# CCPi-Regularisation Toolkit (CCPi-RGL) **Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed. CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The modules especially suited for IIR, however, can also be used as image denoising iterative filters. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**

## Prerequisites: * MATLAB (www.mathworks.com/products/matlab/) OR * Python (tested ver. 3.5); Cython * C compilers * nvcc (CUDA SDK) compilers ## Package modules (regularisers): ### Single-channel 1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D CPU/GPU]; (Ref. 1) 2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D CPU/GPU]; (Ref. 2) 3. Split-Bregman (SB) Total Variation [2D/3D CPU/GPU]; (Ref. 4) ### Multi-channel 1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D CPU/GPU]; (Ref. 3,2) 2. Total Nuclear Variation (TNV) penalty [2D+channels CPU]; (Ref. 5) ## Installation: ### Python (conda-build) ``` export CIL_VERSION=0.9.2 conda build recipes/regularisers --numpy 1.12 --python 3.5 conda install cil_regulariser=0.9.2 --use-local --force cd Wrappers/Python conda build conda-recipe --numpy 1.12 --python 3.5 conda install ccpi-regulariser=0.9.2 --use-local --force cd demos/ python demo_cpu_regularisers.py # to run CPU demo python demo_gpu_regularisers.py # to run GPU demo ``` ### Matlab ``` cd /Wrappers/Matlab/mex_compile compileCPU_mex.m % to compile CPU modules compileGPU_mex.m % to compile GPU modules (see instructions in the file) ``` ### References: 1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268. 2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434. 3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106. 4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. 5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. ### License: [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) ### Acknowledgments: CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group and STFC SCD software developers. Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com