_prev, 0, ImSize*sizeof(float)); - cudaMemset(P2_prev, 0, ImSize*sizeof(float)); - cudaMemset(P3_prev, 0, ImSize*sizeof(float)); - cudaMemset(R1, 0, ImSize*sizeof(float)); - cudaMemset(R2, 0, ImSize*sizeof(float)); - cudaMemset(R3, 0, ImSize*sizeof(float)); - cudaMemset(InputRef_x, 0, ImSize*sizeof(float)); - cudaMemset(InputRef_y, 0, ImSize*sizeof(float)); - cudaMemset(InputRef_z, 0, ImSize*sizeof(float)); - - /********************** Run CUDA 3D kernel here ********************/ - multip = (1.0f/(26.0f*lambdaPar)); - /* calculate gradient vectors for the reference */ - GradNorm_func3D_kernel<<>>(d_InputRef, InputRef_x, InputRef_y, InputRef_z, eta, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* The main kernel */ - for (i = 0; i < iter; i++) { - - /*projects a 3D vector field R-1,2,3 onto the orthogonal complement of another 3D vector field InputRef_xyz*/ - ProjectVect_func3D_kernel<<>>(R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* computing the gradient of the objective function */ - Obj_dfunc3D_kernel<<>>(d_input, d_update, R1, R2, R3, dimX, dimY, dimZ, ImSize, lambdaPar); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (nonneg != 0) { - dTVnonneg3D_kernel<<>>(d_update, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); } - - /*Taking a step towards minus of the gradient*/ - Grad_dfunc3D_kernel<<>>(P1, P2, P3, d_update, R1, R2, R3, InputRef_x, InputRef_y, InputRef_z, dimX, dimY, dimZ, ImSize, multip); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - /* projection step */ - if (methodTV == 0) Proj_dfunc3D_iso_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* isotropic kernel */ - else Proj_dfunc3D_aniso_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, ImSize); /* anisotropic kernel */ - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - multip2 = ((tk-1.0f)/tkp1); - - Rupd_dfunc3D_kernel<<>>(P1, P1_prev, P2, P2_prev, P3, P3_prev, R1, R2, R3, tkp1, tk, multip2, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - if (epsil != 0.0f) { - /* calculate norm - stopping rules using the Thrust library */ - dTVResidCalc3D_kernel<<>>(d_update, d_update_prev, P1_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - thrust::device_vector d_vec(P1_prev, P1_prev + ImSize); - float reduction = sqrt(thrust::transform_reduce(d_vec.begin(), d_vec.end(), square(), 0.0f, thrust::plus())); - thrust::device_vector d_vec2(d_update, d_update + ImSize); - float reduction2 = sqrt(thrust::transform_reduce(d_vec2.begin(), d_vec2.end(), square(), 0.0f, thrust::plus())); - - re = (reduction/reduction2); - if (re < epsil) count++; - if (count > 4) break; - - dTVcopy_kernel3D<<>>(d_update, d_update_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - } - - dTVcopy_kernel3D<<>>(P1, P1_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - dTVcopy_kernel3D<<>>(P2, P2_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - dTVcopy_kernel3D<<>>(P3, P3_prev, dimX, dimY, dimZ, ImSize); - checkCudaErrors( cudaDeviceSynchronize() ); - checkCudaErrors(cudaPeekAtLastError() ); - - tk = tkp1; - } - if (printM == 1) printf("FGP-dTV iterations stopped at iteration %i \n", i); - /***************************************************************/ - //copy result matrix from device to host memory - cudaMemcpy(Output,d_update,ImSize*sizeof(float),cudaMemcpyDeviceToHost); - - cudaFree(d_input); - cudaFree(d_update); - if (epsil != 0.0f) cudaFree(d_update_prev); - cudaFree(P1); - cudaFree(P2); - cudaFree(P3); - cudaFree(P1_prev); - cudaFree(P2_prev); - cudaFree(P3_prev); - cudaFree(R1); - cudaFree(R2); - cudaFree(R3); - cudaFree(InputRef_x); - cudaFree(InputRef_y); - cudaFree(InputRef_z); - cudaFree(d_InputRef); - } - //cudaDeviceReset(); - return 0; -} diff --git a/Core/regularisers_GPU/dTV_FGP_GPU_core.h b/Core/regularisers_GPU/dTV_FGP_GPU_core.h deleted file mode 100644 index f9281e8..0000000 --- a/Core/regularisers_GPU/dTV_FGP_GPU_core.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef _dTV_FGP_GPU_ -#define _dTV_FGP_GPU_ - -#include "CCPiDefines.h" -#include - -extern "C" CCPI_EXPORT int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iter, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); - -#endif diff --git a/Core/regularisers_GPU/shared.h b/Core/regularisers_GPU/shared.h deleted file mode 100644 index fe98cd6..0000000 --- a/Core/regularisers_GPU/shared.h +++ /dev/null @@ -1,42 +0,0 @@ -/*shared macros*/ - - -/*checks CUDA call, should be used in functions returning value -if error happens, writes to standard error and explicitly returns -1*/ -#define CHECK(call) \ -{ \ - const cudaError_t error = call; \ - if (error != cudaSuccess) \ - { \ - fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \ - fprintf(stderr, "code: %d, reason: %s\n", error, \ - cudaGetErrorString(error)); \ - return -1; \ - } \ -} - -// This will output the proper CUDA error strings in the event that a CUDA host call returns an error -#define checkCudaErrors(call) \ -{ \ - const cudaError_t error = call; \ - if (error != cudaSuccess) \ - { \ - fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \ - fprintf(stderr, "code: %d, reason: %s\n", error, \ - cudaGetErrorString(error)); \ - return -1; \ - } \ -} -/*#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__) - -inline void __checkCudaErrors(cudaError err, const char *file, const int line) -{ - if (cudaSuccess != err) - { - fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n", - file, line, (int)err, cudaGetErrorString(err)); - return; - } -} -*/ - diff --git a/Wrappers/CMakeLists.txt b/Wrappers/CMakeLists.txt deleted file mode 100644 index bdcb8f4..0000000 --- a/Wrappers/CMakeLists.txt +++ /dev/null @@ -1,19 +0,0 @@ -# Copyright 2017 Edoardo Pasca -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -if (BUILD_MATLAB_WRAPPER) - add_subdirectory(Matlab) -endif() -if (BUILD_PYTHON_WRAPPER) - add_subdirectory(Python) -endif() \ No newline at end of file diff --git a/Wrappers/Matlab/CMakeLists.txt b/Wrappers/Matlab/CMakeLists.txt deleted file mode 100755 index 0c26148..0000000 --- a/Wrappers/Matlab/CMakeLists.txt +++ /dev/null @@ -1,147 +0,0 @@ -project(regulariserMatlab) - - -find_package(Matlab REQUIRED COMPONENTS MAIN_PROGRAM MX_LIBRARY ENG_LIBRARY ) - - - -#C:\Users\ofn77899\Documents\Projects\CCPi\GitHub\CCPi-FISTA_Reconstruction\Core\regularisers_CPU -# matlab_add_mex( - # NAME CPU_ROF - # SRC - # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c - # LINK_TO cilreg ${Matlab_LIBRARIES} - # ) - -# target_include_directories(CPU_ROF - # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU - # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU - # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU - # ${CMAKE_SOURCE_DIR}/Core/ - # ${MATLAB_INCLUDE_DIR}) - - # matlab_add_mex( - # NAME CPU_TNV - # SRC - # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c - # LINK_TO cilreg ${Matlab_LIBRARIES} - # ) - -# target_include_directories(CPU_TNV - # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU - # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU - # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU - # ${CMAKE_SOURCE_DIR}/Core/ - # ${MATLAB_INCLUDE_DIR}) - -#set (CPU_MEX_FILES "regularisers_CPU/TNV.c;regularisers_CPU/ROF_TV.c") -#set (MEX_TARGETS "CPU_TNV;CPU_ROF") -#list(APPEND MEX_TARGETS "CPU_TNV") -#list(APPEND MEX_TARGETS "CPU_ROF") - -file(GLOB CPU_MEX_FILES - "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/*.c" - #"${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.c" -) - -#message("CPU_MEX_FILES " ${CPU_MEX_FILES}) - -list(LENGTH CPU_MEX_FILES num) - - -MATH(EXPR num "${num}-1") -#set(num "-1") -message("found ${num} files") - -foreach(tgt RANGE 0 ${num}) - message("number " ${tgt}) - list(LENGTH CPU_MEX_FILES num2) - message("the list is ${num2}") - #list(GET CPU_TARGETS ${tgt} current_target) - list(GET CPU_MEX_FILES ${tgt} current_file_name) - get_filename_component(current_file ${current_file_name} NAME) - string(REGEX MATCH "(.+).c" match ${current_file}) - if (NOT ${match} EQUAL "" ) - set (current_target ${CMAKE_MATCH_1}) - endif() - message("matlab_add_mex target " ${current_file} " and " ${current_target}) - matlab_add_mex( - NAME ${current_target} - SRC - ${current_file_name} - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_TV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/SB_TV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TGV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffusion_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffus4th_order_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/LLT_ROF_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/ROF_TV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_dTV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TNV_core.c - #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/utils.c - #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/Diffusion_Inpaint_core.c - #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c - LINK_TO cilreg ${Matlab_LIBRARIES} - ) - -target_include_directories(${current_target} - PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU - ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU - ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU - ${CMAKE_SOURCE_DIR}/Core/ - ${MATLAB_INCLUDE_DIR}) - set_property(TARGET ${current_target} PROPERTY C_STANDARD 99) - list(APPEND CPU_MEX_TARGETS ${current_target}) - INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}") -endforeach() - -add_custom_target(MatlabWrapper DEPENDS ${CPU_MEX_TARGETS}) - -if (BUILD_CUDA) - find_package(CUDA) - if (CUDA_FOUND) - file(GLOB GPU_MEX_FILES - "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.cpp" - ) - - list(LENGTH GPU_MEX_FILES num) -message("number of GPU files " ${num}) - - MATH(EXPR num "${num}-1") - #set(num "-1") - - foreach(tgt RANGE ${num}) - message("number " ${tgt}) - list(LENGTH GPU_MEX_FILES num2) - message("the list is ${num2}") - #list(GET CPU_TARGETS ${tgt} current_target) - list(GET GPU_MEX_FILES ${tgt} current_file_name) - get_filename_component(current_file ${current_file_name} NAME) - string(REGEX MATCH "(.+).c" match ${current_file}) - if (NOT ${match} EQUAL "" ) - set (current_target ${CMAKE_MATCH_1}) - endif() - message("matlab_add_mex target " ${current_file} " and " ${current_target}) - message("matlab_add_mex " ${current_target}) - matlab_add_mex( - NAME ${current_target} - SRC - ${current_file_name} - LINK_TO cilregcuda ${Matlab_LIBRARIES} - ) - - target_include_directories(${current_target} - PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU - ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU - ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU - ${CMAKE_SOURCE_DIR}/Core/ - ${MATLAB_INCLUDE_DIR}) - - list(APPEND GPU_MEX_TARGETS ${current_target}) - INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}") - endforeach() - - add_custom_target(MatlabWrapperGPU DEPENDS ${GPU_MEX_TARGETS}) - - endif() -endif() diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m deleted file mode 100644 index 0c331a4..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ /dev/null @@ -1,178 +0,0 @@ -% Volume (3D) denoising demo using CCPi-RGL -clear; close all -Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); -Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); -Path3 = sprintf(['..' filesep 'supp'], 1i); -addpath(Path1); -addpath(Path2); -addpath(Path3); - -N = 512; -slices = 7; -vol3D = zeros(N,N,slices, 'single'); -Ideal3D = zeros(N,N,slices, 'single'); -Im = double(imread('lena_gray_512.tif'))/255; % loading image -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -Ideal3D(:,:,i) = Im; -end -vol3D(vol3D < 0) = 0; -figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); - - -lambda_reg = 0.03; % regularsation parameter for all methods -%% -fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); -tau_rof = 0.0025; % time-marching constant -iter_rof = 300; % number of ROF iterations -tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value -rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); -fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); -figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); -% tau_rof = 0.0025; % time-marching constant -% iter_rof = 300; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; -% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:))); -% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG); -% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value -rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); -figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); -% iter_fgp = 300; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:))); -% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); -% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value -rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); -figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:))); -% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); -% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -iter_LLT = 300; % iterations -tau_rof_llt = 0.0025; % time-marching constant -tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); -fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -% iter_LLT = 300; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); -% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); -%% -fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); -fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); -% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); -fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); -%% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); -% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.03; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 500; % number of Primal-Dual iterations for TGV -tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % -fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); -%% -fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); -%% diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m deleted file mode 100644 index 14d3096..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ /dev/null @@ -1,189 +0,0 @@ -% Image (2D) denoising demo using CCPi-RGL -clear; close all -fsep = '/'; - -Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i); -Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i); -Path3 = sprintf(['..' fsep 'supp'], 1i); -addpath(Path1); addpath(Path2); addpath(Path3); - -Im = double(imread('lena_gray_512.tif'))/255; % loading image -u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -figure; imshow(u0, [0 1]); title('Noisy image'); - -lambda_reg = 0.03; % regularsation parameter for all methods -%% -fprintf('Denoise using the ROF-TV model (CPU) \n'); -tau_rof = 0.0025; % time-marching constant -iter_rof = 750; % number of ROF iterations -tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value -rmseROF = (RMSE(u_rof(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); -figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the ROF-TV model (GPU) \n'); -% tau_rof = 0.0025; % time-marching constant -% iter_rof = 750; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; -% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); -%% -fprintf('Denoise using the FGP-TV model (CPU) \n'); -iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance -tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value -rmseFGP = (RMSE(u_fgp(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); -figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); - -%% -% fprintf('Denoise using the FGP-TV model (GPU) \n'); -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); -%% -fprintf('Denoise using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-06; % tolerance -tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value -rmseSB = (RMSE(u_sb(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); -figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations -% epsil_tol = 1.0e-06; % tolerance -% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.045; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 2000; % number of Primal-Dual iterations for TGV -tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -rmseTGV = (RMSE(u_tgv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); -%% -% fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.045; % regularisation parameter -% alpha1 = 1.0; % parameter to control the first-order term -% alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 2000; % number of Primal-Dual iterations for TGV -% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); -% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); -%% -fprintf('Denoise using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter -iter_LLT = 1; % iterations -tau_rof_llt = 0.0025; % time-marching constant -tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); -figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); -%% -% fprintf('Denoise using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter -% iter_LLT = 500; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g); -% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); -%% -fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -rmseDiffus = (RMSE(u_diff(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); -figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); -%% -% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -rmseDiffHO = (RMSE(u_diff4(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); -figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); -%% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); -%% -fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); -SearchingWindow = 7; -PatchWindow = 2; -NeighboursNumber = 20; % the number of neibours to include -h = 0.23; % edge related parameter for NLM -tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc; -%% -fprintf('Denoise using Non-local Total Variation (CPU) \n'); -iter_nltv = 3; % number of nltv iterations -lambda_nltv = 0.05; % regularisation parameter for nltv -tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; -rmse_nltv = (RMSE(u_nltv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); -figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % - -fprintf('Denoise using the FGP-dTV model (CPU) \n'); -% create another image (reference) with slightly less amount of noise -u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV); -figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); -%% -% fprintf('Denoise using the FGP-dTV model (GPU) \n'); -% % create another image (reference) with slightly less amount of noise -% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -% -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-06; % tolerance -% eta = 0.2; % Reference image gradient smoothing constant -% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); -%% -fprintf('Denoise using the TNV prior (CPU) \n'); -slices = 5; N = 512; -vol3D = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -end -vol3D(vol3D < 0) = 0; - -iter_tnv = 200; % number of TNV iterations -tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; -figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); diff --git a/Wrappers/Matlab/demos/demoMatlab_inpaint.m b/Wrappers/Matlab/demos/demoMatlab_inpaint.m deleted file mode 100644 index 66f9c15..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_inpaint.m +++ /dev/null @@ -1,35 +0,0 @@ -% Image (2D) inpainting demo using CCPi-RGL -clear; close all -Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); -Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); -addpath(Path1); -addpath(Path2); - -load('SinoInpaint.mat'); -Sinogram = Sinogram./max(Sinogram(:)); -Sino_mask = Sinogram.*(1-single(Mask)); -figure; -subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram'); -subplot(1,2,2); imshow(Mask, [0 1]); title('Mask'); -%% -fprintf('Inpaint using Linear-Diffusion model (CPU) \n'); -iter_diff = 5000; % number of diffusion iterations -lambda_regDiff = 6000; % regularisation for the diffusivity -sigmaPar = 0.0; % edge-preserving parameter -tau_param = 0.000075; % time-marching constant -tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)'); -%% -fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 1500; % number of diffusion iterations -lambda_regDiff = 80; % regularisation for the diffusivity -sigmaPar = 0.00009; % edge-preserving parameter -tau_param = 0.000008; % time-marching constant -tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)'); -%% -fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n'); -Increment = 1; % linear increment for the searching window -tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc; -figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)'); -%% \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m deleted file mode 100644 index 72a828e..0000000 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m +++ /dev/null @@ -1,81 +0,0 @@ -% execute this mex file on Linux in Matlab once - -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); -pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i); - -copyfile(pathcopyFrom, 'regularisers_CPU'); -copyfile(pathcopyFrom1, 'regularisers_CPU'); -copyfile(pathcopyFrom2, 'regularisers_CPU'); - -cd regularisers_CPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('ROF_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('FGP_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('SB_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('FGP_dTV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TNV...'); -mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TNV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Diffusion_4thO.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TGV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('LLT_ROF.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLocal-TV...'); -mex PatchSelect.c PatchSelect_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Nonlocal_TV.mex*',Pathmove); -movefile('PatchSelect.mex*',Pathmove); - -fprintf('%s \n', 'Compiling additional tools...'); -mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TV_energy.mex*',Pathmove); - -%############Inpainters##############% -fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); -mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff_Inp.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Nonlocal marching method for inpainting...'); -mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* LLT_ROF_core* CCPiDefines.h -delete PatchSelect_core* Nonlocal_TV_core* -delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* -fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>'); - -pathA2 = sprintf(['..' fsep '..' fsep], 1i); -cd(pathA2); -cd demos diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m deleted file mode 100644 index 6f7541c..0000000 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m +++ /dev/null @@ -1,135 +0,0 @@ -% execute this mex file on Windows in Matlab once - -% >>>>>>>>>>>>>>>>>>>>>>>>>>>>> -% I've been able to compile on Windows 7 with MinGW and Matlab 2016b, however, -% not sure if openmp is enabled after the compilation. - -% Here I present two ways how software can be compiled, if you have some -% other suggestions/remarks please contact me at dkazanc@hotmail.com -% >>>>>>>>>>>>>>>>>>>>>>>>>>>>> - -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); -pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i); - -copyfile(pathcopyFrom, 'regularisers_CPU'); -copyfile(pathcopyFrom1, 'regularisers_CPU'); -copyfile(pathcopyFrom2, 'regularisers_CPU'); - -cd regularisers_CPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -mex ROF_TV.c ROF_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('ROF_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -mex FGP_TV.c FGP_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('FGP_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -mex SB_TV.c SB_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('SB_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -mex FGP_dTV.c FGP_dTV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('FGP_dTV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TNV...'); -mex TNV.c TNV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TNV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -mex NonlDiff.c Diffusion_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlDiff.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('Diffusion_4thO.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TGV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -mex LLT_ROF.c LLT_ROF_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('LLT_ROF.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLocal-TV...'); -mex PatchSelect.c PatchSelect_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('Nonlocal_TV.mex*',Pathmove); -movefile('PatchSelect.mex*',Pathmove); - -fprintf('%s \n', 'Compiling additional tools...'); -mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TV_energy.mex*',Pathmove); - -%############Inpainters##############% -fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); -mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlDiff_Inp.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Nonlocal marching method for inpaiting...'); -mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - - -%% -%%% The second approach to compile using TDM-GCC which follows this -%%% discussion: -%%% https://uk.mathworks.com/matlabcentral/answers/279171-using-mingw-compiler-and-open-mp#comment_359122 -%%% 1. Install TDM-GCC independently from http://tdm-gcc.tdragon.net/ (I installed 5.1.0) -%%% Install openmp version: http://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%205%20series/5.1.0-tdm64-1/gcc-5.1.0-tdm64-1-openmp.zip/download -%%% 2. Link til libgomp.a in that installation when compilling your mex file. - -%%% assuming you unzipped TDM GCC (OpenMp) in folder TDMGCC on C drive, uncomment -%%% bellow -% fprintf('%s \n', 'Compiling CPU regularisers...'); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" ROF_TV.c ROF_TV_core.c utils.c -% movefile('ROF_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_TV.c FGP_TV_core.c utils.c -% movefile('FGP_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" SB_TV.c SB_TV_core.c utils.c -% movefile('SB_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_dTV.c FGP_dTV_core.c utils.c -% movefile('FGP_dTV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TNV.c TNV_core.c utils.c -% movefile('TNV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff.c Diffusion_core.c utils.c -% movefile('NonlDiff.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Diffusion_4thO.c Diffus4th_order_core.c utils.c -% movefile('Diffusion_4thO.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c -% movefile('TGV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" LLT_ROF.c LLT_ROF_core.c utils.c -% movefile('LLT_ROF.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" PatchSelect.c PatchSelect_core.c utils.c -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Nonlocal_TV.c Nonlocal_TV_core.c utils.c -% movefile('Nonlocal_TV.mex*',Pathmove); -% movefile('PatchSelect.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c -% movefile('TV_energy.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c -% movefile('NonlDiff_Inp.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c -% movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - - -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h -delete PatchSelect_core* Nonlocal_TV_core* -delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* -fprintf('%s \n', 'Regularisers successfully compiled!'); - - -%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%pathA2 = sprintf(['..' fsep '..' fsep], 1i); -%cd(pathA2); -%cd demos diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m deleted file mode 100644 index dd1475c..0000000 --- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m +++ /dev/null @@ -1,74 +0,0 @@ -% execute this mex file in Matlab once - -%>>>>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<< -% In order to compile CUDA modules one needs to have nvcc-compiler -% installed (see CUDA SDK), check it under MATLAB with !nvcc --version - -% In the code bellow we provide a full explicit path to nvcc compiler -% ! paths to matlab and CUDA sdk can be different, modify accordingly ! - -% Tested on Ubuntu 18.04/MATLAB 2016b/cuda10.0/gcc7.3 - -% Installation HAS NOT been tested on Windows, please you Cmake build or -% modify the code bellow accordingly -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_GPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); - -copyfile(pathcopyFrom, 'regularisers_GPU'); -copyfile(pathcopyFrom1, 'regularisers_GPU'); - -cd regularisers_GPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o -movefile('ROF_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o -movefile('FGP_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_SB_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o -movefile('SB_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o -movefile('TGV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o -movefile('FGP_dTV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -!/usr/local/cuda/bin/nvcc -O0 -c NonlDiff_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu NonlDiff_GPU.cpp NonlDiff_GPU_core.o -movefile('NonlDiff_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -!/usr/local/cuda/bin/nvcc -O0 -c Diffus_4thO_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o -movefile('Diffusion_4thO_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -!/usr/local/cuda/bin/nvcc -O0 -c LLT_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu LLT_ROF_GPU.cpp LLT_ROF_GPU_core.o -movefile('LLT_ROF_GPU.mex*',Pathmove); - - -delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h -fprintf('%s \n', 'All successfully compiled!'); - -pathA2 = sprintf(['..' fsep '..' fsep], 1i); -cd(pathA2); -cd demos \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt b/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt deleted file mode 100644 index e69de29..0000000 diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c deleted file mode 100644 index 66ea9be..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c +++ /dev/null @@ -1,77 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffus4th_order_core.h" - -/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Edge-preserving parameter (sigma) [REQUIRED] - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] - * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.01; /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); - if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffus4th_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c deleted file mode 100644 index 642362f..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c +++ /dev/null @@ -1,97 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 6) || (nrhs == 7)) { - nonneg = (int) mxGetScalar(prhs[5]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 7) { - printswitch = (int) mxGetScalar(prhs[6]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c deleted file mode 100644 index 1a0c070..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c +++ /dev/null @@ -1,114 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "FGP_dTV_core.h" - -/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - - /*Handling Matlab input data*/ - if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - eta = 0.01; /* default smoothing constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} - if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} - - - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ - } - if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 8) || (nrhs == 9)) { - nonneg = (int) mxGetScalar(prhs[7]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 9) { - printswitch = (int) mxGetScalar(prhs[8]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - dTV_FGP_CPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c deleted file mode 100644 index ab45446..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c +++ /dev/null @@ -1,82 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "LLT_ROF_core.h" - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. -* -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterationsNumb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter"); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */ - lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */ - iterationsNumb = 250; - tau = 0.0025; - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - LLT_ROF_CPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c deleted file mode 100644 index ec35b8b..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c +++ /dev/null @@ -1,89 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffusion_core.h" - -/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL parameter] - * 5. tau - time-marching step for explicit scheme [OPTIONAL parameter] - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight [OPTIONAL parameter] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - if (nrhs == 6) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffusion_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c deleted file mode 100644 index 9833392..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c +++ /dev/null @@ -1,103 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffusion_Inpaint_core.h" - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Image/volume to inpaint - * 2. Inpainting Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. lambda - regularization parameter - * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 5. Number of iterations, for explicit scheme >= 150 is recommended - * 6. tau - time-marching step for explicit scheme - * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Inpainted image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype, i, inpaint_elements; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *Output=NULL, lambda, tau, sigma; - unsigned char *Mask; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[3]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if ((nrhs < 4) || (nrhs > 7)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter_numb = (int) mxGetScalar(prhs[4]); /* iterations number */ - if ((nrhs == 6) || (nrhs == 7)) tau = (float) mxGetScalar(prhs[5]); /* marching step parameter */ - if (nrhs == 7) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - - inpaint_elements = 0; - for (i=0; i<(int)(dimY*dimX*dimZ); i++) if (Mask[i] == 1) inpaint_elements++; - if (inpaint_elements == 0) mexErrMsgTxt("The mask is full of zeros, nothing to inpaint"); - Diffusion_Inpaint_CPU_main(Input, Mask, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c deleted file mode 100644 index b3f2c98..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c +++ /dev/null @@ -1,84 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "NonlocalMarching_Inpaint_core.h" - -/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) - * The method is heuristic but computationally efficent (especially for larger images). - * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms - * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data - * - * Input: - * 1. 2D image or sinogram [REQUIRED] - * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) [REQUIRED] - * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice [OPTIONAL, default 1] - * 4. Number of iterations [OPTIONAL, default - calculate based on the mask] - * - * Output: - * 1. Inpainted sinogram - * 2. updated mask - * Reference: TBA - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterations, SW_increment; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *Output=NULL; - unsigned char *Mask, *Mask_upd=NULL; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ - SW_increment = 1; - iterations = 0; - - if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Linear increment, Iterations number"); - if ((nrhs == 3) || (nrhs == 4)) SW_increment = (int) mxGetScalar(prhs[2]); /* linear increment */ - if ((nrhs == 4)) iterations = (int) mxGetScalar(prhs[3]); /* iterations number */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Mask_upd = (unsigned char*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxUINT8_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - mexErrMsgTxt("Currently 2D supported only"); - } - NonlocalMarching_Inpaint_main(Input, Mask, Output, Mask_upd, SW_increment, iterations, 0, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c deleted file mode 100644 index 014c0a0..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c +++ /dev/null @@ -1,88 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "matrix.h" -#include "mex.h" -#include "Nonlocal_TV_core.h" - -#define EPS 1.0000e-9 - -/* Matlab wrapper for C-OMP implementation of non-local regulariser - * Weights and associated indices must be given as an input. - * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort - * goes in pre-calculation of weights and selection of patches - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. AR_i - indeces of i neighbours - * 3. AR_j - indeces of j neighbours - * 4. AR_k - indeces of k neighbours (0 - for 2D case) - * 5. Weights_ij(k) - associated weights - * 6. regularisation parameter - * 7. iterations number - - * Output: - * 1. denoised image/volume - * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) -{ - long number_of_dims, dimX, dimY, dimZ; - int IterNumb, NumNeighb = 0; - unsigned short *H_i, *H_j, *H_k; - const int *dim_array; - const int *dim_array2; - float *A_orig, *Output=NULL, *Weights, lambda; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - A_orig = (float *) mxGetData(prhs[0]); /* a 2D image or a set of 2D images (3D stack) */ - H_i = (unsigned short *) mxGetData(prhs[1]); /* indeces of i neighbours */ - H_j = (unsigned short *) mxGetData(prhs[2]); /* indeces of j neighbours */ - H_k = (unsigned short *) mxGetData(prhs[3]); /* indeces of k neighbours */ - Weights = (float *) mxGetData(prhs[4]); /* weights for patches */ - lambda = (float) mxGetScalar(prhs[5]); /* regularisation parameter */ - IterNumb = (int) mxGetScalar(prhs[6]); /* the number of iterations */ - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /*****2D INPUT *****/ - if (number_of_dims == 2) { - dimZ = 0; - NumNeighb = dim_array2[2]; - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - /*****3D INPUT *****/ - /****************************************************/ - if (number_of_dims == 3) { - NumNeighb = dim_array2[3]; - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - - /* run the main function here */ - Nonlocal_TV_CPU_main(A_orig, Output, H_i, H_j, H_k, Weights, dimX, dimY, dimZ, NumNeighb, lambda, IterNumb); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c deleted file mode 100644 index f942539..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c +++ /dev/null @@ -1,92 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "matrix.h" -#include "mex.h" -#include "PatchSelect_core.h" - -/* C-OMP implementation of non-local weight pre-calculation for non-local priors - * Weights and associated indices are stored into pre-allocated arrays and passed - * to the regulariser - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. Searching window (half-size of the main bigger searching window, e.g. 11) - * 3. Similarity window (half-size of the patch window, e.g. 2) - * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) - * 5. noise-related parameter to calculate non-local weights - * - * Output [2D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. Weights_ij - associated weights - * - * Output [3D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. AR_k - indeces of j neighbours - * 4. Weights_ijk - associated weights - */ -/**************************************************/ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) -{ - int number_of_dims, SearchWindow, SimilarWin, NumNeighb; - mwSize dimX, dimY, dimZ; - unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; - const int *dim_array; - float *A, *Weights = NULL, h; - int dim_array2[3]; /* for 2D data */ - int dim_array3[4]; /* for 3D data */ - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - A = (float *) mxGetData(prhs[0]); /* a 2D or 3D image/volume */ - SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window */ - SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window (patch-search)*/ - NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */ - h = (float) mxGetScalar(prhs[4]); /* NLM parameter */ - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */ - dim_array3[0] = dimX; dim_array3[1] = dimY; dim_array3[2] = dimZ; dim_array3[3] = NumNeighb; /* 3D case */ - - /****************2D INPUT ***************/ - if (number_of_dims == 2) { - dimZ = 0; - H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); - H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); - Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL)); - } - /****************3D INPUT ***************/ - if (number_of_dims == 3) { - H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - H_k = (unsigned short*)mxGetPr(plhs[2] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - Weights = (float*)mxGetPr(plhs[3] = mxCreateNumericArray(4, dim_array3, mxSINGLE_CLASS, mxREAL)); - } - - PatchSelect_CPU_main(A, H_i, H_j, H_k, Weights, (long)(dimX), (long)(dimY), (long)(dimZ), SearchWindow, SimilarWin, NumNeighb, h, 0); - - } diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c deleted file mode 100644 index 55ef2b1..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c +++ /dev/null @@ -1,77 +0,0 @@ - -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "ROF_TV_core.h" - -/* ROF-TV denoising/regularization model [1] (2D/3D case) - * (MEX wrapper for MATLAB) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - * - * D. Kazantsev, 2016-18 - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array_i; - float *Input, *Output=NULL, lambda, tau; - - dim_array_i = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ - tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant"); - /*Handling Matlab output data*/ - dimX = dim_array_i[0]; dimY = dim_array_i[1]; dimZ = dim_array_i[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array_i, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL)); - } - - TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c deleted file mode 100644 index 8636322..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c +++ /dev/null @@ -1,91 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "SB_TV_core.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* This function is based on the Matlab's code and paper by -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 100; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - SB_TV_CPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c deleted file mode 100644 index aa4eed4..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c +++ /dev/null @@ -1,83 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include "TGV_core.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D/3D) - * - * Input Parameters: - * 1. Noisy image/volume (2D/3D) - * 2. lambda - regularisation parameter - * 3. parameter to control the first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regulariaed image - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, alpha0, alpha1, L2; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */ - lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ - alpha1 = 1.0f; /* parameter to control the first-order term */ - alpha0 = 0.5f; /* parameter to control the second-order term */ - iter = 300; /* Iterations number */ - L2 = 12.0f; /* Lipshitz constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */ - if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */ - if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - /* running the function */ - TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c deleted file mode 100644 index acea75d..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c +++ /dev/null @@ -1,74 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TNV_core.h" -/* - * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] - * The code is modified from the implementation by Joan Duran see - * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package - * - * Input Parameters: - * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume - * 2. lambda - regularisation parameter - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon - tolerance constant [OPTIONAL parameter] - * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] - * - * Output: - * 1. Filtered/regularized image - * - * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D + channels), Regularisation parameter, Regularization parameter, iterations number, tolerance"); - - Input = (float *) mxGetData(prhs[0]); /* noisy sequence of channels (2D + channels) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 1000; /* default iterations number */ - epsil = 1.00e-05; /* default tolerance constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if (nrhs == 4) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) mexErrMsgTxt("The input must be 3D: [X,Y,Channels]"); - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - /* running the function */ - TNV_CPU_main(Input, Output, lambda, iter, epsil, dimX, dimY, dimZ); - } -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c deleted file mode 100644 index d457f46..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c +++ /dev/null @@ -1,72 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "utils.h" -/* - * Function to calculate TV energy value with respect to the denoising variational problem - * - * Input: - * 1. Denoised Image/volume - * 2. Original (noisy) Image/volume - * 3. lambda - regularisation parameter - * - * Output: - * 1. Energy function value - * - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, type; - - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Input0, lambda; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs != 4)) mexErrMsgTxt("4 inputs: Two images or volumes of the same size required, estimated and the original (noisy), regularisation parameter, type"); - - Input = (float *) mxGetData(prhs[0]); /* Denoised Image/volume */ - Input0 = (float *) mxGetData(prhs[1]); /* Original (noisy) Image/volume */ - lambda = (float) mxGetScalar(prhs[2]); /* regularisation parameter */ - type = (int) mxGetScalar(prhs[3]); /* type of energy */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*output energy function value */ - plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - float *funcvalA = (float *) mxGetData(plhs[0]); - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - TV_energy2D(Input, Input0, funcvalA, lambda, type, dimX, dimY); - } - if (number_of_dims == 3) { - TV_energy3D(Input, Input0, funcvalA, lambda, type, dimX, dimY, dimZ); - } -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp deleted file mode 100644 index 0cc042b..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp +++ /dev/null @@ -1,77 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffus_4thO_GPU_core.h" - -/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Edge-preserving parameter (sigma) [REQUIRED] - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] - * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.01; /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); - if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffus4th_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp deleted file mode 100644 index c174e75..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp +++ /dev/null @@ -1,97 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_FGP_GPU_core.h" - -/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 6) || (nrhs == 7)) { - nonneg = (int) mxGetScalar(prhs[5]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 7) { - printswitch = (int) mxGetScalar(prhs[6]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp deleted file mode 100644 index 3f5a4b3..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp +++ /dev/null @@ -1,113 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "dTV_FGP_GPU_core.h" - -/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - - /*Handling Matlab input data*/ - if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - eta = 0.01; /* default smoothing constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} - if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} - - - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ - } - if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 8) || (nrhs == 9)) { - nonneg = (int) mxGetScalar(prhs[7]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 9) { - printswitch = (int) mxGetScalar(prhs[8]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - dTV_FGP_GPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp deleted file mode 100644 index e8da4ce..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp +++ /dev/null @@ -1,83 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "LLT_ROF_GPU_core.h" - -/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. -* -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterationsNumb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter"); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */ - lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */ - iterationsNumb = 250; - tau = 0.0025; - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - LLT_ROF_GPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp deleted file mode 100644 index 1cd0cdc..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp +++ /dev/null @@ -1,92 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include -#include -#include "NonlDiff_GPU_core.h" - -/* CUDA implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - if (nrhs == 6) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - NonlDiff_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp deleted file mode 100644 index bd01d55..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp +++ /dev/null @@ -1,74 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_ROF_GPU_core.h" - -/* ROF-TV denoising/regularization model [1] (2D/3D case) - * (MEX wrapper for MATLAB) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - * - * D. Kazantsev, 2016-18 - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ - tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant"); - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ); -} \ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp deleted file mode 100644 index 9d1328f..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp +++ /dev/null @@ -1,91 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_SB_GPU_core.h" - -/* CUDA mex-file for implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* This function is based on the Matlab's code and paper by -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 100; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_SB_GPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp deleted file mode 100644 index edb551d..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp +++ /dev/null @@ -1,79 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include "TGV_GPU_core.h" - -/* CUDA implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D case only) - * - * Input Parameters: - * 1. Noisy image (2D) (required) - * 2. lambda - regularisation parameter (required) - * 3. parameter to control the first-order term (alpha1) (default - 1) - * 4. parameter to control the second-order term (alpha0) (default - 0.5) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300) - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regulariaed image - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, alpha0, alpha1, L2; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ - alpha1 = 1.0f; /* parameter to control the first-order term */ - alpha0 = 0.5f; /* parameter to control the second-order term */ - iter = 300; /* Iterations number */ - L2 = 12.0f; /* Lipshitz constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */ - if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */ - if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; - - if (number_of_dims == 2) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - /* running the function */ - TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY); - } - if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");} -} diff --git a/Wrappers/Matlab/supp/RMSE.m b/Wrappers/Matlab/supp/RMSE.m deleted file mode 100644 index 002f776..0000000 --- a/Wrappers/Matlab/supp/RMSE.m +++ /dev/null @@ -1,7 +0,0 @@ -function err = RMSE(signal1, signal2) -%RMSE Root Mean Squared Error - -err = sum((signal1 - signal2).^2)/length(signal1); % MSE -err = sqrt(err); % RMSE - -end \ No newline at end of file diff --git a/Wrappers/Matlab/supp/my_red_yellowMAP.mat b/Wrappers/Matlab/supp/my_red_yellowMAP.mat deleted file mode 100644 index c2a5b87..0000000 Binary files a/Wrappers/Matlab/supp/my_red_yellowMAP.mat and /dev/null differ diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt deleted file mode 100644 index c2ef855..0000000 --- a/Wrappers/Python/CMakeLists.txt +++ /dev/null @@ -1,141 +0,0 @@ -# Copyright 2018 Edoardo Pasca -cmake_minimum_required (VERSION 3.0) - -project(regulariserPython) -#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py - -# The version number. - -#set (CIL_VERSION $ENV{CIL_VERSION} CACHE INTERNAL "Core Imaging Library version" FORCE) - -# conda orchestrated build -message("CIL_VERSION: ${CIL_VERSION}") -#include (GenerateExportHeader) - -find_package(PythonInterp REQUIRED) -if (PYTHONINTERP_FOUND) - message ("Current Python " ${PYTHON_VERSION_STRING} " found " ${PYTHON_EXECUTABLE}) -endif() - - -## Build the regularisers package as a library -message("Creating Regularisers as shared library") - -message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") - -set(CMAKE_BUILD_TYPE "Release") - -if(WIN32) - set (FLAGS "/DWIN32 /EHsc /openmp /DCCPiCore_EXPORTS") - set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /NODEFAULTLIB:MSVCRT.lib") - - set (EXTRA_LIBRARIES) - - message("library lib: ${LIBRARY_LIB}") - -elseif(UNIX) - set (FLAGS "-fopenmp -O2 -funsigned-char -Wall -Wl,--no-undefined -DCCPiReconstructionIterative_EXPORTS -std=c++0x") - set (EXTRA_LIBRARIES - "gomp" - ) -endif() - -# GPU regularisers -if (BUILD_CUDA) - find_package(CUDA) - if (CUDA_FOUND) - message("CUDA FOUND") - set (SETUP_GPU_WRAPPERS "extra_libraries += ['cilregcuda']\n\ -setup( \n\ - name='ccpi', \n\ - description='CCPi Core Imaging Library - Image regularisers GPU',\n\ - version=cil_version,\n\ - cmdclass = {'build_ext': build_ext},\n\ - ext_modules = [Extension('ccpi.filters.gpu_regularisers',\n\ - sources=[ \n\ - os.path.join('.' , 'src', 'gpu_regularisers.pyx' ),\n\ - ],\n\ - include_dirs=extra_include_dirs, \n\ - library_dirs=extra_library_dirs, \n\ - extra_compile_args=extra_compile_args, \n\ - libraries=extra_libraries ), \n\ - ],\n\ - zip_safe = False, \n\ - packages = {'ccpi','ccpi.filters'},\n\ - )") - else() - message("CUDA NOT FOUND") - set(SETUP_GPU_WRAPPERS "#CUDA NOT FOUND") - endif() -endif() -configure_file("${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in" "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py") - - -find_package(PythonInterp) -find_package(PythonLibs) -if (PYTHONINTERP_FOUND) - message(STATUS "Found PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}") - message(STATUS "Python version ${PYTHON_VERSION_STRING}") -endif() -if (PYTHONLIBS_FOUND) - message(STATUS "Found PYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS}") - message(STATUS "Found PYTHON_LIBRARIES=${PYTHON_LIBRARIES}") -endif() - -if (PYTHONINTERP_FOUND) - message("Python found " ${PYTHON_EXECUTABLE}) - set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in") - set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py") - #set(DEPS "${CMAKE_CURRENT_SOURCE_DIR}/module/__init__.py") - set (DEPS "${CMAKE_BINARY_DIR}/Core/") - set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp") - - configure_file(${SETUP_PY_IN} ${SETUP_PY}) - - message("Core binary dir " ${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE}) - - if (CONDA_BUILD) - add_custom_command(OUTPUT ${OUTPUT} - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi - COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION} - PREFIX=${CMAKE_SOURCE_DIR}/Core - LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core - LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core - ${PYTHON_EXECUTABLE} ${SETUP_PY} install - COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} - DEPENDS cilreg) - - else() - if (WIN32) - add_custom_command(OUTPUT ${OUTPUT} - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi - COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION} - PREFIX=${CMAKE_SOURCE_DIR}/Core - LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core - LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE} - ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace - COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} - DEPENDS cilreg) - else() - add_custom_command(OUTPUT ${OUTPUT} - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src - COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi - COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION} - PREFIX=${CMAKE_SOURCE_DIR}/Core - LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core - LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core - ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace - COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT} - DEPENDS cilreg) - endif() - install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi - DESTINATION ${PYTHON_DEST}) - endif() - - - add_custom_target(PythonWrapper ALL DEPENDS ${OUTPUT}) - - #install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)") -endif() diff --git a/Wrappers/Python/ccpi/__init__.py b/Wrappers/Python/ccpi/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/Wrappers/Python/ccpi/filters/__init__.py b/Wrappers/Python/ccpi/filters/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py deleted file mode 100644 index 588ea32..0000000 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ /dev/null @@ -1,214 +0,0 @@ -""" -script which assigns a proper device core function based on a flag ('cpu' or 'gpu') -""" - -from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU -try: - from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU - gpu_enabled = True -except ImportError: - gpu_enabled = False -from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU - -def ROF_TV(inputData, regularisation_parameter, iterations, - time_marching_parameter,device='cpu'): - if device == 'cpu': - return TV_ROF_CPU(inputData, - regularisation_parameter, - iterations, - time_marching_parameter) - elif device == 'gpu' and gpu_enabled: - return TV_ROF_GPU(inputData, - regularisation_parameter, - iterations, - time_marching_parameter) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) - -def FGP_TV(inputData, regularisation_parameter,iterations, - tolerance_param, methodTV, nonneg, printM, device='cpu'): - if device == 'cpu': - return TV_FGP_CPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM) - elif device == 'gpu' and gpu_enabled: - return TV_FGP_GPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def SB_TV(inputData, regularisation_parameter, iterations, - tolerance_param, methodTV, printM, device='cpu'): - if device == 'cpu': - return TV_SB_CPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM) - elif device == 'gpu' and gpu_enabled: - return TV_SB_GPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def FGP_dTV(inputData, refdata, regularisation_parameter, iterations, - tolerance_param, eta_const, methodTV, nonneg, printM, device='cpu'): - if device == 'cpu': - return dTV_FGP_CPU(inputData, - refdata, - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM) - elif device == 'gpu' and gpu_enabled: - return dTV_FGP_GPU(inputData, - refdata, - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def TNV(inputData, regularisation_parameter, iterations, tolerance_param): - return TNV_CPU(inputData, - regularisation_parameter, - iterations, - tolerance_param) -def NDF(inputData, regularisation_parameter, edge_parameter, iterations, - time_marching_parameter, penalty_type, device='cpu'): - if device == 'cpu': - return NDF_CPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type) - elif device == 'gpu' and gpu_enabled: - return NDF_GPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations, - time_marching_parameter, device='cpu'): - if device == 'cpu': - return Diff4th_CPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter) - elif device == 'gpu' and gpu_enabled: - return Diff4th_GPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) - -def PatchSelect(inputData, searchwindow, patchwindow, neighbours, edge_parameter, device='cpu'): - if device == 'cpu': - return PATCHSEL_CPU(inputData, - searchwindow, - patchwindow, - neighbours, - edge_parameter) - elif device == 'gpu' and gpu_enabled: - return PATCHSEL_GPU(inputData, - searchwindow, - patchwindow, - neighbours, - edge_parameter) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) - -def NLTV(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations): - return NLTV_CPU(inputData, - H_i, - H_j, - H_k, - Weights, - regularisation_parameter, - iterations) - -def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations, - LipshitzConst, device='cpu'): - if device == 'cpu': - return TGV_CPU(inputData, - regularisation_parameter, - alpha1, - alpha0, - iterations, - LipshitzConst) - elif device == 'gpu' and gpu_enabled: - return TGV_GPU(inputData, - regularisation_parameter, - alpha1, - alpha0, - iterations, - LipshitzConst) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, - time_marching_parameter, device='cpu'): - if device == 'cpu': - return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - elif device == 'gpu' and gpu_enabled: - return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) -def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations, - time_marching_parameter, penalty_type): - return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, - edge_parameter, iterations, time_marching_parameter, penalty_type) - -def NVM_INP(inputData, maskData, SW_increment, iterations): - return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations) diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat deleted file mode 100644 index 6c84355..0000000 --- a/Wrappers/Python/conda-recipe/bld.bat +++ /dev/null @@ -1,20 +0,0 @@ -IF NOT DEFINED CIL_VERSION ( -ECHO CIL_VERSION Not Defined. -exit 1 -) - -mkdir "%SRC_DIR%\ccpi" -ROBOCOPY /E "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi" -ROBOCOPY /E "%RECIPE_DIR%\..\..\..\Core" "%SRC_DIR%\Core" -::cd %SRC_DIR%\ccpi\Python -cd %SRC_DIR% - -:: issue cmake to create setup.py -cmake -G "NMake Makefiles" %RECIPE_DIR%\..\..\..\ -DBUILD_PYTHON_WRAPPERS=ON -DCONDA_BUILD=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB="%CONDA_PREFIX%\lib" -DLIBRARY_INC="%CONDA_PREFIX%" -DCMAKE_INSTALL_PREFIX="%PREFIX%\Library" - -::%PYTHON% setup-regularisers.py build_ext -::if errorlevel 1 exit 1 -::%PYTHON% setup-regularisers.py install -::if errorlevel 1 exit 1 -nmake install -if errorlevel 1 exit 1 \ No newline at end of file diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh deleted file mode 100644 index 39c0f2c..0000000 --- a/Wrappers/Python/conda-recipe/build.sh +++ /dev/null @@ -1,17 +0,0 @@ - -mkdir "$SRC_DIR/ccpi" -cp -rv "$RECIPE_DIR/../.." "$SRC_DIR/ccpi" -cp -rv "$RECIPE_DIR/../../../Core" "$SRC_DIR/Core" - -cd $SRC_DIR -##cuda=off - -cmake -G "Unix Makefiles" $RECIPE_DIR/../../../ -DBUILD_PYTHON_WRAPPER=ON -DCONDA_BUILD=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB=$CONDA_PREFIX/lib -DLIBRARY_INC=$CONDA_PREFIX -DCMAKE_INSTALL_PREFIX=$PREFIX - - -make install - -#$PYTHON setup-regularisers.py build_ext -#$PYTHON setup-regularisers.py install - - diff --git a/Wrappers/Python/conda-recipe/conda_build_config.yaml b/Wrappers/Python/conda-recipe/conda_build_config.yaml deleted file mode 100644 index fbe82dc..0000000 --- a/Wrappers/Python/conda-recipe/conda_build_config.yaml +++ /dev/null @@ -1,9 +0,0 @@ -python: - - 2.7 # [not win] - - 3.5 - - 3.6 -# - 3.7 -numpy: - - 1.12 - - 1.14 - - 1.15 diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml deleted file mode 100644 index 7435b2b..0000000 --- a/Wrappers/Python/conda-recipe/meta.yaml +++ /dev/null @@ -1,40 +0,0 @@ -package: - name: ccpi-regulariser - version: {{CIL_VERSION}} - -build: - preserve_egg_dir: False - number: 0 - script_env: - - CIL_VERSION - -test: - files: - - lena_gray_512.tif - requires: - - pillow=4.1.1 - -requirements: - build: - - python - - numpy {{ numpy }} - - setuptools - - cython - - vc 14 # [win and py36] - - vc 14 # [win and py35] - - vc 9 # [win and py27] - - cmake - - run: - - {{ pin_compatible('numpy', max_pin='x.x') }} - - python - - numpy - - vc 14 # [win and py36] - - vc 14 # [win and py35] - - vc 9 # [win and py27] - - libgcc-ng - -about: - home: http://www.ccpi.ac.uk - license: BSD license - summary: 'CCPi Core Imaging Library Quantification Toolbox' diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py deleted file mode 100755 index 21f3216..0000000 --- a/Wrappers/Python/conda-recipe/run_test.py +++ /dev/null @@ -1,819 +0,0 @@ -import unittest -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th -from PIL import Image - -class TiffReader(object): - def imread(self, filename): - return np.asarray(Image.open(filename)) -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -def nrmse(im1, im2): - rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size)) - max_val = max(np.max(im1), np.max(im2)) - min_val = min(np.min(im1), np.min(im2)) - return 1 - (rmse / (max_val - min_val)) - -def rmse(im1, im2): - rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size)) - return rmse -############################################################################### - -class TestRegularisers(unittest.TestCase): - - - def test_ROF_TV_CPU_vs_GPU(self): - #print ("tomas debug test function") - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________ROF-TV bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - # set parameters - pars = {'algorithm': ROF_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 2500,\ - 'time_marching_parameter': 0.00002 - } - print ("#############ROF TV CPU####################") - start_time = timeit.default_timer() - rof_cpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - rms = rmse(Im, rof_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("##############ROF TV GPU##################") - start_time = timeit.default_timer() - try: - rof_gpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms = rmse(Im, rof_gpu) - pars['rmse'] = rms - pars['algorithm'] = ROF_TV - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-04 - diff_im = np.zeros(np.shape(rof_cpu)) - diff_im = abs(rof_cpu - rof_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum() , 1) - - def test_FGP_TV_CPU_vs_GPU(self): - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________FGP-TV bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - - # set parameters - pars = {'algorithm' : FGP_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :1200 ,\ - 'tolerance_constant':0.00001,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - - print ("#############FGP TV CPU####################") - start_time = timeit.default_timer() - fgp_cpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - - rms = rmse(Im, fgp_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - - print ("##############FGP TV GPU##################") - start_time = timeit.default_timer() - try: - fgp_gpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms = rmse(Im, fgp_gpu) - pars['rmse'] = rms - pars['algorithm'] = FGP_TV - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(fgp_cpu)) - diff_im = abs(fgp_cpu - fgp_gpu) - diff_im[diff_im > tolerance] = 1 - - self.assertLessEqual(diff_im.sum() , 1) - - def test_SB_TV_CPU_vs_GPU(self): - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________SB-TV bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - - # set parameters - pars = {'algorithm' : SB_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :150 ,\ - 'tolerance_constant':1e-05,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - - print ("#############SB-TV CPU####################") - start_time = timeit.default_timer() - sb_cpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'cpu') - - - rms = rmse(Im, sb_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - - print ("##############SB TV GPU##################") - start_time = timeit.default_timer() - try: - - sb_gpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms = rmse(Im, sb_gpu) - pars['rmse'] = rms - pars['algorithm'] = SB_TV - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(sb_cpu)) - diff_im = abs(sb_cpu - sb_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum(), 1) - - def test_TGV_CPU_vs_GPU(self): - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________TGV bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - - # set parameters - pars = {'algorithm' : TGV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :250 ,\ - 'LipshitzConstant' :12 ,\ - } - - print ("#############TGV CPU####################") - start_time = timeit.default_timer() - tgv_cpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'cpu') - - rms = rmse(Im, tgv_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - - print ("##############TGV GPU##################") - start_time = timeit.default_timer() - try: - tgv_gpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms = rmse(Im, tgv_gpu) - pars['rmse'] = rms - pars['algorithm'] = TGV - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(tgv_gpu)) - diff_im = abs(tgv_cpu - tgv_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum() , 1) - - def test_LLT_ROF_CPU_vs_GPU(self): - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________LLT-ROF bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - - # set parameters - pars = {'algorithm' : LLT_ROF, \ - 'input' : u0,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.01, \ - 'number_of_iterations' :1000 ,\ - 'time_marching_parameter' :0.0001 ,\ - } - - print ("#############LLT- ROF CPU####################") - start_time = timeit.default_timer() - lltrof_cpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - - rms = rmse(Im, lltrof_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("#############LLT- ROF GPU####################") - start_time = timeit.default_timer() - try: - lltrof_gpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms = rmse(Im, lltrof_gpu) - pars['rmse'] = rms - pars['algorithm'] = LLT_ROF - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-04 - diff_im = np.zeros(np.shape(lltrof_gpu)) - diff_im = abs(lltrof_cpu - lltrof_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum(), 1) - - def test_NDF_CPU_vs_GPU(self): - print(__name__) - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("_______________NDF bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - - # set parameters - pars = {'algorithm' : NDF, \ - 'input' : u0,\ - 'regularisation_parameter':0.06, \ - 'edge_parameter':0.04,\ - 'number_of_iterations' :1000 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type': 1 - } - - print ("#############NDF CPU####################") - start_time = timeit.default_timer() - ndf_cpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'cpu') - - rms = rmse(Im, ndf_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - - print ("##############NDF GPU##################") - start_time = timeit.default_timer() - try: - ndf_gpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - rms = rmse(Im, ndf_gpu) - pars['rmse'] = rms - pars['algorithm'] = NDF - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(ndf_cpu)) - diff_im = abs(ndf_cpu - ndf_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum(), 1) - - - def test_Diff4th_CPU_vs_GPU(self): - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("___Anisotropic Diffusion 4th Order (2D)____") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - # set parameters - pars = {'algorithm' : Diff4th, \ - 'input' : u0,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.001 - } - - print ("#############Diff4th CPU####################") - start_time = timeit.default_timer() - diff4th_cpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - - rms = rmse(Im, diff4th_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("##############Diff4th GPU##################") - start_time = timeit.default_timer() - try: - diff4th_gpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], 'gpu') - - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - rms = rmse(Im, diff4th_gpu) - pars['rmse'] = rms - pars['algorithm'] = Diff4th - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(diff4th_cpu)) - diff_im = abs(diff4th_cpu - diff4th_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum() , 1) - - def test_FDGdTV_CPU_vs_GPU(self): - filename = os.path.join("lena_gray_512.tif") - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - - Im = Im/255 - perc = 0.05 - u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) - u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - - # map the u0 u0->u0>0 - # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) - u0 = u0.astype('float32') - u_ref = u_ref.astype('float32') - - - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("____________FGP-dTV bench___________________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - - # set parameters - pars = {'algorithm' : FGP_dTV, \ - 'input' : u0,\ - 'refdata' : u_ref,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :1000 ,\ - 'tolerance_constant':1e-07,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - - print ("#############FGP dTV CPU####################") - start_time = timeit.default_timer() - fgp_dtv_cpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - - rms = rmse(Im, fgp_dtv_cpu) - pars['rmse'] = rms - - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("##############FGP dTV GPU##################") - start_time = timeit.default_timer() - try: - fgp_dtv_gpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - rms = rmse(Im, fgp_dtv_gpu) - pars['rmse'] = rms - pars['algorithm'] = FGP_dTV - txtstr = printParametersToString(pars) - txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - print (txtstr) - print ("--------Compare the results--------") - tolerance = 1e-05 - diff_im = np.zeros(np.shape(fgp_dtv_cpu)) - diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu) - diff_im[diff_im > tolerance] = 1 - self.assertLessEqual(diff_im.sum(), 1) - - def test_cpu_ROF_TV(self): - #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") - - filename = os.path.join("lena_gray_512.tif") - - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - Im = Im/255 - - """ - # read noiseless image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - """ - tolerance = 1e-05 - rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model - - # set parameters for ROF-TV - pars_rof_tv = {'algorithm': ROF_TV, \ - 'input' : Im,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 50,\ - 'time_marching_parameter': 0.00001 - } - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("_________testing ROF-TV (2D, CPU)__________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - rof_cpu = ROF_TV(pars_rof_tv['input'], - pars_rof_tv['regularisation_parameter'], - pars_rof_tv['number_of_iterations'], - pars_rof_tv['time_marching_parameter'],'cpu') - rms_rof = rmse(Im, rof_cpu) - - # now compare obtained rms with the expected value - self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance) - def test_cpu_FGP_TV(self): - #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") - - filename = os.path.join("lena_gray_512.tif") - - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - Im = Im/255 - """ - # read noiseless image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - """ - tolerance = 1e-05 - rms_fgp_exp = 0.019152347 #expected value for FGP model - - pars_fgp_tv = {'algorithm' : FGP_TV, \ - 'input' : Im,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :50 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("_________testing FGP-TV (2D, CPU)__________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - fgp_cpu = FGP_TV(pars_fgp_tv['input'], - pars_fgp_tv['regularisation_parameter'], - pars_fgp_tv['number_of_iterations'], - pars_fgp_tv['tolerance_constant'], - pars_fgp_tv['methodTV'], - pars_fgp_tv['nonneg'], - pars_fgp_tv['printingOut'],'cpu') - rms_fgp = rmse(Im, fgp_cpu) - # now compare obtained rms with the expected value - self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance) - - def test_gpu_ROF(self): - #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") - filename = os.path.join("lena_gray_512.tif") - - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - Im = Im/255 - - tolerance = 1e-05 - rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model - - # set parameters for ROF-TV - pars_rof_tv = {'algorithm': ROF_TV, \ - 'input' : Im,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 50,\ - 'time_marching_parameter': 0.00001 - } - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("_________testing ROF-TV (2D, GPU)__________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - try: - rof_gpu = ROF_TV(pars_rof_tv['input'], - pars_rof_tv['regularisation_parameter'], - pars_rof_tv['number_of_iterations'], - pars_rof_tv['time_marching_parameter'],'gpu') - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - - rms_rof = rmse(Im, rof_gpu) - # now compare obtained rms with the expected value - self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance) - - def test_gpu_FGP(self): - #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") - filename = os.path.join("lena_gray_512.tif") - - plt = TiffReader() - # read image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') - Im = Im/255 - tolerance = 1e-05 - - rms_fgp_exp = 0.019152347 #expected value for FGP model - - # set parameters for FGP-TV - pars_fgp_tv = {'algorithm' : FGP_TV, \ - 'input' : Im,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :50 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - print ("_________testing FGP-TV (2D, GPU)__________") - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - try: - fgp_gpu = FGP_TV(pars_fgp_tv['input'], - pars_fgp_tv['regularisation_parameter'], - pars_fgp_tv['number_of_iterations'], - pars_fgp_tv['tolerance_constant'], - pars_fgp_tv['methodTV'], - pars_fgp_tv['nonneg'], - pars_fgp_tv['printingOut'],'gpu') - except ValueError as ve: - self.skipTest("Results not comparable. GPU computing error.") - rms_fgp = rmse(Im, fgp_gpu) - # now compare obtained rms with the expected value - - self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance) - -if __name__ == '__main__': - unittest.main() diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py deleted file mode 100644 index 3b4191b..0000000 --- a/Wrappers/Python/demos/demo_cpu_inpainters.py +++ /dev/null @@ -1,192 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Demonstration of CPU inpainters -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from scipy import io -from ccpi.filters.regularisers import NDF_INP, NVM_INP -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'maskData': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### - -# read sinogram and the mask -filename = os.path.join(".." , ".." , ".." , "data" ,"SinoInpaint.mat") -sino = io.loadmat(filename) -sino_full = sino.get('Sinogram') -Mask = sino.get('Mask') -[angles_dim,detectors_dim] = sino_full.shape -sino_full = sino_full/np.max(sino_full) -#apply mask to sinogram -sino_cut = sino_full*(1-Mask) -#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32') -#sino_cut_new = sino_cut.copy(order='c') -#sino_cut_new[:] = sino_cut[:] -sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32); -#mask = np.zeros((angles_dim,detectors_dim),'uint8') -#mask =Mask.copy(order='c') -#mask[:] = Mask[:] -mask = np.ascontiguousarray(Mask, dtype=np.uint8); - -plt.figure(1) -plt.subplot(121) -plt.imshow(sino_cut_new,vmin=0.0, vmax=1) -plt.title('Missing Data sinogram') -plt.subplot(122) -plt.imshow(mask) -plt.title('Mask') -plt.show() -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Inpainting using linear diffusion (2D)__") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure(2) -plt.suptitle('Performance of linear inpainting using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Missing data sinogram') -imgplot = plt.imshow(sino_cut_new,cmap="gray") - -# set parameters -pars = {'algorithm' : NDF_INP, \ - 'input' : sino_cut_new,\ - 'maskData' : mask,\ - 'regularisation_parameter':5000,\ - 'edge_parameter':0,\ - 'number_of_iterations' :5000 ,\ - 'time_marching_parameter':0.000075,\ - 'penalty_type':0 - } - -start_time = timeit.default_timer() -ndf_inp_linear = NDF_INP(pars['input'], - pars['maskData'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type']) - -rms = rmse(sino_full, ndf_inp_linear) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_inp_linear, cmap="gray") -plt.title('{}'.format('Linear diffusion inpainting results')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_Inpainting using nonlinear diffusion (2D)_") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure(3) -plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Missing data sinogram') -imgplot = plt.imshow(sino_cut_new,cmap="gray") - -# set parameters -pars = {'algorithm' : NDF_INP, \ - 'input' : sino_cut_new,\ - 'maskData' : mask,\ - 'regularisation_parameter':80,\ - 'edge_parameter':0.00009,\ - 'number_of_iterations' :1500 ,\ - 'time_marching_parameter':0.000008,\ - 'penalty_type':1 - } - -start_time = timeit.default_timer() -ndf_inp_nonlinear = NDF_INP(pars['input'], - pars['maskData'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type']) - -rms = rmse(sino_full, ndf_inp_nonlinear) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray") -plt.title('{}'.format('Nonlinear diffusion inpainting results')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("Inpainting using nonlocal vertical marching") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure(4) -plt.suptitle('Performance of NVM inpainting using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Missing data sinogram') -imgplot = plt.imshow(sino_cut,cmap="gray") - -# set parameters -pars = {'algorithm' : NVM_INP, \ - 'input' : sino_cut_new,\ - 'maskData' : mask,\ - 'SW_increment': 1,\ - 'number_of_iterations' : 150 - } - -start_time = timeit.default_timer() -(nvm_inp, mask_upd) = NVM_INP(pars['input'], - pars['maskData'], - pars['SW_increment'], - pars['number_of_iterations']) - -rms = rmse(sino_full, nvm_inp) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(nvm_inp, cmap="gray") -plt.title('{}'.format('Nonlocal Vertical Marching inpainting results')) -#%% diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py deleted file mode 100644 index e6befa9..0000000 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ /dev/null @@ -1,572 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 22 11:39:43 2018 - -Demonstration of CPU regularisers - -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th -from ccpi.filters.regularisers import PatchSelect, NLTV -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### -#%% -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") - -# read image -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255.0 -perc = 0.05 -u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) -u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) -(N,M) = np.shape(u0) -# map the u0 u0->u0>0 -# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = u0.astype('float32') -u_ref = u_ref.astype('float32') - -# change dims to check that modules work with non-squared images -""" -M = M-100 -u_ref2 = np.zeros([N,M],dtype='float32') -u_ref2[:,0:M] = u_ref[:,0:M] -u_ref = u_ref2 -del u_ref2 - -u02 = np.zeros([N,M],dtype='float32') -u02[:,0:M] = u0[:,0:M] -u0 = u02 -del u02 - -Im2 = np.zeros([N,M],dtype='float32') -Im2[:,0:M] = Im[:,0:M] -Im = Im2 -del Im2 -""" -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________ROF-TV (2D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of ROF-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm': ROF_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 1200,\ - 'time_marching_parameter': 0.0025 - } -print ("#############ROF TV CPU####################") -start_time = timeit.default_timer() -rof_cpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') -rms = rmse(Im, rof_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________FGP-TV (2D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :2000 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP TV CPU####################") -start_time = timeit.default_timer() -fgp_cpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - -rms = rmse(Im, fgp_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________SB-TV (2D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of SB-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : SB_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :150 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - -print ("#############SB TV CPU####################") -start_time = timeit.default_timer() -sb_cpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'cpu') - - -rms = rmse(Im, sb_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) -#%% - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____Total Generalised Variation (2D)______") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : TGV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :1350 ,\ - 'LipshitzConstant' :12 ,\ - } - -print ("#############TGV CPU####################") -start_time = timeit.default_timer() -tgv_cpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'cpu') - - -rms = rmse(Im, tgv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("______________LLT- ROF (2D)________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : LLT_ROF, \ - 'input' : u0,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.01, \ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter' :0.0025 ,\ - } - -print ("#############LLT- ROF CPU####################") -start_time = timeit.default_timer() -lltrof_cpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - -rms = rmse(Im, lltrof_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% - - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("________________NDF (2D)___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of NDF regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : NDF, \ - 'input' : u0,\ - 'regularisation_parameter':0.025, \ - 'edge_parameter':0.015,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type':1 - } - -print ("#############NDF CPU################") -start_time = timeit.default_timer() -ndf_cpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'cpu') - -rms = rmse(Im, ndf_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Anisotropic Diffusion 4th Order (2D)____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of Diff4th regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : Diff4th, \ - 'input' : u0,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.0015 - } - -print ("#############Diff4th CPU################") -start_time = timeit.default_timer() -diff4_cpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - -rms = rmse(Im, diff4_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Nonlocal patches pre-calculation____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -start_time = timeit.default_timer() -# set parameters -pars = {'algorithm' : PatchSelect, \ - 'input' : u0,\ - 'searchwindow': 7, \ - 'patchwindow': 2,\ - 'neighbours' : 15 ,\ - 'edge_parameter':0.18} - -H_i, H_j, Weights = PatchSelect(pars['input'], - pars['searchwindow'], - pars['patchwindow'], - pars['neighbours'], - pars['edge_parameter'],'cpu') - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -""" -plt.figure() -plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1) -plt.show() -""" -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Nonlocal Total Variation penalty____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -## plot -fig = plt.figure() -plt.suptitle('Performance of NLTV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -pars2 = {'algorithm' : NLTV, \ - 'input' : u0,\ - 'H_i': H_i, \ - 'H_j': H_j,\ - 'H_k' : 0,\ - 'Weights' : Weights,\ - 'regularisation_parameter': 0.04,\ - 'iterations': 3 - } -start_time = timeit.default_timer() -nltv_cpu = NLTV(pars2['input'], - pars2['H_i'], - pars2['H_j'], - pars2['H_k'], - pars2['Weights'], - pars2['regularisation_parameter'], - pars2['iterations']) - -rms = rmse(Im, nltv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(nltv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____________FGP-dTV (2D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-dTV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_dTV, \ - 'input' : u0,\ - 'refdata' : u_ref,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :2000 ,\ - 'tolerance_constant':1e-06,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP dTV CPU####################") -start_time = timeit.default_timer() -fgp_dtv_cpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - -rms = rmse(Im, fgp_dtv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("__________Total nuclear Variation__________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of TNV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -channelsNo = 5 -noisyVol = np.zeros((channelsNo,N,M),dtype='float32') -idealVol = np.zeros((channelsNo,N,M),dtype='float32') - -for i in range (channelsNo): - noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) - idealVol[i,:,:] = Im - -# set parameters -pars = {'algorithm' : TNV, \ - 'input' : noisyVol,\ - 'regularisation_parameter': 0.04, \ - 'number_of_iterations' : 200 ,\ - 'tolerance_constant':1e-05 - } - -print ("#############TNV CPU#################") -start_time = timeit.default_timer() -tnv_cpu = TNV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant']) - -rms = rmse(idealVol, tnv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray") -plt.title('{}'.format('CPU results')) diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py deleted file mode 100644 index 2d2fc22..0000000 --- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py +++ /dev/null @@ -1,458 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 22 11:39:43 2018 - -Demonstration of 3D CPU regularisers - -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### -#%% -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") - -# read image -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 -perc = 0.05 -u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) -u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) -(N,M) = np.shape(u0) -# map the u0 u0->u0>0 -# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = u0.astype('float32') -u_ref = u_ref.astype('float32') - -# change dims to check that modules work with non-squared images -""" -M = M-100 -u_ref2 = np.zeros([N,M],dtype='float32') -u_ref2[:,0:M] = u_ref[:,0:M] -u_ref = u_ref2 -del u_ref2 - -u02 = np.zeros([N,M],dtype='float32') -u02[:,0:M] = u0[:,0:M] -u0 = u02 -del u02 - -Im2 = np.zeros([N,M],dtype='float32') -Im2[:,0:M] = Im[:,0:M] -Im = Im2 -del Im2 -""" -slices = 15 - -noisyVol = np.zeros((slices,N,M),dtype='float32') -noisyRef = np.zeros((slices,N,M),dtype='float32') -idealVol = np.zeros((slices,N,M),dtype='float32') - -for i in range (slices): - noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) - noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) - idealVol[i,:,:] = Im - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________ROF-TV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of ROF-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy 15th slice of a volume') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm': ROF_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 500,\ - 'time_marching_parameter': 0.0025 - } -print ("#############ROF TV CPU####################") -start_time = timeit.default_timer() -rof_cpu3D = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') -rms = rmse(idealVol, rof_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using ROF-TV')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________FGP-TV (3D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :300 ,\ - 'tolerance_constant':0.00001,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP TV CPU####################") -start_time = timeit.default_timer() -fgp_cpu3D = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - -rms = rmse(idealVol, fgp_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using FGP-TV')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________SB-TV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of SB-TV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : SB_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :150 ,\ - 'tolerance_constant':0.00001,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - -print ("#############SB TV CPU####################") -start_time = timeit.default_timer() -sb_cpu3D = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'cpu') - -rms = rmse(idealVol, sb_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using SB-TV')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________LLT-ROF (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : LLT_ROF, \ - 'input' : noisyVol,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.015, \ - 'number_of_iterations' :300 ,\ - 'time_marching_parameter' :0.0025 ,\ - } - -print ("#############LLT ROF CPU####################") -start_time = timeit.default_timer() -lltrof_cpu3D = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - -rms = rmse(idealVol, lltrof_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________TGV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : TGV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :250 ,\ - 'LipshitzConstant' :12 ,\ - } - -print ("#############TGV CPU####################") -start_time = timeit.default_timer() -tgv_cpu3D = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'cpu') - - -rms = rmse(idealVol, tgv_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using TGV')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("________________NDF (3D)___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of NDF regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy volume') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : NDF, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.025, \ - 'edge_parameter':0.015,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type': 1 - } - -print ("#############NDF CPU################") -start_time = timeit.default_timer() -ndf_cpu3D = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type']) - -rms = rmse(idealVol, ndf_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using NDF iterations')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Anisotropic Diffusion 4th Order (2D)____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of Diff4th regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy volume') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : Diff4th, \ - 'input' : noisyVol,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :300 ,\ - 'time_marching_parameter':0.0015 - } - -print ("#############Diff4th CPU################") -start_time = timeit.default_timer() -diff4th_cpu3D = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter']) - -rms = rmse(idealVol, diff4th_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________FGP-dTV (3D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-dTV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_dTV,\ - 'input' : noisyVol,\ - 'refdata' : noisyRef,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :300 ,\ - 'tolerance_constant':0.00001,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP dTV CPU####################") -start_time = timeit.default_timer() -fgp_dTV_cpu3D = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - -rms = rmse(idealVol, fgp_dTV_cpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV')) -#%% diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py deleted file mode 100644 index 230a761..0000000 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ /dev/null @@ -1,790 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 22 11:39:43 2018 - -Demonstration of CPU implementation against the GPU one - -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th -from ccpi.filters.regularisers import PatchSelect -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### - -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") - -# read image -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 -perc = 0.05 -u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) -u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) - -# map the u0 u0->u0>0 -# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = u0.astype('float32') -u_ref = u_ref.astype('float32') - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________ROF-TV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm': ROF_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 4500,\ - 'time_marching_parameter': 0.00002 - } -print ("#############ROF TV CPU####################") -start_time = timeit.default_timer() -rof_cpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') -rms = rmse(Im, rof_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -print ("##############ROF TV GPU##################") -start_time = timeit.default_timer() -rof_gpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(Im, rof_gpu) -pars['rmse'] = rms -pars['algorithm'] = ROF_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(rof_cpu)) -diff_im = abs(rof_cpu - rof_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-TV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :1200 ,\ - 'tolerance_constant':0.00001,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP TV CPU####################") -start_time = timeit.default_timer() -fgp_cpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - -rms = rmse(Im, fgp_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - - -print ("##############FGP TV GPU##################") -start_time = timeit.default_timer() -fgp_gpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - -rms = rmse(Im, fgp_gpu) -pars['rmse'] = rms -pars['algorithm'] = FGP_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(fgp_cpu)) -diff_im = abs(fgp_cpu - fgp_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________SB-TV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : SB_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :150 ,\ - 'tolerance_constant':1e-05,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - -print ("#############SB-TV CPU####################") -start_time = timeit.default_timer() -sb_cpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'cpu') - - -rms = rmse(Im, sb_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - - -print ("##############SB TV GPU##################") -start_time = timeit.default_timer() -sb_gpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'gpu') - -rms = rmse(Im, sb_gpu) -pars['rmse'] = rms -pars['algorithm'] = SB_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(sb_cpu)) -diff_im = abs(sb_cpu - sb_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________TGV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : TGV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :400 ,\ - 'LipshitzConstant' :12 ,\ - } - -print ("#############TGV CPU####################") -start_time = timeit.default_timer() -tgv_cpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'cpu') - -rms = rmse(Im, tgv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -print ("##############TGV GPU##################") -start_time = timeit.default_timer() -tgv_gpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'gpu') - -rms = rmse(Im, tgv_gpu) -pars['rmse'] = rms -pars['algorithm'] = TGV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(tgv_gpu)) -diff_im = abs(tgv_cpu - tgv_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________LLT-ROF bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : LLT_ROF, \ - 'input' : u0,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.01, \ - 'number_of_iterations' :4500 ,\ - 'time_marching_parameter' :0.00002 ,\ - } - -print ("#############LLT- ROF CPU####################") -start_time = timeit.default_timer() -lltrof_cpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - -rms = rmse(Im, lltrof_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -print ("#############LLT- ROF GPU####################") -start_time = timeit.default_timer() -lltrof_gpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(Im, lltrof_gpu) -pars['rmse'] = rms -pars['algorithm'] = LLT_ROF -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(lltrof_gpu)) -diff_im = abs(lltrof_cpu - lltrof_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________NDF bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : NDF, \ - 'input' : u0,\ - 'regularisation_parameter':0.06, \ - 'edge_parameter':0.04,\ - 'number_of_iterations' :1000 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type': 1 - } - -print ("#############NDF CPU####################") -start_time = timeit.default_timer() -ndf_cpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'cpu') - -rms = rmse(Im, ndf_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - - -print ("##############NDF GPU##################") -start_time = timeit.default_timer() -ndf_gpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'gpu') - -rms = rmse(Im, ndf_gpu) -pars['rmse'] = rms -pars['algorithm'] = NDF -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(ndf_cpu)) -diff_im = abs(ndf_cpu - ndf_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Anisotropic Diffusion 4th Order (2D)____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : Diff4th, \ - 'input' : u0,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.001 - } - -print ("#############Diff4th CPU####################") -start_time = timeit.default_timer() -diff4th_cpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'cpu') - -rms = rmse(Im, diff4th_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4th_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -print ("##############Diff4th GPU##################") -start_time = timeit.default_timer() -diff4th_gpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], 'gpu') - -rms = rmse(Im, diff4th_gpu) -pars['rmse'] = rms -pars['algorithm'] = Diff4th -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4th_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(diff4th_cpu)) -diff_im = abs(diff4th_cpu - diff4th_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-dTV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,4,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_dTV, \ - 'input' : u0,\ - 'refdata' : u_ref,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :1000 ,\ - 'tolerance_constant':1e-07,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP dTV CPU####################") -start_time = timeit.default_timer() -fgp_dtv_cpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'cpu') - - -rms = rmse(Im, fgp_dtv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) - -print ("##############FGP dTV GPU##################") -start_time = timeit.default_timer() -fgp_dtv_gpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') -rms = rmse(Im, fgp_dtv_gpu) -pars['rmse'] = rms -pars['algorithm'] = FGP_dTV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,4,3) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(fgp_dtv_cpu)) -diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,4,4) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____Non-local regularisation bench_________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Comparison of Nonlocal TV regulariser using CPU and GPU implementations') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -pars = {'algorithm' : PatchSelect, \ - 'input' : u0,\ - 'searchwindow': 7, \ - 'patchwindow': 2,\ - 'neighbours' : 15 ,\ - 'edge_parameter':0.18} - -print ("############## Nonlocal Patches on CPU##################") -start_time = timeit.default_timer() -H_i, H_j, WeightsCPU = PatchSelect(pars['input'], - pars['searchwindow'], - pars['patchwindow'], - pars['neighbours'], - pars['edge_parameter'],'cpu') -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) - -print ("############## Nonlocal Patches on GPU##################") -start_time = timeit.default_timer() -start_time = timeit.default_timer() -H_i, H_j, WeightsGPU = PatchSelect(pars['input'], - pars['searchwindow'], - pars['patchwindow'], - pars['neighbours'], - pars['edge_parameter'],'gpu') -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) - -print ("--------Compare the results--------") -tolerance = 1e-05 -diff_im = np.zeros(np.shape(u0)) -diff_im = abs(WeightsCPU[0,:,:] - WeightsGPU[0,:,:]) -diff_im[diff_im > tolerance] = 1 -a=fig.add_subplot(1,2,2) -imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") -plt.title('{}'.format('Pixels larger threshold difference')) -if (diff_im.sum() > 1): - print ("Arrays do not match!") -else: - print ("Arrays match") -#%% \ No newline at end of file diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py deleted file mode 100644 index e1c6575..0000000 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ /dev/null @@ -1,518 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 22 11:39:43 2018 - -Demonstration of GPU regularisers - -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th -from ccpi.filters.regularisers import PatchSelect, NLTV -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### -#%% -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") - -# read image -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 -perc = 0.05 -u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) -u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) -(N,M) = np.shape(u0) -# map the u0 u0->u0>0 -# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = u0.astype('float32') -u_ref = u_ref.astype('float32') -""" -M = M-100 -u_ref2 = np.zeros([N,M],dtype='float32') -u_ref2[:,0:M] = u_ref[:,0:M] -u_ref = u_ref2 -del u_ref2 - -u02 = np.zeros([N,M],dtype='float32') -u02[:,0:M] = u0[:,0:M] -u0 = u02 -del u02 - -Im2 = np.zeros([N,M],dtype='float32') -Im2[:,0:M] = Im[:,0:M] -Im = Im2 -del Im2 -""" -#%% - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________ROF-TV regulariser_____________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of the ROF-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm': ROF_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 1200,\ - 'time_marching_parameter': 0.0025 - } -print ("##############ROF TV GPU##################") -start_time = timeit.default_timer() -rof_gpu = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(Im, rof_gpu) -pars['rmse'] = rms -pars['algorithm'] = ROF_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-TV regulariser_____________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of the FGP-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :1200 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("##############FGP TV GPU##################") -start_time = timeit.default_timer() -fgp_gpu = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - -rms = rmse(Im, fgp_gpu) -pars['rmse'] = rms -pars['algorithm'] = FGP_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________SB-TV regulariser______________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of the SB-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : SB_TV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :150 ,\ - 'tolerance_constant':1e-06,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - -print ("##############SB TV GPU##################") -start_time = timeit.default_timer() -sb_gpu = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'gpu') - -rms = rmse(Im, sb_gpu) -pars['rmse'] = rms -pars['algorithm'] = SB_TV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) -#%% - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____Total Generalised Variation (2D)______") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : TGV, \ - 'input' : u0,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :1250 ,\ - 'LipshitzConstant' :12 ,\ - } - -print ("#############TGV CPU####################") -start_time = timeit.default_timer() -tgv_gpu = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'gpu') - - -rms = rmse(Im, tgv_gpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% - -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("______________LLT- ROF (2D)________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : LLT_ROF, \ - 'input' : u0,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.01, \ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter' :0.0025 ,\ - } - -print ("#############LLT- ROF GPU####################") -start_time = timeit.default_timer() -lltrof_gpu = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - - -rms = rmse(Im, lltrof_gpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________NDF regulariser_____________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of the NDF regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : NDF, \ - 'input' : u0,\ - 'regularisation_parameter':0.025, \ - 'edge_parameter':0.015,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type': 1 - } - -print ("##############NDF GPU##################") -start_time = timeit.default_timer() -ndf_gpu = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'gpu') - -rms = rmse(Im, ndf_gpu) -pars['rmse'] = rms -pars['algorithm'] = NDF -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Anisotropic Diffusion 4th Order (2D)____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of Diff4th regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : Diff4th, \ - 'input' : u0,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.0015 - } - -print ("#############DIFF4th CPU################") -start_time = timeit.default_timer() -diff4_gpu = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(Im, diff4_gpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Nonlocal patches pre-calculation____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -start_time = timeit.default_timer() -# set parameters -pars = {'algorithm' : PatchSelect, \ - 'input' : u0,\ - 'searchwindow': 7, \ - 'patchwindow': 2,\ - 'neighbours' : 15 ,\ - 'edge_parameter':0.18} - -H_i, H_j, Weights = PatchSelect(pars['input'], - pars['searchwindow'], - pars['patchwindow'], - pars['neighbours'], - pars['edge_parameter'],'gpu') - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -""" -plt.figure() -plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1) -plt.show() -""" -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Nonlocal Total Variation penalty____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -## plot -fig = plt.figure() -plt.suptitle('Performance of NLTV regulariser using the CPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -pars2 = {'algorithm' : NLTV, \ - 'input' : u0,\ - 'H_i': H_i, \ - 'H_j': H_j,\ - 'H_k' : 0,\ - 'Weights' : Weights,\ - 'regularisation_parameter': 0.02,\ - 'iterations': 3 - } -start_time = timeit.default_timer() -nltv_cpu = NLTV(pars2['input'], - pars2['H_i'], - pars2['H_j'], - pars2['H_k'], - pars2['Weights'], - pars2['regularisation_parameter'], - pars2['iterations']) - -rms = rmse(Im, nltv_cpu) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(nltv_cpu, cmap="gray") -plt.title('{}'.format('CPU results')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-dTV bench___________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of the FGP-dTV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(u0,cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_dTV, \ - 'input' : u0,\ - 'refdata' : u_ref,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :2000 ,\ - 'tolerance_constant':1e-06,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("##############FGP dTV GPU##################") -start_time = timeit.default_timer() -fgp_dtv_gpu = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - -rms = rmse(Im, fgp_dtv_gpu) -pars['rmse'] = rms -pars['algorithm'] = FGP_dTV -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") -plt.title('{}'.format('GPU results')) diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py deleted file mode 100644 index b6058d2..0000000 --- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py +++ /dev/null @@ -1,460 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Feb 22 11:39:43 2018 - -Demonstration of GPU regularisers - -@authors: Daniil Kazantsev, Edoardo Pasca -""" - -import matplotlib.pyplot as plt -import numpy as np -import os -import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th -from qualitymetrics import rmse -############################################################################### -def printParametersToString(pars): - txt = r'' - for key, value in pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - elif key == 'refdata': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt -############################################################################### -#%% -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") - -# read image -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 -perc = 0.05 -u0 = Im + np.random.normal(loc = 0 , - scale = perc * Im , - size = np.shape(Im)) -u_ref = Im + np.random.normal(loc = 0 , - scale = 0.01 * Im , - size = np.shape(Im)) -(N,M) = np.shape(u0) -# map the u0 u0->u0>0 -# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = u0.astype('float32') -u_ref = u_ref.astype('float32') -""" -M = M-100 -u_ref2 = np.zeros([N,M],dtype='float32') -u_ref2[:,0:M] = u_ref[:,0:M] -u_ref = u_ref2 -del u_ref2 - -u02 = np.zeros([N,M],dtype='float32') -u02[:,0:M] = u0[:,0:M] -u0 = u02 -del u02 - -Im2 = np.zeros([N,M],dtype='float32') -Im2[:,0:M] = Im[:,0:M] -Im = Im2 -del Im2 -""" - - -slices = 20 - -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 -perc = 0.05 - -noisyVol = np.zeros((slices,N,N),dtype='float32') -noisyRef = np.zeros((slices,N,N),dtype='float32') -idealVol = np.zeros((slices,N,N),dtype='float32') - -for i in range (slices): - noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) - noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) - idealVol[i,:,:] = Im - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________ROF-TV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of ROF-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy 15th slice of a volume') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm': ROF_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04,\ - 'number_of_iterations': 500,\ - 'time_marching_parameter': 0.0025 - } -print ("#############ROF TV GPU####################") -start_time = timeit.default_timer() -rof_gpu3D = ROF_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') -rms = rmse(idealVol, rof_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using ROF-TV')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________FGP-TV (3D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :300 ,\ - 'tolerance_constant':0.00001,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP TV GPU####################") -start_time = timeit.default_timer() -fgp_gpu3D = FGP_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - -rms = rmse(idealVol, fgp_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using FGP-TV')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________SB-TV (3D)__________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of SB-TV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : SB_TV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :100 ,\ - 'tolerance_constant':1e-05,\ - 'methodTV': 0 ,\ - 'printingOut': 0 - } - -print ("#############SB TV GPU####################") -start_time = timeit.default_timer() -sb_gpu3D = SB_TV(pars['input'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['methodTV'], - pars['printingOut'],'gpu') - -rms = rmse(idealVol, sb_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using SB-TV')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________LLT-ROF (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : LLT_ROF, \ - 'input' : noisyVol,\ - 'regularisation_parameterROF':0.04, \ - 'regularisation_parameterLLT':0.015, \ - 'number_of_iterations' :300 ,\ - 'time_marching_parameter' :0.0025 ,\ - } - -print ("#############LLT ROF CPU####################") -start_time = timeit.default_timer() -lltrof_gpu3D = LLT_ROF(pars['input'], - pars['regularisation_parameterROF'], - pars['regularisation_parameterLLT'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(idealVol, lltrof_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________TGV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : TGV, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.04, \ - 'alpha1':1.0,\ - 'alpha0':2.0,\ - 'number_of_iterations' :600 ,\ - 'LipshitzConstant' :12 ,\ - } - -print ("#############TGV GPU####################") -start_time = timeit.default_timer() -tgv_gpu3D = TGV(pars['input'], - pars['regularisation_parameter'], - pars['alpha1'], - pars['alpha0'], - pars['number_of_iterations'], - pars['LipshitzConstant'],'gpu') - - -rms = rmse(idealVol, tgv_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using TGV')) -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________NDF-TV (3D)_________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of NDF regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : NDF, \ - 'input' : noisyVol,\ - 'regularisation_parameter':0.025, \ - 'edge_parameter':0.015,\ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter':0.025,\ - 'penalty_type': 1 - } - -print ("#############NDF GPU####################") -start_time = timeit.default_timer() -ndf_gpu3D = NDF(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'], - pars['penalty_type'],'gpu') - -rms = rmse(idealVol, ndf_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using NDF')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("___Anisotropic Diffusion 4th Order (3D)____") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of DIFF4th regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : Diff4th, \ - 'input' : noisyVol,\ - 'regularisation_parameter':3.5, \ - 'edge_parameter':0.02,\ - 'number_of_iterations' :300 ,\ - 'time_marching_parameter':0.0015 - } - -print ("#############DIFF4th CPU################") -start_time = timeit.default_timer() -diff4_gpu3D = Diff4th(pars['input'], - pars['regularisation_parameter'], - pars['edge_parameter'], - pars['number_of_iterations'], - pars['time_marching_parameter'],'gpu') - -rms = rmse(idealVol, diff4_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('GPU results')) - -#%% -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_______________FGP-dTV (3D)________________") -print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") - -## plot -fig = plt.figure() -plt.suptitle('Performance of FGP-dTV regulariser using the GPU') -a=fig.add_subplot(1,2,1) -a.set_title('Noisy Image') -imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") - -# set parameters -pars = {'algorithm' : FGP_dTV, \ - 'input' : noisyVol,\ - 'refdata' : noisyRef,\ - 'regularisation_parameter':0.04, \ - 'number_of_iterations' :300 ,\ - 'tolerance_constant':0.00001,\ - 'eta_const':0.2,\ - 'methodTV': 0 ,\ - 'nonneg': 0 ,\ - 'printingOut': 0 - } - -print ("#############FGP TV GPU####################") -start_time = timeit.default_timer() -fgp_dTV_gpu3D = FGP_dTV(pars['input'], - pars['refdata'], - pars['regularisation_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - pars['printingOut'],'gpu') - -rms = rmse(idealVol, fgp_dTV_gpu3D) -pars['rmse'] = rms - -txtstr = printParametersToString(pars) -txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) -print (txtstr) -a=fig.add_subplot(1,2,2) - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) -# place a text box in upper left in axes coords -a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray") -plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV')) -#%% diff --git a/Wrappers/Python/demos/qualitymetrics.py b/Wrappers/Python/demos/qualitymetrics.py deleted file mode 100644 index 850829e..0000000 --- a/Wrappers/Python/demos/qualitymetrics.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Wed Feb 21 13:34:32 2018 -# quality metrics -@authors: Daniil Kazantsev, Edoardo Pasca -""" -import numpy as np - -def nrmse(im1, im2): - rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size)) - max_val = max(np.max(im1), np.max(im2)) - min_val = min(np.min(im1), np.min(im2)) - return 1 - (rmse / (max_val - min_val)) - -def rmse(im1, im2): - rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size)) - return rmse diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in deleted file mode 100644 index 462edda..0000000 --- a/Wrappers/Python/setup-regularisers.py.in +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env python - -import setuptools -from distutils.core import setup -from distutils.extension import Extension -from Cython.Distutils import build_ext - -import os -import sys -import numpy -import platform - -cil_version=os.environ['CIL_VERSION'] -if cil_version == '': - print("Please set the environmental variable CIL_VERSION") - sys.exit(1) - -library_include_path = "" -library_lib_path = "" -try: - library_include_path = os.environ['LIBRARY_INC'] - library_lib_path = os.environ['LIBRARY_LIB'] -except: - library_include_path = os.environ['PREFIX']+'/include' - pass - -extra_include_dirs = [numpy.get_include(), library_include_path] -#extra_library_dirs = [os.path.join(library_include_path, "..", "lib")] -extra_compile_args = [] -extra_library_dirs = [library_lib_path] -extra_compile_args = [] -extra_link_args = [] -extra_libraries = ['cilreg'] - -print ("extra_library_dirs " , extra_library_dirs) - -extra_include_dirs += [os.path.join(".." , ".." , "Core"), - os.path.join(".." , ".." , "Core", "regularisers_CPU"), - os.path.join(".." , ".." , "Core", "inpainters_CPU"), - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "LLTROF" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) , - os.path.join(".." , ".." , "Core", "regularisers_GPU" , "PatchSelect" ) , - "."] - -if platform.system() == 'Windows': - extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] -else: - extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] - extra_libraries += [@EXTRA_OMP_LIB@] - -setup( - name='ccpi', - description='CCPi Core Imaging Library - Image regularisers', - version=cil_version, - cmdclass = {'build_ext': build_ext}, - ext_modules = [Extension("ccpi.filters.cpu_regularisers", - sources=[os.path.join("." , "src", "cpu_regularisers.pyx" ) ], - include_dirs=extra_include_dirs, - library_dirs=extra_library_dirs, - extra_compile_args=extra_compile_args, - libraries=extra_libraries ), - - ], - zip_safe = False, - packages = {'ccpi','ccpi.filters'}, -) - - -@SETUP_GPU_WRAPPERS@ diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx deleted file mode 100644 index 11a0617..0000000 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ /dev/null @@ -1,685 +0,0 @@ -# distutils: language=c++ -""" -Copyright 2018 CCPi -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. - -Author: Edoardo Pasca, Daniil Kazantsev -""" - -import cython -import numpy as np -cimport numpy as np - -cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); -cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); -cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); -cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); -cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); -cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); -cdef extern float PatchSelect_CPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM); -cdef extern float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb); - -cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); -cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ); -cdef extern float TV_energy2D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY); -cdef extern float TV_energy3D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY, int dimZ); -#****************************************************************# -#********************** Total-variation ROF *********************# -#****************************************************************# -def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter): - if inputData.ndim == 2: - return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter) - elif inputData.ndim == 3: - return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter) - -def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float marching_step_parameter): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run ROF iterations for 2D data - TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[1], dims[0], 1) - - return outputData - -def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float marching_step_parameter): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run ROF iterations for 3D data - TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[2], dims[1], dims[0]) - - return outputData - -#****************************************************************# -#********************** Total-variation FGP *********************# -#****************************************************************# -#******** Total-variation Fast-Gradient-Projection (FGP)*********# -def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM): - if inputData.ndim == 2: - return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM) - elif inputData.ndim == 3: - return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM) - -def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - int methodTV, - int nonneg, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run FGP-TV iterations for 2D data */ - TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - methodTV, - nonneg, - printM, - dims[1],dims[0],1) - - return outputData - -def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - int methodTV, - int nonneg, - int printM): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run FGP-TV iterations for 3D data */ - TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - methodTV, - nonneg, - printM, - dims[2], dims[1], dims[0]) - return outputData - -#***************************************************************# -#********************** Total-variation SB *********************# -#***************************************************************# -#*************** Total-variation Split Bregman (SB)*************# -def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM): - if inputData.ndim == 2: - return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM) - elif inputData.ndim == 3: - return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM) - -def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - int methodTV, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run SB-TV iterations for 2D data */ - SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - methodTV, - printM, - dims[1],dims[0],1) - - return outputData - -def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - int methodTV, - int printM): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run SB-TV iterations for 3D data */ - SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - methodTV, - printM, - dims[2], dims[1], dims[0]) - return outputData - -#***************************************************************# -#***************** Total Generalised Variation *****************# -#***************************************************************# -def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst): - if inputData.ndim == 2: - return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0, - iterations, LipshitzConst) - elif inputData.ndim == 3: - return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0, - iterations, LipshitzConst) - -def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float alpha1, - float alpha0, - int iterationsNumb, - float LipshitzConst): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run TGV iterations for 2D data */ - TGV_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, - alpha1, - alpha0, - iterationsNumb, - LipshitzConst, - dims[1],dims[0],1) - return outputData -def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float alpha1, - float alpha0, - int iterationsNumb, - float LipshitzConst): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run TGV iterations for 3D data */ - TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, - alpha1, - alpha0, - iterationsNumb, - LipshitzConst, - dims[2], dims[1], dims[0]) - return outputData - -#***************************************************************# -#******************* ROF - LLT regularisation ******************# -#***************************************************************# -def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter): - if inputData.ndim == 2: - return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - elif inputData.ndim == 3: - return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - -def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run ROF-LLT iterations for 2D data */ - LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1) - return outputData - -def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run ROF-LLT iterations for 3D data */ - LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0]) - return outputData - -#****************************************************************# -#**************Directional Total-variation FGP ******************# -#****************************************************************# -#******** Directional TV Fast-Gradient-Projection (FGP)*********# -def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM): - if inputData.ndim == 2: - return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM) - elif inputData.ndim == 3: - return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM) - -def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=2, mode="c"] refdata, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - float eta_const, - int methodTV, - int nonneg, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run FGP-dTV iterations for 2D data */ - dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM, - dims[1], dims[0], 1) - - return outputData - -def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param, - float eta_const, - int methodTV, - int nonneg, - int printM): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run FGP-dTV iterations for 3D data */ - dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter, - iterationsNumb, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM, - dims[2], dims[1], dims[0]) - return outputData - -#****************************************************************# -#*********************Total Nuclear Variation********************# -#****************************************************************# -def TNV_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param): - if inputData.ndim == 2: - return - elif inputData.ndim == 3: - return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param) - -def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterationsNumb, - float tolerance_param): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run TNV iterations for 3D (X,Y,Channels) data - TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0]) - return outputData -#****************************************************************# -#***************Nonlinear (Isotropic) Diffusion******************# -#****************************************************************# -def NDF_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type): - if inputData.ndim == 2: - return NDF_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) - elif inputData.ndim == 3: - return NDF_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) - -def NDF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run Nonlinear Diffusion iterations for 2D data - Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1) - return outputData - -def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run Nonlinear Diffusion iterations for 3D data - Diffusion_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0]) - - return outputData - -#****************************************************************# -#*************Anisotropic Fourth-Order diffusion*****************# -#****************************************************************# -def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter): - if inputData.ndim == 2: - return Diff4th_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter) - elif inputData.ndim == 3: - return Diff4th_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter) - -def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run Anisotropic Fourth-Order diffusion for 2D data - Diffus4th_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1) - return outputData - -def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run Anisotropic Fourth-Order diffusion for 3D data - Diffus4th_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0]) - - return outputData - -#****************************************************************# -#***************Patch-based weights calculation******************# -#****************************************************************# -def PATCHSEL_CPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter): - if inputData.ndim == 2: - return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter) - elif inputData.ndim == 3: - return 1 -def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - int searchwindow, - int patchwindow, - int neighbours, - float edge_parameter): - cdef long dims[3] - dims[0] = neighbours - dims[1] = inputData.shape[0] - dims[2] = inputData.shape[1] - - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='float32') - - cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='uint16') - - cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='uint16') - - # Run patch-based weight selection function - PatchSelect_CPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], 0, searchwindow, patchwindow, neighbours, edge_parameter, 1) - return H_i, H_j, Weights -""" -def PatchSel_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - int searchwindow, - int patchwindow, - int neighbours, - float edge_parameter): - cdef long dims[4] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - dims[3] = neighbours - - cdef np.ndarray[np.float32_t, ndim=4, mode="c"] Weights = \ - np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='float32') - - cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_i = \ - np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16') - - cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_j = \ - np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16') - - cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_k = \ - np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16') - - # Run patch-based weight selection function - PatchSelect_CPU_main(&inputData[0,0,0], &H_i[0,0,0,0], &H_j[0,0,0,0], &H_k[0,0,0,0], &Weights[0,0,0,0], dims[2], dims[1], dims[0], searchwindow, patchwindow, neighbours, edge_parameter, 1) - return H_i, H_j, H_k, Weights -""" - -#****************************************************************# -#***************Non-local Total Variation******************# -#****************************************************************# -def NLTV_CPU(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations): - if inputData.ndim == 2: - return NLTV_2D(inputData, H_i, H_j, Weights, regularisation_parameter, iterations) - elif inputData.ndim == 3: - return 1 -def NLTV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i, - np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j, - np.ndarray[np.float32_t, ndim=3, mode="c"] Weights, - float regularisation_parameter, - int iterations): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - neighbours = H_i.shape[0] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run nonlocal TV regularisation - Nonlocal_TV_CPU_main(&inputData[0,0], &outputData[0,0], &H_i[0,0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[1], dims[0], 0, neighbours, regularisation_parameter, iterations) - return outputData - -#*********************Inpainting WITH****************************# -#***************Nonlinear (Isotropic) Diffusion******************# -#****************************************************************# -def NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type): - if inputData.ndim == 2: - return NDF_INP_2D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) - elif inputData.ndim == 3: - return NDF_INP_3D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) - -def NDF_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run Inpaiting by Diffusion iterations for 2D data - Diffusion_Inpaint_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1) - return outputData - -def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - np.ndarray[np.uint8_t, ndim=3, mode="c"] maskData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run Inpaiting by Diffusion iterations for 3D data - Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0]) - - return outputData -#*********************Inpainting WITH****************************# -#***************Nonlocal Vertical Marching method****************# -#****************************************************************# -def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb): - if inputData.ndim == 2: - return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb) - elif inputData.ndim == 3: - return - -def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, - int SW_increment, - int iterationsNumb): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \ - np.zeros([dims[0],dims[1]], dtype='uint8') - - # Run Inpaiting by Nonlocal vertical marching method for 2D data - NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], - &maskData_upd[0,0], - SW_increment, iterationsNumb, 1, dims[1], dims[0], 1) - - return (outputData, maskData_upd) - - -#****************************************************************# -#***************Calculation of TV-energy functional**************# -#****************************************************************# -def TV_ENERGY(inputData, inputData0, regularisation_parameter, typeFunctional): - if inputData.ndim == 2: - return TV_ENERGY_2D(inputData, inputData0, regularisation_parameter, typeFunctional) - elif inputData.ndim == 3: - return TV_ENERGY_3D(inputData, inputData0, regularisation_parameter, typeFunctional) - -def TV_ENERGY_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=2, mode="c"] inputData0, - float regularisation_parameter, - int typeFunctional): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \ - np.zeros([1], dtype='float32') - - # run function - TV_energy2D(&inputData[0,0], &inputData0[0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[1], dims[0]) - - return outputData - -def TV_ENERGY_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=3, mode="c"] inputData0, - float regularisation_parameter, - int typeFunctional): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \ - np.zeros([1], dtype='float32') - - # Run function - TV_energy3D(&inputData[0,0,0], &inputData0[0,0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[2], dims[1], dims[0]) - - return outputData diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx deleted file mode 100644 index b52f669..0000000 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ /dev/null @@ -1,640 +0,0 @@ -# distutils: language=c++ -""" -Copyright 2018 CCPi -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. - -Author: Edoardo Pasca, Daniil Kazantsev -""" - -import cython -import numpy as np -cimport numpy as np - -CUDAErrorMessage = 'CUDA error' - -cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); -cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); -cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z); -cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); -cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z); -cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z); -cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); -cdef extern int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z); -cdef extern int PatchSelect_GPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h); - -# Total-variation Rudin-Osher-Fatemi (ROF) -def TV_ROF_GPU(inputData, - regularisation_parameter, - iterations, - time_marching_parameter): - if inputData.ndim == 2: - return ROFTV2D(inputData, - regularisation_parameter, - iterations, - time_marching_parameter) - elif inputData.ndim == 3: - return ROFTV3D(inputData, - regularisation_parameter, - iterations, - time_marching_parameter) - -# Total-variation Fast-Gradient-Projection (FGP) -def TV_FGP_GPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM): - if inputData.ndim == 2: - return FGPTV2D(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM) - elif inputData.ndim == 3: - return FGPTV3D(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM) -# Total-variation Split Bregman (SB) -def TV_SB_GPU(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM): - if inputData.ndim == 2: - return SBTV2D(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM) - elif inputData.ndim == 3: - return SBTV3D(inputData, - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM) -# LLT-ROF model -def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter): - if inputData.ndim == 2: - return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - elif inputData.ndim == 3: - return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) -# Total Generilised Variation (TGV) -def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst): - if inputData.ndim == 2: - return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst) - elif inputData.ndim == 3: - return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst) -# Directional Total-variation Fast-Gradient-Projection (FGP) -def dTV_FGP_GPU(inputData, - refdata, - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM): - if inputData.ndim == 2: - return FGPdTV2D(inputData, - refdata, - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM) - elif inputData.ndim == 3: - return FGPdTV3D(inputData, - refdata, - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM) -# Nonlocal Isotropic Diffusion (NDF) -def NDF_GPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type): - if inputData.ndim == 2: - return NDF_GPU_2D(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type) - elif inputData.ndim == 3: - return NDF_GPU_3D(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type) -# Anisotropic Fourth-Order diffusion -def Diff4th_GPU(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter): - if inputData.ndim == 2: - return Diff4th_2D(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter) - elif inputData.ndim == 3: - return Diff4th_3D(inputData, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter) - -#****************************************************************# -#********************** Total-variation ROF *********************# -#****************************************************************# -def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float time_marching_parameter): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Running CUDA code here - if (TV_ROF_GPU_main( - &inputData[0,0], &outputData[0,0], - regularisation_parameter, - iterations , - time_marching_parameter, - dims[1], dims[0], 1)==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - -def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float time_marching_parameter): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (TV_ROF_GPU_main( - &inputData[0,0,0], &outputData[0,0,0], - regularisation_parameter, - iterations , - time_marching_parameter, - dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); -#****************************************************************# -#********************** Total-variation FGP *********************# -#****************************************************************# -#******** Total-variation Fast-Gradient-Projection (FGP)*********# -def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float tolerance_param, - int methodTV, - int nonneg, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Running CUDA code here - if (TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0], - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - nonneg, - printM, - dims[1], dims[0], 1)==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float tolerance_param, - int methodTV, - int nonneg, - int printM): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (TV_FGP_GPU_main(&inputData[0,0,0], &outputData[0,0,0], - regularisation_parameter , - iterations, - tolerance_param, - methodTV, - nonneg, - printM, - dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - -#***************************************************************# -#********************** Total-variation SB *********************# -#***************************************************************# -#*************** Total-variation Split Bregman (SB)*************# -def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float tolerance_param, - int methodTV, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Running CUDA code here - if (TV_SB_GPU_main(&inputData[0,0], &outputData[0,0], - regularisation_parameter, - iterations, - tolerance_param, - methodTV, - printM, - dims[1], dims[0], 1)==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - int iterations, - float tolerance_param, - int methodTV, - int printM): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (TV_SB_GPU_main(&inputData[0,0,0], &outputData[0,0,0], - regularisation_parameter , - iterations, - tolerance_param, - methodTV, - printM, - dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -#***************************************************************# -#************************ LLT-ROF model ************************# -#***************************************************************# -#************Joint LLT-ROF model for higher order **************# -def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Running CUDA code here - if (LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -#***************************************************************# -#***************** Total Generalised Variation *****************# -#***************************************************************# -def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float alpha1, - float alpha0, - int iterationsNumb, - float LipshitzConst): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run TGV iterations for 2D data */ - if (TGV_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, - alpha1, - alpha0, - iterationsNumb, - LipshitzConst, - dims[1],dims[0], 1)==0): - return outputData - else: - raise ValueError(CUDAErrorMessage); - -def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float alpha1, - float alpha0, - int iterationsNumb, - float LipshitzConst): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (TGV_GPU_main( - &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, - alpha1, - alpha0, - iterationsNumb, - LipshitzConst, - dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -#****************************************************************# -#**************Directional Total-variation FGP ******************# -#****************************************************************# -#******** Directional TV Fast-Gradient-Projection (FGP)*********# -def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=2, mode="c"] refdata, - float regularisation_parameter, - int iterations, - float tolerance_param, - float eta_const, - int methodTV, - int nonneg, - int printM): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Running CUDA code here - if (dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], - regularisation_parameter, - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM, - dims[1], dims[0], 1)==0): - return outputData - else: - raise ValueError(CUDAErrorMessage); - - -def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, - float regularisation_parameter, - int iterations, - float tolerance_param, - float eta_const, - int methodTV, - int nonneg, - int printM): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Running CUDA code here - if (dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], - regularisation_parameter , - iterations, - tolerance_param, - eta_const, - methodTV, - nonneg, - printM, - dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -#****************************************************************# -#***************Nonlinear (Isotropic) Diffusion******************# -#****************************************************************# -def NDF_GPU_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #rangecheck = penalty_type < 1 and penalty_type > 3 - #if not rangecheck: -# raise ValueError('Choose penalty type as 1 for Huber, 2 - Perona-Malik, 3 - Tukey Biweight') - - # Run Nonlinear Diffusion iterations for 2D data - # Running CUDA code here - if (NonlDiff_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - - -def NDF_GPU_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run Nonlinear Diffusion iterations for 3D data - # Running CUDA code here - if (NonlDiff_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - -#****************************************************************# -#************Anisotropic Fourth-Order diffusion******************# -#****************************************************************# -def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - # Run Anisotropic Fourth-Order diffusion for 2D data - # Running CUDA code here - if (Diffus4th_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1)==0): - return outputData - else: - raise ValueError(CUDAErrorMessage); - - -def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter): - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - - # Run Anisotropic Fourth-Order diffusion for 3D data - # Running CUDA code here - if (Diffus4th_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0])==0): - return outputData; - else: - raise ValueError(CUDAErrorMessage); - -#****************************************************************# -#************Patch-based weights pre-selection******************# -#****************************************************************# -def PATCHSEL_GPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter): - if inputData.ndim == 2: - return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter) - elif inputData.ndim == 3: - return 1 -def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - int searchwindow, - int patchwindow, - int neighbours, - float edge_parameter): - cdef long dims[3] - dims[0] = neighbours - dims[1] = inputData.shape[0] - dims[2] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='float32') - - cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='uint16') - - cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \ - np.zeros([dims[0], dims[1],dims[2]], dtype='uint16') - - # Run patch-based weight selection function - if (PatchSelect_GPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], searchwindow, patchwindow, neighbours, edge_parameter)==0): - return H_i, H_j, Weights; - else: - raise ValueError(CUDAErrorMessage); - diff --git a/data/SinoInpaint.mat b/data/SinoInpaint.mat deleted file mode 100644 index d748fb4..0000000 Binary files a/data/SinoInpaint.mat and /dev/null differ diff --git a/data/lena_gray_512.tif b/data/lena_gray_512.tif deleted file mode 100644 index f80cafc..0000000 Binary files a/data/lena_gray_512.tif and /dev/null differ diff --git a/recipes/regularisers/bld.bat b/recipes/regularisers/bld.bat deleted file mode 100644 index 43a5286..0000000 --- a/recipes/regularisers/bld.bat +++ /dev/null @@ -1,21 +0,0 @@ -IF NOT DEFINED CIL_VERSION ( -ECHO CIL_VERSION Not Defined. -exit 1 -) - -mkdir "%SRC_DIR%\build" -ROBOCOPY /E "%RECIPE_DIR%\..\..\Core" "%SRC_DIR%\build" -::ROBOCOPY /E "%RECIPE_DIR%\..\..\Wrappers\python\src" "%SRC_DIR%\build\module" -cd "%SRC_DIR%\build" - -echo "we should be in %SRC_DIR%\build" - -cmake -G "NMake Makefiles" "%RECIPE_DIR%\..\..\" -DLIBRARY_LIB="%CONDA_PREFIX%\lib" -DLIBRARY_INC="%CONDA_PREFIX%" -DCMAKE_INSTALL_PREFIX="%PREFIX%\Library" -DCONDA_BUILD=ON -DBUILD_WRAPPERS=OFF - -::-DBOOST_LIBRARYDIR="%CONDA_PREFIX%\Library\lib" -DBOOST_INCLUDEDIR="%CONDA_PREFIX%\Library\include" -DBOOST_ROOT="%CONDA_PREFIX%\Library\lib" - -:: Build C library -nmake install -if errorlevel 1 exit 1 - -:: Install step diff --git a/recipes/regularisers/build.sh b/recipes/regularisers/build.sh deleted file mode 100644 index eaa778e..0000000 --- a/recipes/regularisers/build.sh +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env bash - -echo build.sh CIL_VERSION: $CIL_VERSION -#if [ -z "$CIL_VERSION" ]; then -# echo "Need to set CIL_VERSION" -# exit 1 -#fi -#export CIL_VERSION=0.9.1 - - - -mkdir ${SRC_DIR}/build -cp -rv ${RECIPE_DIR}/../../Core/ ${SRC_DIR}/build -mkdir ${SRC_DIR}/build/build -cd ${SRC_DIR}/build/build -cmake -G "Unix Makefiles" -DLIBRARY_LIB="${CONDA_PREFIX}/lib" -DLIBRARY_INC="${CONDA_PREFIX}" -DCMAKE_INSTALL_PREFIX="${PREFIX}" ../Core - -make -j2 VERBOSE=1 -make install diff --git a/recipes/regularisers/meta.yaml b/recipes/regularisers/meta.yaml deleted file mode 100644 index 3ffcd1d..0000000 --- a/recipes/regularisers/meta.yaml +++ /dev/null @@ -1,27 +0,0 @@ -package: - name: cil_regulariser - version: {{ environ['CIL_VERSION'] }} - - -build: - preserve_egg_dir: False - script_env: - - CIL_VERSION - -requirements: - build: - - cmake >=3.1 - - vc 14 # [win and py36] - - vc 14 # [win and py35] - - vc 9 # [win and py27] - - run: - - vc 14 # [win and py36] - - vc 14 # [win and py35] - - vc 9 # [win and py27] - - -about: - home: http://www.ccpi.ac.uk - license: Apache v2.0 - summary: Regulariser package from CCPi diff --git a/run.sh b/run.sh deleted file mode 100644 index a8e5555..0000000 --- a/run.sh +++ /dev/null @@ -1,19 +0,0 @@ -#!/bin/bash -echo "Building CCPi-regularisation Toolkit using CMake" -# rm -r build -# Requires Cython, install it first: -# pip install cython -# mkdir build -cd build/ -make clean -# install Python modules only without CUDA -cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -# install Python modules only with CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -make install -# cp install/lib/libcilreg.so install/python/ccpi/filters -cd install/python -export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib -# spyder -# one can also run Matlab in Linux as: -# PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab -- cgit v1.2.3