From ec31378b47fdf0eae06732e4e91c3b1bb02c454a Mon Sep 17 00:00:00 2001 From: "Suren A. Chilingaryan" Date: Sun, 29 Mar 2020 16:04:44 +0200 Subject: Optimize cache usage with blocking (icc is faster and gcc is slightly slower than previous version) --- src/Core/regularisers_CPU/TNV_core.c | 94 +++++++++++++++++++----------------- 1 file changed, 51 insertions(+), 43 deletions(-) (limited to 'src') diff --git a/src/Core/regularisers_CPU/TNV_core.c b/src/Core/regularisers_CPU/TNV_core.c index be7fdef..dce414a 100755 --- a/src/Core/regularisers_CPU/TNV_core.c +++ b/src/Core/regularisers_CPU/TNV_core.c @@ -25,6 +25,7 @@ #include "TNV_core.h" +#define BLOCK 32 #define min(a,b) (((a)<(b))?(a):(b)) inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, int q, int r) { @@ -141,7 +142,7 @@ inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, in typedef struct { int offY, stepY, copY; float *Input, *u, *qx, *qy, *gradx, *grady, *div; - float *div0, *udiff0, *udiff; + float *div0, *udiff0; float resprimal, resdual; float unorm, qnorm, product; } tnv_thread_t; @@ -173,7 +174,6 @@ static int tnv_free(HWThread thr, void *hwctx, int device_id, void *data) { free(ctx->div0); free(ctx->udiff0); - free(ctx->udiff); return 0; } @@ -196,19 +196,18 @@ static int tnv_init(HWThread thr, void *hwctx, int device_id, void *data) { long DimRow = (long)(dimX * padZ); // Auxiliar vectors - ctx->Input = malloc(Dim1Total * sizeof(float)); - ctx->u = malloc(Dim1Total * sizeof(float)); - ctx->qx = malloc(DimTotal * sizeof(float)); - ctx->qy = malloc(DimTotal * sizeof(float)); - ctx->gradx = malloc(DimTotal * sizeof(float)); - ctx->grady = malloc(DimTotal * sizeof(float)); - ctx->div = malloc(Dim1Total * sizeof(float)); - - ctx->div0 = malloc(DimRow * sizeof(float)); - ctx->udiff0 = malloc(DimRow * sizeof(float)); - ctx->udiff = malloc(DimRow * sizeof(float)); - - if ((!ctx->Input)||(!ctx->u)||(!ctx->qx)||(!ctx->qy)||(!ctx->gradx)||(!ctx->grady)||(!ctx->div)||(!ctx->div0)||(!ctx->udiff)||(!ctx->udiff0)) { + ctx->Input = memalign(64, Dim1Total * sizeof(float)); + ctx->u = memalign(64, Dim1Total * sizeof(float)); + ctx->qx = memalign(64, DimTotal * sizeof(float)); + ctx->qy = memalign(64, DimTotal * sizeof(float)); + ctx->gradx = memalign(64, DimTotal * sizeof(float)); + ctx->grady = memalign(64, DimTotal * sizeof(float)); + ctx->div = memalign(64, Dim1Total * sizeof(float)); + + ctx->div0 = memalign(64, DimRow * sizeof(float)); + ctx->udiff0 = memalign(64, DimRow * sizeof(float)); + + if ((!ctx->Input)||(!ctx->u)||(!ctx->qx)||(!ctx->qy)||(!ctx->gradx)||(!ctx->grady)||(!ctx->div)||(!ctx->div0)||(!ctx->udiff0)) { fprintf(stderr, "Error allocating memory\n"); exit(-1); } @@ -304,7 +303,7 @@ static int tnv_restore(HWThread thr, void *hwctx, int device_id, void *data) { static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { - long i, j, k, l, m; + long i, j, k, l; tnv_context_t *tnv_ctx = (tnv_context_t*)data; tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; @@ -349,39 +348,45 @@ static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { float qxdiff; float qydiff; float divdiff; - float gradxdiff[dimZ]; - float gradydiff[dimZ]; - float ubarx[dimZ]; - float ubary[dimZ]; - float udiff_next[dimZ]; + float gradxdiff[dimZ] __attribute__((aligned(64))); + float gradydiff[dimZ] __attribute__((aligned(64))); + float ubarx[dimZ] __attribute__((aligned(64))); + float ubary[dimZ] __attribute__((aligned(64))); + float udiff[dimZ] __attribute__((aligned(64))); + for(i=0; i < dimX; i++) { for(k = 0; k < dimZ; k++) { int l = i * padZ + k; float u_upd = (u[l] + tau * div[l] + taulambda * Input[l])/constant; float udiff = u[l] - u_upd; - ctx->udiff[l] = udiff; ctx->udiff0[l] = udiff; ctx->div0[l] = div[l]; - u[l] = u_upd; } } - for(j = 0; j < stepY; j++) { - for(i = 0; i < dimX; i++) { + for(int j1 = 0; j1 < stepY; j1 += BLOCK) { + for(int i1 = 0; i1 < dimX; i1 += BLOCK) { + for(int j2 = 0; j2 < BLOCK; j2++) { + j = j1 + j2; + for(int i2 = 0; i2 < BLOCK; i2++) { float t[3]; float M1 = 0.0f, M2 = 0.0f, M3 = 0.0f; + + i = i1 + i2; + if (i == dimX) break; + if (j == stepY) { j2 = BLOCK; break; } l = (j * dimX + i) * padZ; - m = dimX * padZ; - -//#pragma unroll 64 + +#pragma vector aligned +#pragma GCC ivdep for(k = 0; k < dimZ; k++) { - float u_upd = (u[l + k + m] + tau * div[l + k + m] + taulambda * Input[l + k + m]) / constant; - udiff_next[k] = u[l + k + m] - u_upd; - u[l + k + m] = u_upd; + float u_upd = (u[l + k] + tau * div[l + k] + taulambda * Input[l + k]) / constant; + udiff[k] = u[l + k] - u_upd; + u[l + k] = u_upd; - float gradx_upd = (i == (dimX - 1))?0:(u[l + k + padZ] - u[l + k]); - float grady_upd = (j == (copY - 1))?0:(u[l + k + m] - u[l + k]); + float gradx_upd = (i == (dimX - 1))?0:((u[l + k + padZ] + tau * div[l + k + padZ] + taulambda * Input[l + k + padZ]) / constant - u_upd); + float grady_upd = (j == (copY - 1))?0:((u[l + k + dimX*padZ] + tau * div[l + k + dimX*padZ] + taulambda * Input[l + k + dimX*padZ]) / constant - u_upd); gradxdiff[k] = gradx[l + k] - gradx_upd; gradydiff[k] = grady[l + k] - grady_upd; gradx[l + k] = gradx_upd; @@ -398,7 +403,8 @@ static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { coefF(t, M1, M2, M3, sigma, p, q, r); -//#pragma unroll 64 +#pragma vector aligned +#pragma GCC ivdep for(k = 0; k < dimZ; k++) { float vx = ubarx[k] + divsigma * qx[l + k]; float vy = ubary[k] + divsigma * qy[l + k]; @@ -411,26 +417,26 @@ static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { qx[l + k] += qxdiff; qy[l + k] += qydiff; - float udiff = ctx->udiff[i * padZ + k]; - ctx->udiff[i * padZ + k] = udiff_next[k]; - unorm += (udiff * udiff); + unorm += (udiff[k] * udiff[k]); qnorm += (qxdiff * qxdiff + qydiff * qydiff); float div_upd = 0; div_upd -= (i > 0)?qx[l + k - padZ]:0; - div_upd -= (j > 0)?qy[l + k - m]:0; + div_upd -= (j > 0)?qy[l + k - dimX*padZ]:0; div_upd += (i < (dimX-1))?qx[l + k]:0; div_upd += (j < (copY-1))?qy[l + k]:0; divdiff = div[l + k] - div_upd; div[l + k] = div_upd; - resprimal += ((offY == 0)||(j > 0))?fabs(divtau * udiff + divdiff):0; + resprimal += ((offY == 0)||(j > 0))?fabs(divtau * udiff[k] + divdiff):0; resdual += fabs(divsigma * qxdiff + gradxdiff[k]); resdual += fabs(divsigma * qydiff + gradydiff[k]); product -= (gradxdiff[k] * qxdiff + gradydiff[k] * qydiff); } } // i + } // j + } // i } // j @@ -452,8 +458,9 @@ static void TNV_CPU_init(float *InputT, float *uT, int dimX, int dimY, int dimZ) tnv_ctx.dimY = dimY; tnv_ctx.dimZ = dimZ; // Padding seems actually slower -// tnv_ctx.padZ = 64 * ((dimZ / 64) + ((dimZ % 64)?1:0)); - tnv_ctx.padZ = dimZ; +// tnv_ctx.padZ = dimZ; +// tnv_ctx.padZ = 4 * ((dimZ / 4) + ((dimZ % 4)?1:0)); + tnv_ctx.padZ = 16 * ((dimZ / 16) + ((dimZ % 16)?1:0)); hw_sched_init(); @@ -573,8 +580,9 @@ float TNV_CPU_main(float *InputT, float *uT, float lambda, int maxIter, float to float udiff = ctx->udiff0[l]; ctx->div[l] -= ctx0->qy[l + m]; - ctx0->div[m + l + dimX*padZ] = ctx->div[l]; - + ctx0->div[m + l + dimX * padZ] = ctx->div[l]; + ctx0->u[m + l + dimX * padZ] = ctx->u[l]; + divdiff += ctx0->qy[l + m]; resprimal += fabs(divtau * udiff + divdiff); } -- cgit v1.2.3