summaryrefslogtreecommitdiffstats
path: root/demos/demoMatlab_denoise.m
blob: 75810687e1008482f97a148b31eb38ff4c7b1fde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
% Image (2D) denoising demo using CCPi-RGL
clear; close all
fsep = '/';

Path1 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i);
Path2 = sprintf(['data' fsep], 1i);
Path3 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i);
addpath(Path1);
addpath(Path2);
addpath(Path3);

Im = double(imread('lena_gray_512.tif'))/255;  % loading image
u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
figure; imshow(u0, [0 1]); title('Noisy image');
%%
fprintf('Denoise using the ROF-TV model (CPU) \n');
lambda_reg = 0.02; % regularsation parameter for all methods
iter_rof = 2000; % number of ROF iterations
tau_rof = 0.001; % time-marching constant 
epsil_tol =  0.0; % tolerance
tic; [u_rof,infovec] = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; 
energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1);  % get energy function value
rmseROF = (RMSE(u_rof(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
[ssimval] = ssim(u_rof*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval);
figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
%%
% fprintf('Denoise using the ROF-TV model (GPU) \n');
% tic; [u_rofG,infovec]  = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; 
% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
%%
fprintf('Denoise using the FGP-TV model (CPU) \n');
lambda_reg = 0.02;
iter_fgp = 500; % number of FGP iterations
epsil_tol =  1.0e-06; % tolerance
tic; [u_fgp,infovec] = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; 
energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
rmseFGP = (RMSE(u_fgp(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
[ssimval] = ssim(u_fgp*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for FGP-TV is:', ssimval);
figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
%%
% fprintf('Denoise using the FGP-TV model (GPU) \n');
% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; 
% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
%%
fprintf('Denoise using the SB-TV model (CPU) \n');
lambda_reg = 0.03;
iter_sb = 300; % number of SB iterations
epsil_tol =  1.0e-06; % tolerance
tic; [u_sb,infovec] = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; 
energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1);  % get energy function value
rmseSB = (RMSE(u_sb(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
[ssimval] = ssim(u_sb*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for SB-TV is:', ssimval);
figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
%%
% fprintf('Denoise using the SB-TV model (GPU) \n');
% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; 
% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
%%
fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 450; % number of diffusion iterations
lambda_regDiff = 0.025; % regularisation for the diffusivity 
sigmaPar = 0.015; % edge-preserving parameter
tau_param = 0.02; % time-marching constant 
epsil_tol =  1.0e-06; % tolerance
tic; [u_diff,infovec] = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; 
rmseDiffus = (RMSE(u_diff(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
[ssimval] = ssim(u_diff*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval);
figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
%%
% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
% iter_diff = 450; % number of diffusion iterations
% lambda_regDiff = 0.025; % regularisation for the diffusivity 
% sigmaPar = 0.015; % edge-preserving parameter
% tau_param = 0.025; % time-marching constant 
% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; 
% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
%%
fprintf('Denoise using the TGV model (CPU) \n');
lambda_TGV = 0.045; % regularisation parameter
alpha1 = 1.0; % parameter to control the first-order term
alpha0 = 2.0; % parameter to control the second-order term
iter_TGV = 2500; % number of Primal-Dual iterations for TGV
tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; 
rmseTGV = (RMSE(u_tgv(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
[ssimval] = ssim(u_tgv*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval);
figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
%%
% fprintf('Denoise using the TGV model (GPU) \n');
% lambda_TGV = 0.034; % regularisation parameter
% alpha1 = 1.0; % parameter to control the first-order term
% alpha0 = 1.0; % parameter to control the second-order term
% iter_TGV = 500; % number of Primal-Dual iterations for TGV
% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; 
% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
% [ssimval] = ssim(u_tgv_gpu*255,single(Im)*255);
% fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval);
% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
%%
fprintf('Denoise using the ROF-LLT model (CPU) \n');
lambda_ROF = 0.02; % ROF regularisation parameter
lambda_LLT = 0.01; % LLT regularisation parameter
iter_LLT = 1000; % iterations 
tau_rof_llt = 0.0025; % time-marching constant 
epsil_tol =  1.0e-06; % tolerance
tic; [u_rof_llt,infovec]  = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt,epsil_tol); toc; 
rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
[ssimval] = ssim(u_rof_llt*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval);
figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
%%
% fprintf('Denoise using the ROF-LLT model (GPU) \n');
% lambda_ROF = 0.016; % ROF regularisation parameter
% lambda_LLT = lambda_reg*0.25; % LLT regularisation parameter
% iter_LLT = 500; % iterations 
% tau_rof_llt = 0.0025; % time-marching constant 
% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; 
% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
%%
fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
iter_diff = 800; % number of diffusion iterations
lambda_regDiff = 2.5; % regularisation for the diffusivity 
sigmaPar = 0.03; % edge-preserving parameter
tau_param = 0.0015; % time-marching constant 
epsil_tol =  1.0e-06; % tolerance
tic; [u_diff4,infovec] = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; 
rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
[ssimval] = ssim(u_diff4*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval);
figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
%%
% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
% iter_diff = 800; % number of diffusion iterations
% lambda_regDiff = 3.5; % regularisation for the diffusivity 
% sigmaPar = 0.02; % edge-preserving parameter
% tau_param = 0.0015; % time-marching constant 
% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; 
% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)');
%%
fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n');
SearchingWindow = 7;
PatchWindow = 2;
NeighboursNumber = 20; % the number of neibours to include
h = 0.23; % edge related parameter for NLM
tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc;
%%
fprintf('Denoise using Non-local Total Variation (CPU) \n');
iter_nltv = 3; % number of nltv iterations
lambda_nltv = 0.055; % regularisation parameter for nltv
tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; 
rmse_nltv = (RMSE(u_nltv(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv);
[ssimval] = ssim(u_nltv*255,single(Im)*255);
fprintf('%s %f \n', 'MSSIM error for NLTV is:', ssimval);
figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)');
%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %

fprintf('Denoise using the FGP-dTV model (CPU) \n');
% create another image (reference) with slightly less amount of noise
u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)

lambda_reg = 0.04;
iter_fgp = 1000; % number of FGP iterations
epsil_tol =  1.0e-06; % tolerance
eta =  0.2; % Reference image gradient smoothing constant
tic; [u_fgp_dtv,infovec] = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; 
rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
%%
% fprintf('Denoise using the FGP-dTV model (GPU) \n');
% % create another image (reference) with slightly less amount of noise
% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
% 
% iter_fgp = 1000; % number of FGP iterations
% epsil_tol =  1.0e-06; % tolerance
% eta =  0.2; % Reference image gradient smoothing constant
% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; 
% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
%%
fprintf('Denoise using the TNV prior (CPU) \n');
slices = 5; N = 512;
vol3D = zeros(N,N,slices, 'single');
for i = 1:slices
vol3D(:,:,i) = Im + .05*randn(size(Im)); 
end
vol3D(vol3D < 0) = 0;

iter_tnv = 200; % number of TNV iterations
tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; 
figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)');