summaryrefslogtreecommitdiffstats
path: root/patches/astra-toolbox-approximate-projectors/cone_bp.cu
diff options
context:
space:
mode:
authorSuren A. Chilingaryan <csa@ipecompute4.ands.kit.edu>2022-09-06 19:12:09 +0200
committerSuren A. Chilingaryan <csa@ipecompute4.ands.kit.edu>2022-09-06 19:12:09 +0200
commitefa4313aa57e4c3511eb1d5d88edc37e99f899fa (patch)
treeb4061f583770608a19a313a9ef40cef71cc053d2 /patches/astra-toolbox-approximate-projectors/cone_bp.cu
parent4616a04086c1f9248008add524a9cf74ffecca33 (diff)
downloadccpi-efa4313aa57e4c3511eb1d5d88edc37e99f899fa.tar.gz
ccpi-efa4313aa57e4c3511eb1d5d88edc37e99f899fa.tar.bz2
ccpi-efa4313aa57e4c3511eb1d5d88edc37e99f899fa.tar.xz
ccpi-efa4313aa57e4c3511eb1d5d88edc37e99f899fa.zip
Add all CCPi patches (patches are not applied automatically, but just collected)
Diffstat (limited to 'patches/astra-toolbox-approximate-projectors/cone_bp.cu')
-rw-r--r--patches/astra-toolbox-approximate-projectors/cone_bp.cu397
1 files changed, 397 insertions, 0 deletions
diff --git a/patches/astra-toolbox-approximate-projectors/cone_bp.cu b/patches/astra-toolbox-approximate-projectors/cone_bp.cu
new file mode 100644
index 0000000..01edcb9
--- /dev/null
+++ b/patches/astra-toolbox-approximate-projectors/cone_bp.cu
@@ -0,0 +1,397 @@
+/*
+-----------------------------------------------------------------------
+Copyright: 2010-2021, imec Vision Lab, University of Antwerp
+ 2014-2021, CWI, Amsterdam
+
+Contact: astra@astra-toolbox.com
+Website: http://www.astra-toolbox.com/
+
+This file is part of the ASTRA Toolbox.
+
+
+The ASTRA Toolbox is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+The ASTRA Toolbox is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+
+-----------------------------------------------------------------------
+*/
+
+#include "astra/cuda/3d/util3d.h"
+#include "astra/cuda/3d/dims3d.h"
+
+#include <cstdio>
+#include <cassert>
+#include <iostream>
+#include <list>
+
+#include <cuda.h>
+
+namespace astraCUDA3d {
+
+static const unsigned int g_volBlockZ = 6;
+
+static const unsigned int g_anglesPerBlock = 32;
+static const unsigned int g_volBlockX = 16;
+static const unsigned int g_volBlockY = 32;
+
+static const unsigned g_MaxAngles = 1024;
+
+struct DevConeParams {
+ float4 fNumU;
+ float4 fNumV;
+ float4 fDen;
+};
+
+__constant__ DevConeParams gC_C[g_MaxAngles];
+
+#include "rounding.h"
+
+//__launch_bounds__(32*16, 4)
+template<bool FDKWEIGHT, unsigned int ZSIZE>
+__global__ void dev_cone_BP(void* D_volData, unsigned int volPitch,
+ cudaTextureObject_t tex,
+ int startAngle, int angleOffset,
+ const astraCUDA3d::SDimensions3D dims,
+ float fOutputScale)
+{
+ float* volData = (float*)D_volData;
+
+ int endAngle = startAngle + g_anglesPerBlock;
+ if (endAngle > dims.iProjAngles - angleOffset)
+ endAngle = dims.iProjAngles - angleOffset;
+
+ // threadIdx: x = rel x
+ // y = rel y
+
+ // blockIdx: x = x + y
+ // y = z
+
+
+
+ const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
+ const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
+
+ if (X >= dims.iVolX)
+ return;
+ if (Y >= dims.iVolY)
+ return;
+
+ const int startZ = blockIdx.y * g_volBlockZ;
+ const float fX = X - 0.5f*dims.iVolX + 0.5f;
+ const float fY = Y - 0.5f*dims.iVolY + 0.5f;
+ const float fZ = startZ - 0.5f*dims.iVolZ + 0.5f;
+
+ float Z[ZSIZE];
+ for(int i=0; i < ZSIZE; i++)
+ Z[i] = 0.0f;
+
+
+ {
+ float fAngle = startAngle + angleOffset + 0.5f;
+
+ for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
+ {
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float4 fCd = gC_C[angle].fDen;
+
+ float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
+ float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
+ float fDen = (FDKWEIGHT ? 1.0f : fCd.w) + fX * fCd.x + fY * fCd.y + fZ * fCd.z;
+
+ float fU,fV, fr;
+
+ for (int idx = 0; idx < ZSIZE; idx++)
+ {
+ fr = __fdividef(1.0f, fDen);
+ fU = fUNum * fr;
+ fV = fVNum * fr;
+
+ float fUf = round(fU) - 0.5f;
+ float fVf = round(fV) - 0.5f;
+
+ textype fU_ = texto(fU);
+ textype fV_ = texto(fV);
+ textype fUf_ = texto(fUf);
+ textype fVf_ = texto(fVf);
+
+ textype fVal0_0; textocheck(fVal0_0, "bp", tex3D<float>(tex, fUf, fAngle, fVf));
+ textype fVal1_0; textocheck(fVal1_0, "bp", tex3D<float>(tex, fUf + 1.0f, fAngle, fVf));
+ textype fVal0_1; textocheck(fVal0_1, "bp", tex3D<float>(tex, fUf, fAngle, fVf + 1.0f));
+ textype fVal1_1; textocheck(fVal1_1, "bp", tex3D<float>(tex, fUf + 1.0f, fAngle, fVf + 1.0f));
+
+ textype fVal0 = interpolate(fVal0_0, fVal0_1, (fV_ - fVf_));
+ textype fVal1 = interpolate(fVal1_0, fVal1_1, (fV_ - fVf_));
+ float fVal = texfrom(interpolate(fVal0, fVal1, (fU_ - fUf_)));
+
+// float fVal = tex3D<float>(tex, fU, fAngle, fV);
+ Z[idx] += fr*fr*fVal;
+
+ fUNum += fCu.z;
+ fVNum += fCv.z;
+ fDen += fCd.z;
+ }
+ }
+ }
+
+ int endZ = ZSIZE;
+ if (endZ > dims.iVolZ - startZ)
+ endZ = dims.iVolZ - startZ;
+
+ for(int i=0; i < endZ; i++)
+ volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale;
+} //End kernel
+
+
+
+// supersampling version
+__global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale)
+{
+ float* volData = (float*)D_volData;
+
+ int endAngle = startAngle + g_anglesPerBlock;
+ if (endAngle > dims.iProjAngles - angleOffset)
+ endAngle = dims.iProjAngles - angleOffset;
+
+ // threadIdx: x = rel x
+ // y = rel y
+
+ // blockIdx: x = x + y
+ // y = z
+
+
+ // TO TRY: precompute part of detector intersection formulas in shared mem?
+ // TO TRY: inner loop over z, gather ray values in shared mem
+
+ const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
+ const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
+
+ if (X >= dims.iVolX)
+ return;
+ if (Y >= dims.iVolY)
+ return;
+
+ const int startZ = blockIdx.y * g_volBlockZ;
+ int endZ = startZ + g_volBlockZ;
+ if (endZ > dims.iVolZ)
+ endZ = dims.iVolZ;
+
+ float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
+ float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
+ float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
+ const float fSubStep = 1.0f/iRaysPerVoxelDim;
+
+ fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim);
+
+
+ for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f)
+ {
+
+ float fVal = 0.0f;
+ float fAngle = startAngle + angleOffset + 0.5f;
+
+ for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
+ {
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float4 fCd = gC_C[angle].fDen;
+
+ float fXs = fX;
+ for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
+ float fYs = fY;
+ for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) {
+ float fZs = fZ;
+ for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
+
+ const float fUNum = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z;
+ const float fVNum = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z;
+ const float fDen = fCd.w + fXs * fCd.x + fYs * fCd.y + fZs * fCd.z;
+
+ const float fr = __fdividef(1.0f, fDen);
+ const float fU = fUNum * fr;
+ const float fV = fVNum * fr;
+
+ fVal += tex3D<float>(tex, fU, fAngle, fV) * fr * fr;
+
+ fZs += fSubStep;
+ }
+ fYs += fSubStep;
+ }
+ fXs += fSubStep;
+ }
+
+ }
+
+ volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale;
+ }
+}
+
+
+bool transferConstants(const SConeProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params)
+{
+ DevConeParams *p = new DevConeParams[iProjAngles];
+
+ // We need three things in the kernel:
+ // projected coordinates of pixels on the detector:
+
+ // u: || (x-s) v (s-d) || / || u v (s-x) ||
+ // v: -|| u (x-s) (s-d) || / || u v (s-x) ||
+
+ // ray density weighting factor for the adjoint
+ // || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
+
+ // FDK weighting factor
+ // ( || u v s || / || u v (s-x) || ) ^ 2
+
+ // Since u and v are ratios with the same denominator, we have
+ // a degree of freedom to scale the denominator. We use that to make
+ // the square of the denominator equal to the relevant weighting factor.
+
+
+ for (unsigned int i = 0; i < iProjAngles; ++i) {
+ Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ);
+ Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ);
+ Vec3 s(angles[i].fSrcX, angles[i].fSrcY, angles[i].fSrcZ);
+ Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ);
+
+
+
+ double fScale;
+ if (!params.bFDKWeighting) {
+ // goal: 1/fDen^2 = || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
+ // fDen = ( sqrt(|cross(u,v)|) * || u v (s-x) || ) / || u v (s-d) ||
+ // i.e. scale = sqrt(|cross(u,v)|) * / || u v (s-d) ||
+
+
+ // NB: for cross(u,v) we invert the volume scaling (for the voxel
+ // size normalization) to get the proper dimensions for
+ // the scaling of the adjoint
+
+ fScale = sqrt(scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm()) / det3(u, v, s-d);
+ } else {
+ // goal: 1/fDen = || u v s || / || u v (s-x) ||
+ // fDen = || u v (s-x) || / || u v s ||
+ // i.e., scale = 1 / || u v s ||
+
+ fScale = 1.0 / det3(u, v, s);
+ }
+
+ p[i].fNumU.w = fScale * det3(s,v,d);
+ p[i].fNumU.x = fScale * det3x(v,s-d);
+ p[i].fNumU.y = fScale * det3y(v,s-d);
+ p[i].fNumU.z = fScale * det3z(v,s-d);
+ p[i].fNumV.w = -fScale * det3(s,u,d);
+ p[i].fNumV.x = -fScale * det3x(u,s-d);
+ p[i].fNumV.y = -fScale * det3y(u,s-d);
+ p[i].fNumV.z = -fScale * det3z(u,s-d);
+ p[i].fDen.w = fScale * det3(u, v, s); // == 1.0 for FDK
+ p[i].fDen.x = -fScale * det3x(u, v);
+ p[i].fDen.y = -fScale * det3y(u, v);
+ p[i].fDen.z = -fScale * det3z(u, v);
+ }
+
+ // TODO: Check for errors
+ cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevConeParams), 0, cudaMemcpyHostToDevice);
+
+ delete[] p;
+
+ return true;
+}
+
+
+bool ConeBP_Array(cudaPitchedPtr D_volumeData,
+ cudaArray *D_projArray,
+ const SDimensions3D& dims, const SConeProjection* angles,
+ const SProjectorParams3D& params)
+{
+ cudaTextureObject_t D_texObj;
+ if (!createTextureObject3D(D_projArray, D_texObj))
+ return false;
+
+ float fOutputScale;
+ if (params.bFDKWeighting) {
+ // NB: assuming cube voxels here
+ fOutputScale = params.fOutputScale / (params.fVolScaleX);
+ } else {
+ fOutputScale = params.fOutputScale * (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ);
+ }
+
+ bool ok = true;
+
+ for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) {
+ unsigned int angleCount = g_MaxAngles;
+ if (th + angleCount > dims.iProjAngles)
+ angleCount = dims.iProjAngles - th;
+
+ ok = transferConstants(angles, angleCount, params);
+ if (!ok)
+ break;
+
+ dim3 dimBlock(g_volBlockX, g_volBlockY);
+
+ dim3 dimGrid(((dims.iVolX/1+g_volBlockX-1)/(g_volBlockX))*((dims.iVolY/1+1*g_volBlockY-1)/(1*g_volBlockY)), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ);
+
+ // timeval t;
+ // tic(t);
+
+ for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) {
+ // printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr);
+ if (params.bFDKWeighting) {
+ if (dims.iVolZ == 1) {
+ dev_cone_BP<true, 1><<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
+ } else {
+ dev_cone_BP<true, g_volBlockZ><<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
+ }
+ } else if (params.iRaysPerVoxelDim == 1) {
+ if (dims.iVolZ == 1) {
+ dev_cone_BP<false, 1><<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
+ } else {
+ dev_cone_BP<false, g_volBlockZ><<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
+ }
+ } else
+ dev_cone_BP_SS<<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, params.iRaysPerVoxelDim, fOutputScale);
+ }
+
+ // TODO: Consider not synchronizing here, if possible.
+ ok = checkCuda(cudaThreadSynchronize(), "cone_bp");
+ if (!ok)
+ break;
+
+ angles = angles + angleCount;
+ // printf("%f\n", toc(t));
+
+ }
+
+ cudaDestroyTextureObject(D_texObj);
+
+ return ok;
+}
+
+bool ConeBP(cudaPitchedPtr D_volumeData,
+ cudaPitchedPtr D_projData,
+ const SDimensions3D& dims, const SConeProjection* angles,
+ const SProjectorParams3D& params)
+{
+ // transfer projections to array
+
+ cudaArray* cuArray = allocateProjectionArray(dims);
+ transferProjectionsToArray(D_projData, cuArray, dims);
+
+ bool ret = ConeBP_Array(D_volumeData, cuArray, dims, angles, params);
+
+ cudaFreeArray(cuArray);
+
+ return ret;
+}
+
+
+}