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a b s t r a c t

Iterative reconstruction algorithms are often needed to help solve ill-posed inverse problems in
computed tomography (CT), especially cases when tomographic projection data are corrupt, noisy
or angularly undersampled. Model-based iterative methods can be adapted to fit the measurement
characteristics of the data (e.g. noise statistics) and expectations regarding the reconstructed object
(e.g. morphology). The prior information is usually introduced in the form of a regulariser, making the
inversion task well-posed.

The CCPi-Regularisation toolkit provides a set of variational regularisers (denoisers) which can be
embedded in a plug-and-play fashion into proximal splitting methods for image reconstruction. CCPi-
RGL comes with algorithms that can satisfy various prior expectations of the reconstructed object, for
example being piecewise-constant or piecewise-smooth in nature. The toolkit is written in C language
and exploits parallelism with OpenMP directives and the CUDA API; and is wrapped for the Python
and MATLAB environments. This paper introduces the toolkit and gives recommendations for selecting
a suitable prior model.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

X-ray computed tomography (CT) [1] is a versatile, often non-
invasive technique which uses penetrating radiation to reveal
information about the inner structure of an object. In order to
obtain a reconstructed image or a volume, a mathematical re-
construction algorithm must be applied to the projection data.
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Fig. 1. A place of the CCPi-RGL toolkit within the general optimisation framework.

However, when the measured data are corrupt, noisy or angu-
larly undersampled, direct reconstruction methods, such as the
Filtered BackProjection (FBP) method, become ineffective and
iterative techniques should be used instead. Iterative methods
can help to solve ill-posed inverse problems by choosing a suit-
able noise model for the measurements [2], and by applying a
regulariser which incorporates a priori knowledge of the solution.

One of the main disadvantages of using regularised iterative
methods for tomographic reconstruction is their computational
cost in optimising the objective function which consists of the
data fidelity and the regularisation terms. When the terms of
the objective function are differentiable, then the gradient or
Hessian-based methods can be employed [3]. The smoothness
constraint, however, might not always be a desirable feature and
one needs to resort to non-smooth optimisation strategies.

Fortunately, the framework of proximal splitting operators [4–
7] can be applied to indifferentiable cost functions which allows
decoupling of its terms resulting in simpler, frequently parallelis-
able, optimisation steps (see Appendix). Using splitting methods,
one can rely on a rigorous mathematical framework which al-
lows a flexible selection of objectives with different properties.
This plug-and-play approach accelerates prototyping and simpli-
fies implementation of novel reconstruction algorithms which
generally perform better for large-dimensional problems [8].

In this paper, we introduce the CCPi2-Regularisation Toolkit
(CCPi-RGL) which delivers a selection of various regularisers
for proximal splitting reconstruction methods. The CCPi-RGL
toolkit features more than ten scalar and vectorial variational
methods, implemented efficiently using multi-threaded OpenMP
directives and the CUDA API with wrappers to Python and MAT-
LAB. Although the CCPi-RGL toolkit can be applied to different
image processing tasks (e.g. denoising, deblurring, inpainting),
the main focus is tomographic image reconstruction. We demon-
strate the applicability of the toolkit by using the primal–dual
type of method for 3D image reconstruction of synthetic and real
data.

2. Software description

The CCPi-RGL software contains various state-of-the-art vari-
ational regularisation techniques which include a second and
fourth-order diffusion-based methods as well as local and non-
local approaches. Fig. 1 shows a place of the CCPi-RGL toolkit
within the general optimisation framework for image reconstruc-
tion. The methods of CCPi-RGL are independent of the data
fidelity term hence the imaging modality.

In Table 1, we catalogue scalar single-channel regularisation
methods of the CCPi-RGL toolkit3 and below briefly discuss their

2 CCPi: Collaborative Computational Project in Tomographic Imaging (https:
//www.ccpi.ac.uk/).
3 CCPi-RGL toolkit version 19.03 was used in writing this paper.

advantages and disadvantages. More detailed information about
each method is given in references [9–17].

Along with a short description we give formulae for the reg-
ularisation terms and briefly state the optimisation approaches
used for a particular regulariser. For instance, for some regularis-
ers (ROF-TV, NDF, DIFF4th, ROF-LLT), a classical gradient-based
technique is used to minimise the objective function. In other
non-smooth cases, primal–dual algorithms [5] were used.

In addition to the method description, input data dimension-
ality requirements, and architecture, we list the main parameters
required for the algorithm and also the memory usage for the 3D
case. This information can be helpful in practice if one is con-
strained by the computational resources. Memory requirement
is estimated as a total number of volume elements (voxels). For
instance, for the 3D ROF-TV method, one needs in total 5 × N
voxels allocated when the input volume is of N = NxNyNz in size.

Similarly to Table 1 for scalar (single-channel) images, in Ta-
ble 2 we demonstrate available algorithms for vectorial (multi-
channel) images. Note here that the dFGP-TV algorithm is pro-
posed originally for the two-channel case [18]. It has been re-
cently adapted to the multi-channel case in the multi-spectral
image reconstruction problem [19]. The implementation for the
TNV penalty has been adopted from the code by Duran et al. [20].

2.1. Software architecture

Core modules of the CCPi-RGL toolkit are developed in the C
language with OpenMP directives and with the CUDA API, while
the wrappers enable easy access to software from both MATLAB
and Python environments (see Fig. 2). We use Cython for Python
and the C-MEX interface for MATLAB in order to wrap the C and
CUDA-C code. To compile the C code one also needs OS-specific
compilers (e.g. GNU GCC, MinGW, Microsoft Visual Studio) and
NVCC compiler for CUDA. The user can specify whether to build
the CUDA routines with MATLAB and/or Python wrappers. With
CMake, CCPi-RGL source code can be built on different operating
systems and continuous integration delivers nightly builds of the
package on an Anaconda channel.

2.2. Software functionalities

The main functionalities of the CCPi-RGL toolkit include pro-
moting well-posed inversion for a general class of inverse prob-
lems. Specifically, the toolkit has been developed for big-data
tomographic image reconstruction problems. The selection of reg-
ularisers provide a plug-and-play experience while prototyping
or developing novel reconstruction methods.

3. Illustrative case studies

In order to demonstrate the functionalities of the CCPi-RGL
software, we consider three case studies: volume denoising, 3D
image reconstruction of synthetic and real data.

https://www.ccpi.ac.uk/
https://www.ccpi.ac.uk/
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Table 1
Single-channel methods of CCPi-RGL. Iteration number (T ) is required for all methods, we provide
the recommended range of iterations needed for each method.
Method
Dimensionality
Architecture

Description Main parameters Memory
(3D case)
N = NxNyNz

ROF-TV
2D/3D
CPU/GPU

Rudin–Osher–Fatemi total
variation (TV) algorithm [9];

g(x) = λ∥∇ϵx∥, ϵ = 1e−12,
PDE minimisation (explicit)

λ - regul. const.
τ - time step
T = 800 − 1000

5 ×N

FGP-TV
2D/3D
CPU/GPU

Fast Gradient Projection
TV algorithm [10,11];
g(x) = λ∥∇x∥,
proximal point algorithm

λ - regul. const.
T = 200 − 400

11 ×N

SB-TV
2D/3D
CPU/GPU

Split-Bregman
TV algorithm [12];
g(x) = λ∥∇x∥,
proximal point algorithm

λ - regul. const.
T = 50 − 150

8 ×N

NDF
2D/3D
CPU/GPU

Nonlinear Diffusion
of the 2-nd order [13];
g(x) = λ∥φ(∥∇x∥2

2)∥,
PDE minimisation (explicit)

Linear, Huber,
Perona or Tukey
λ - regul. const.
σ - edge pres. const.
τ - time step
T = 600 − 800

2 ×N

NLTV
2D
CPU/GPU

Nonlocal TV
method [14];
g(x) = λ∥∇ϵ (ω)x∥,
Fixed point iteration

λ - regul. const.
σ - edge pres. const.
Nω - no. neighbours
T = 2 − 3

(2D case)
2 ×x
Nω ×x
Nω ×uint8(x)
Nω ×uint8(x)

DIFF4th
2D/3D
CPU/GPU

Nonlinear Diffusion
of the 4-th order [15];
g(x) = λ∥φ(∥∇2x∥2

2)∥,
PDE minimisation (explicit)

λ - regul. const.
σ - edge pres. const.
τ - time step
T = 200 − 400

3 ×N

TGV
2D/3D CPU/GPU

Total Generalised
Variation [16];
g(x) = α1∥∇x − v∥ +

+ α0∥E(v)∥,
proximal point algorithm

α1 - regul. const.
α0 - regul. const.
L - Lipschitz const.
T = 500 − 1000

17 ×N

ROF-LLT
2D/3D
CPU/GPU

ROF model [9] + Lysaker-
Lundervold-Tai (LLT) [17];
g(x) = λ1∥∇ϵx∥ +

+ λ2∥∇
2
ϵ2
x∥,

PDE minimisation (explicit)

λ1 - regul. const.
λ2 - regul. const.
τ - time step
T = 800 − 1000

8 ×N

Table 2
Multi-channel methods of the CCPi-RGL toolkit. Iteration number (T ) is required for all methods,
we provide the recommended range of iterations needed for each method.
Method
Dimensionality
Architecture

Description Main parameters Memory
(3D case)
N = NxNyNz

dFGP-TV
2D/3D+(1)
CPU/GPU

Directional FGP
TV algorithm [18];
g(x) = λ∥Pξ ∇x∥,
proximal point algorithm

λ - regul. const.
η - smooth. const.
T = 200 − 400

13 ×N

TNV
2D+(K)
CPU

Total Nuclear Variation [20];
g(x) = λ∥∇x∥∗ ,
proximal point algorithm

λ - regul. const.
T = 200 − 400

(2D case)
22 ×N

3.1. Case study 1: Volume denoising

In order to assess the performance of CCPi-RGL, we provide a
volume denoising benchmark for CPU and GPU implementations.
Using the TomoPhantom software [21], we generate a 1283 voxels
volume (see Fig. 3) and apply randomly distributed Gaussian
noise.

We aim to solve the volume denoising problem to the required
precision. The chosen tolerance parameter to be set at δ = 1e−6
and iterations terminated when ∥uk+1

−uk
∥/∥uk

∥ ≤ δ for a three
subsequent iterations. This rule suggests a stopping criteria to
avoid stagnation or slow convergence of an algorithm. In Table 3,
we highlight the values which represent a superior performance

of an algorithm using optimal regularisation parameters. The
chosen precision is proven to be quite low for the data and lead
to many iterations especially for the explicit schemes. In practice,
substantially fewer number of iterations is required to reach a
satisfactory solution. In Table 2, we provide the recommended
range of regularisation iterations to be used for reconstruction.

3.2. Case study 2: Tomographic reconstruction using synthetic data

For our numerical experiments, we use the TomoPhantom
software [21] to generate a 3D volume size of 2563 voxels and
analytical projection data with Poisson noise and imaging errors.
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Fig. 2. A block diagram of the CCPi-RGL toolkit.

Table 3
Denoising benchmark for 1283 voxels phantom, RMSE: 88, MSSIM: 0.50. Hard-
ware: GPU Quadro P2000 and CPU Intel(R) Xeon(R) W-2123 CPU @ 3.60 GHz, 4
cores.
Method Iterations Time (CPU) Time (GPU) GPU

speedup
RMSE
×100

MSSIM

ROF-TV 8330 1153s 25s 46 31.6 0.79
FGP-TV 930 176s 2.47s 71.2 34.7 0.79
SB-TV 225 76.9s 0.89s 86.4 34.0 0.79
NDF 530 4.43s 0.33s 13.4 33.0 0.79
DIFF4th 2425 123.2s 2.70s 45.6 32.2 0.82
TGV 7845 4100s 85.5s 47.9 33.7 0.81
ROF-LLT 8500 1664s 31s 53.1 33.5 0.80

The chosen volumetric phantom consists of piecewise-smooth
(Gaussians and paraboloids) and piecewise-constant (cuboids)
objects (see upper row in Fig. 3). The choice of such a phan-
tom is explained by the abundance of piecewise-smooth objects
in material science [22] and medical imaging [23]. The realis-
tic projection data (see bottom row in Fig. 3) were generated
with TomoPhantom using a mode where textural, noisy 2D flat-
fields were simulated and imaging errors (artifacts) were intro-
duced through the normalisation process. Poisson noise is applied
to the raw data assuming the flux intensity to be equal 6 ×

104 (photon count). Additionally, the noiseless projection data

Table 4
RMSE’s and MSSIM’s for the reconstructed 3D model in Fig. 3.
Method FBP SB-TV ROF-LLT TGV
RMSE ×100 10.6 7.3 7.5 7.6
MSSIM 0.28 0.670 0.671 0.674

is generated analytically which helps to avoid an ‘inverse crime‘
reconstruction [24].

In Fig. 4, we demonstrate the reconstructed phantom using
various methods: FBP, iterative ADMM (see Appendix) with
regularisers from the CCPi-RGL toolkit: SB-TV, ROF-LLT, and
TGV. The image quality measures: RMSE and MSSIM [25] are
presented in Table 4. Note that the achieved values are given for
optimally selected regularisation parameters (see the first column
of Fig. 4). The FBP reconstructed image (first row of Fig. 4) is
noisy with high RMSE and low MSSIM as expected. The iterative
reconstruction using the regularised ADMM method improves
the signal-to-noise (SNR) characteristics substantially. Notably
the regularisation is performed in 3D which further improves
the quality compare to 2D case [22]. From the 1D profiles it
is notable that the SB-TV method tends to generate piecewise-
constant regions and flattening smooth objects whereas higher-
order ROF-LLT and TGV methods are designed to reconstruct
piecewise-smooth objects. Here, the TGV method reconstructs
smooth objects better than ROF-LLT but it overfits flat regions.
Also the variations in the background are more evident with the
TGV reconstruction, which might negatively contribute to the
total RMSE.

The used ADMM algorithm is from the ToMoBAR4 package
which employs forward–backward parallel beam projection op-
erator from the ASTRA-toolbox [26].

3.3. Case study 3: Tomographic reconstruction using real data

We apply the same methods as in Section 3.2 to real data (see
Fig. 5). The data have been collected using parallel pink beam

4 https://github.com/dkazanc/ToMoBAR.

Fig. 3. Upper row: 3D 2563 voxels phantom no. 16 from the TomoPhantom [21] library; bottom row: analytically generated projection data (detector sizes: DX = 362,
DY = 256, projection angles: Θ = 281) with Poisson noise and simulated imaging artifacts.

https://github.com/dkazanc/ToMoBAR
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Fig. 4. First column: the result of optimisation procedure to find optimal regularisation parameters for ADMM reconstruction algorithm with SB-TV (second row),
ROF-LLT (third row) and TGV (fourth row) regularisers. Reconstructions were obtained running 25 outer ADMM iterations with 50 inner iterations for SB-TV, 600
for ROF-LLT and 600 for TGV.

Fig. 5. A magnified region with a line profile of a reconstructed 1k3 voxels volume from the 3D projection data (detector sizes: DX = 1280, DY = 1000, projection
angles: Θ = 360). Scale bar corresponds to 200 µm.

(energy range 15–30 keV) at the Diamond-Manchester branchline
(I13-2) at the Diamond Light Source. Here a metal alloy sample
solidifies from its melt while being imaged by X-rays. During the
solidification, the dendritic arms are continuously growing (more
technical details are available in [22]).

Due to low flux and angularly undersampled conditions, the
reconstruction quality using the FBP method is extremely poor
(see Fig. 5). Using the regularised ADMM method we can increase
the SNR of reconstructions significantly. Notably both SB-TV and
ROF-LLT regularisers perform very well by removing noise while
TGV struggles to do this. This can be due to suboptimal selection

of α0,1 parameters for TGV (see Table 1). We noticed that it is
difficult to control TGV when noise levels are high, as in this case.
For this we recommend to use the ROF-LLT regulariser instead.
For low-level noise conditions, TGV normally slightly outperform
ROF-LLT.

4. Impact and conclusions

In this paper we present an open-source software CCPi-RGL
which can be used primarily for tomographic image reconstruc-
tion in application to different imaging modalities across various
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disciplines. The current version of the CCPi-RGL toolkit consists
of more than 10 modules and the number is expected to grow in
the future. The plug-and-play selection of different regularisers
provide a desirable flexibility to a user to establish the most
suitable prior to the problem. The core of the toolkit is written
in the C-OpenMP and CUDA languages, and wrappers for Python
and MATLAB environments are provided.

We demonstrate that the toolkit can be used efficiently and
effectively for rigorous testing and benchmarking of novel recon-
struction algorithms in application to real big data problems.
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Appendix. Proximal methods for tomographic image recon-
struction

Here we provide a list of reconstruction methods based on
the proximal operators framework [4–6] in which the CCPi-RGL
algorithms can be easily integrated.

The general optimisation form for tomographic image recon-
struction can be formulated as:

min
x∈RN

F(x) + g(x) ≡ f (Ax) + g(x) ≡

n∑
i=1

fi(Aix) + g(x), (A.1)

where fi : RMi → R, f : RM
→ R is a continuously differentiable

convex function with Lipschitz continuous gradient. Thus, F also
has Lipschitz continuous gradient and we denote its constant by
L. The functions fi measure the fidelity of Ax to the normalised
projection data b ∈ RM where A = (A1; . . . ;An) ∈ RM×N is the
linear forward operator and x ∈ RN is the unknown solution. In
accordance with Beers law, raw projection data y is normalised
with a registered flat field z as b = − ln(y/z). The regularisation
term g : RN

→ R is a convex, possibly non-differentiable function
expressing a prior knowledge of the unknown estimate x. The
CCPi-RGL toolkit provides different choices for g(x).

The common choice for the data fidelity term is the Least-
Squares (LS) model: f (Ax) = ∥Ax−b∥2

2 or the Penalised Weighted
Least Squares (PWLS): f (Ax) = ∥Ax − b∥2

W , where W ∈ RM×M

is a diagonal matrix such as {Wii = 1/σ 2
i }

M
i=1 and σ 2

i ≈ y2i is
the variance of the measurements. It is not uncommon to use
a more realistic non-linear Poisson model f (Ax) = ⟨y,Ax⟩ +

⟨z exp(−Ax), 1⟩ [27], or other models [28].
In order to solve the problem (A.1) efficiently, we rely on the

theory of the proximal methods [5,6,29] which split the problem
into parts which are easier to solve. Before presenting various
splitting approaches, we introduce the notion of the proximal
operator:

proxτg (u) = min
x∈RN

g(x) +
1
2τ

∥x − u∥
2. (A.2)

All regularisation algorithms of CCPi-RGL aim to solve (A.2)
and therefore one needs to be concerned only with f -related
sub-problem which is specific to the imaging modality.

Algorithm 1 forward–backward splitting (FBS) method (fixed
step)
Require: x0 ∈ RN , K ;

τ = 1/L
for k = 0 to K − 1 do

xk+1
= proxτg (xk − τ∇F (xk))

end for

The simplest reconstruction algorithm to use is the forward–
backward splitting (FBS) method (see Alg. 1).

The slow O(1/k) convergence of FBS can be improved to
O(1/k2) using the optimal step strategy of FISTA [10] (see Alg.
2).

Algorithm 2 Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA)
Require: x0 ∈ RN , K ;

τ = 1/L, t0 = 1
for k = 0 to K − 1 do

1. yk
= xk +

(
tk−1
tk+1

)
(xk − xk−1)

2. xk+1
= proxτg

(
yk

− τ∇F (yk)
)

3. tk+1 =
1+

√
1+4t2k
2

end for

Both FBS and FISTA require f in (A.1) to be Lipschitz differ-
entiable and include only one proximal step on each iteration.
The group of primal–dual methods [6,7] relax the differentiability
condition but normally rely on two proximal steps instead.

Algorithm 3 Primal–Dual Hybrid Gradient (PDHG) algorithm.

Require: x0 ∈ RN , c > 0, K ;
σ = c/∥A∥, τ = 1/(c∥A∥), y0

= 0 ∈ RM

for k = 0 to K − 1 do
1. xk+1

= proxτg (xk − τATyk)
2. yk+1

= proxσ f ∗
(
yk

+ σA(2xk+1
− xk)

)
end for

Evaluation A or ∇F = A⊤
◦∇f ◦A in each iteration is cumber-

some. An approach to overcome this hurdle is ‘‘randomisation’’
which can for instance be achieved within PDHG by selection only
a few dual variables y i in each iteration, resulting in the stochastic
PDHG [30,31] method (see Alg. 4).

Algorithm 4 Stochastic PDHG algorithm.

Require: x0 ∈ RN , c > 0, K ;
σi = c/∥Ai∥, τ = 1/(cnmaxj ∥Aj∥), y0

= 0 ∈ RM , z0 = 0 ∈ RN

for k = 0 to K − 1 do
1. xk+1

= proxτg (xk − τzk)
2. Select j ∈ {1, . . . , n} uniform at random.

3. yk+1
i =

{
proxσif ∗i

(
yk
i + σiAixk+1

)
, if i = j

yk
i , else

4. ∆z = A⊤

j (y
k+1
j − yk

j )
zk+1

= zk + ∆z , zk+1
= zk + n∆z

end for

Under the linearisation conditions, the PDHG method becomes
the well-known ADMM method [6,32] (see Alg. 5).

Step 1. of the Alg. 5 is a quadratic optimisation problem when
data fidelity is chosen to be PWLS: F (x) = 1/2∥Ax − b∥2

W .
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Algorithm 5 Alternating Directions of Multipliers (ADMM)

Require: x0 ∈ RN , step τ > 0, K ;
u0

= 0 ∈ RN , y0
= x0

for k = 0 to K − 1 do
1. xk+1

= proxτF

(
vk

− uk
)

2. vk+1
= proxτg

(
xk+1

+ uk
)

3. uk+1
= uk

+ xk+1
− vk+1

end for

Therefore one needs to solve: xk+1
= (I + τA⊤WA)−1(τA⊤Wb +

vk
−uk) for which Krylov-type methods or Newton solvers can be

used [3].
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