From 324411a3e033c7f05b77e3bff829b55d674438da Mon Sep 17 00:00:00 2001 From: "Suren A. Chilingaryan" Date: Fri, 27 Mar 2020 20:15:30 +0100 Subject: Optimized TNV routine (10x performance, 1/3 memcory consumption) --- src/Core/CMakeLists.txt | 19 +- src/Core/regularisers_CPU/TNV_core.c | 948 +++++++++++++++---------- src/Core/regularisers_CPU/TNV_core_backtrack.c | 695 ++++++++++++++++++ src/Core/regularisers_CPU/hw_sched.c | 396 +++++++++++ src/Core/regularisers_CPU/hw_sched.h | 151 ++++ src/Core/regularisers_CPU/hw_thread.c | 141 ++++ src/Core/regularisers_CPU/hw_thread.h | 76 ++ 7 files changed, 2042 insertions(+), 384 deletions(-) create mode 100755 src/Core/regularisers_CPU/TNV_core_backtrack.c create mode 100644 src/Core/regularisers_CPU/hw_sched.c create mode 100644 src/Core/regularisers_CPU/hw_sched.h create mode 100644 src/Core/regularisers_CPU/hw_thread.c create mode 100644 src/Core/regularisers_CPU/hw_thread.h (limited to 'src') diff --git a/src/Core/CMakeLists.txt b/src/Core/CMakeLists.txt index 4e43b5e..10b16f3 100644 --- a/src/Core/CMakeLists.txt +++ b/src/Core/CMakeLists.txt @@ -15,6 +15,7 @@ message("CIL_VERSION ${CIL_VERSION}") ## Build the regularisers package as a library message("Creating Regularisers as a shared library") +find_package(GLIB2 REQUIRED) find_package(OpenMP REQUIRED) if (OPENMP_FOUND) set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") @@ -24,8 +25,8 @@ if (OPENMP_FOUND) set (CMAKE_STATIC_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_STATIC_LINKER_FLAGS} ${OpenMP_CXX_FLAGS}") endif() -message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") -message("CMAKE_C_FLAGS ${CMAKE_C_FLAGS}") +message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -fno-omit-frame-pointer") +message("CMAKE_C_FLAGS ${CMAKE_C_FLAGS} -fno-omit-frame-pointer") message("CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS}") message("CMAKE_SHARED_LINKER_FLAGS ${CMAKE_SHARED_LINKER_FLAGS}") message("CMAKE_STATIC_LINKER_FLAGS ${CMAKE_STATIC_LINKER_FLAGS}") @@ -58,10 +59,17 @@ message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}") ## Build the regularisers package as a library message("Adding regularisers as a shared library") -#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc) +#set(CMAKE_C_COMPILER /opt/intel/compilers_and_libraries/linux/bin/intel64/icc) +#set(CMAKE_C_FLAGS "-Ofast -mtune=sandybridge -xSSE4.2 -qopt-report=2 -qopt-report-phase=vec -qopenmp") +set(CMAKE_C_FLAGS "-march=nocona -msse -msse2 -msse3 -mssse3 -msse4 -msse4.1 -msse4.2 -ftree-vectorize -fopt-info-vec-optimized -fopt-info-vec -mprefer-vector-width=128 -fopenmp") +#set(CMAKE_C_FLAGS "-march=native -msse -msse2 -msse3 -mssse3 -msse4 -msse4.1 -msse4.2 -mavx -mavx2 -ftree-vectorize -fopt-info-vec-optimized -fopt-info-vec -mprefer-vector-width=512 -fopenmp") +#set(CMAKE_C_FLAGS_RELEASE "-g -gdwarf-2 -g3 -fno-omit-frame-pointer") + #set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp") #set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC") add_library(cilreg SHARED + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/hw_sched.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/hw_thread.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_TV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/SB_TV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/PD_TV_core.c @@ -78,8 +86,9 @@ add_library(cilreg SHARED ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/Diffusion_Inpaint_core.c ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/NonlocalMarching_Inpaint_core.c ) -target_link_libraries(cilreg ${EXTRA_LIBRARIES} ) +target_link_libraries(cilreg ${EXTRA_LIBRARIES} ${GLIB2_LIBRARIES} ${GTHREAD2_LIBRARIES} ) include_directories(cilreg PUBLIC + ${GLIB2_INCLUDE_DIR} ${LIBRARY_INC}/include ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ @@ -105,7 +114,7 @@ endif() # GPU Regularisers -if (BUILD_CUDA) +if (BUILD_CUDA1) find_package(CUDA) if (CUDA_FOUND) set(CUDA_NVCC_FLAGS "-Xcompiler -fPIC -shared -D_FORCE_INLINES") diff --git a/src/Core/regularisers_CPU/TNV_core.c b/src/Core/regularisers_CPU/TNV_core.c index 753cc5f..be7fdef 100755 --- a/src/Core/regularisers_CPU/TNV_core.c +++ b/src/Core/regularisers_CPU/TNV_core.c @@ -5,6 +5,12 @@ * * Copyright 2017 Daniil Kazantsev * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Copyriht 2020 Suren A. Chlingaryan + * Optimized version with 1/3 of memory consumption and ~10x performance + * This version is not able to perform back-track except during first iterations + * But warning would be printed if backtracking is required and slower version (TNV_core_backtrack.c) + * could be executed instead. It still better than original with 1/2 of memory consumption and 4x performance gain * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -19,6 +25,467 @@ #include "TNV_core.h" +#define min(a,b) (((a)<(b))?(a):(b)) + +inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, int q, int r) { + int ii, num; + float divsigma = 1.0f / sigma; + float sum, shrinkfactor; + float T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd; + float proj[2] = {0}; + + // Compute eigenvalues of M + T = M1 + M3; + D = M1 * M3 - M2 * M2; + det = sqrtf(MAX((T * T / 4.0f) - D, 0.0f)); + eig1 = MAX((T / 2.0f) + det, 0.0f); + eig2 = MAX((T / 2.0f) - det, 0.0f); + sig1 = sqrtf(eig1); + sig2 = sqrtf(eig2); + + // Compute normalized eigenvectors + V1 = V2 = V3 = V4 = 0.0f; + + if(M2 != 0.0f) + { + v0 = M2; + v1 = eig1 - M3; + v2 = eig2 - M3; + + mu1 = sqrtf(v0 * v0 + v1 * v1); + mu2 = sqrtf(v0 * v0 + v2 * v2); + + if(mu1 > fTiny) + { + V1 = v1 / mu1; + V3 = v0 / mu1; + } + + if(mu2 > fTiny) + { + V2 = v2 / mu2; + V4 = v0 / mu2; + } + + } else + { + if(M1 > M3) + { + V1 = V4 = 1.0f; + V2 = V3 = 0.0f; + + } else + { + V1 = V4 = 0.0f; + V2 = V3 = 1.0f; + } + } + + // Compute prox_p of the diagonal entries + sig1_upd = sig2_upd = 0.0f; + + if(p == 1) + { + sig1_upd = MAX(sig1 - divsigma, 0.0f); + sig2_upd = MAX(sig2 - divsigma, 0.0f); + + } else if(p == INFNORM) + { + proj[0] = sigma * fabs(sig1); + proj[1] = sigma * fabs(sig2); + + /*l1 projection part */ + sum = fLarge; + num = 0l; + shrinkfactor = 0.0f; + while(sum > 1.0f) + { + sum = 0.0f; + num = 0; + + for(ii = 0; ii < 2; ii++) + { + proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f); + + sum += fabs(proj[ii]); + if(proj[ii]!= 0.0f) + num++; + } + + if(num > 0) + shrinkfactor = (sum - 1.0f) / num; + else + break; + } + /*l1 proj ends*/ + + sig1_upd = sig1 - divsigma * proj[0]; + sig2_upd = sig2 - divsigma * proj[1]; + } + + // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$ + if(sig1 > fTiny) + sig1_upd /= sig1; + + if(sig2 > fTiny) + sig2_upd /= sig2; + + // Compute solution + t[0] = sig1_upd * V1 * V1 + sig2_upd * V2 * V2; + t[1] = sig1_upd * V1 * V3 + sig2_upd * V2 * V4; + t[2] = sig1_upd * V3 * V3 + sig2_upd * V4 * V4; +} + + +#include "hw_sched.h" +typedef struct { + int offY, stepY, copY; + float *Input, *u, *qx, *qy, *gradx, *grady, *div; + float *div0, *udiff0, *udiff; + float resprimal, resdual; + float unorm, qnorm, product; +} tnv_thread_t; + +typedef struct { + int threads; + tnv_thread_t *thr_ctx; + float *InputT, *uT; + int dimX, dimY, dimZ, padZ; + float lambda, sigma, tau, theta; +} tnv_context_t; + +HWSched sched = NULL; +tnv_context_t tnv_ctx; + + +static int tnv_free(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + free(ctx->Input); + free(ctx->u); + free(ctx->qx); + free(ctx->qy); + free(ctx->gradx); + free(ctx->grady); + free(ctx->div); + + free(ctx->div0); + free(ctx->udiff0); + free(ctx->udiff); + + return 0; +} + +static int tnv_init(HWThread thr, void *hwctx, int device_id, void *data) { + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + +// printf("%i %p - %i %i %i x %i %i\n", device_id, ctx, dimX, dimY, dimZ, offY, stepY); + + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*(stepY+1)*padZ); + long DimRow = (long)(dimX * padZ); + + // Auxiliar vectors + ctx->Input = malloc(Dim1Total * sizeof(float)); + ctx->u = malloc(Dim1Total * sizeof(float)); + ctx->qx = malloc(DimTotal * sizeof(float)); + ctx->qy = malloc(DimTotal * sizeof(float)); + ctx->gradx = malloc(DimTotal * sizeof(float)); + ctx->grady = malloc(DimTotal * sizeof(float)); + ctx->div = malloc(Dim1Total * sizeof(float)); + + ctx->div0 = malloc(DimRow * sizeof(float)); + ctx->udiff0 = malloc(DimRow * sizeof(float)); + ctx->udiff = malloc(DimRow * sizeof(float)); + + if ((!ctx->Input)||(!ctx->u)||(!ctx->qx)||(!ctx->qy)||(!ctx->gradx)||(!ctx->grady)||(!ctx->div)||(!ctx->div0)||(!ctx->udiff)||(!ctx->udiff0)) { + fprintf(stderr, "Error allocating memory\n"); + exit(-1); + } + + return 0; +} + +static int tnv_start(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + +// printf("%i %p - %i %i %i (%i) x %i %i\n", device_id, ctx, dimX, dimY, dimZ, padZ, offY, stepY); + + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*copY*padZ); + + memset(ctx->u, 0, Dim1Total * sizeof(float)); + memset(ctx->qx, 0, DimTotal * sizeof(float)); + memset(ctx->qy, 0, DimTotal * sizeof(float)); + memset(ctx->gradx, 0, DimTotal * sizeof(float)); + memset(ctx->grady, 0, DimTotal * sizeof(float)); + memset(ctx->div, 0, Dim1Total * sizeof(float)); + + for(k=0; kInput[j * dimX * padZ + i * padZ + k] = tnv_ctx->InputT[k * dimX * dimY + (j + offY) * dimX + i]; + ctx->u[j * dimX * padZ + i * padZ + k] = tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i]; + } + } + } + + return 0; +} + +static int tnv_finish(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + + for(k=0; kuT[k * dimX * dimY + (j + offY) * dimX + i] = ctx->u[j * dimX * padZ + i * padZ + k]; + } + } + } + + return 0; +} + + +static int tnv_restore(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int stepY = ctx->stepY; + int copY = ctx->copY; + int padZ = tnv_ctx->padZ; + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*copY*padZ); + + memset(ctx->u, 0, Dim1Total * sizeof(float)); + memset(ctx->qx, 0, DimTotal * sizeof(float)); + memset(ctx->qy, 0, DimTotal * sizeof(float)); + memset(ctx->gradx, 0, DimTotal * sizeof(float)); + memset(ctx->grady, 0, DimTotal * sizeof(float)); + memset(ctx->div, 0, Dim1Total * sizeof(float)); + + return 0; +} + + +static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { + long i, j, k, l, m; + + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + + float *Input = ctx->Input; + float *u = ctx->u; + float *qx = ctx->qx; + float *qy = ctx->qy; + float *gradx = ctx->gradx; + float *grady = ctx->grady; + float *div = ctx->div; + + long p = 1l; + long q = 1l; + long r = 0l; + + float lambda = tnv_ctx->lambda; + float sigma = tnv_ctx->sigma; + float tau = tnv_ctx->tau; + float theta = tnv_ctx->theta; + + float taulambda = tau * lambda; + float divtau = 1.0f / tau; + float divsigma = 1.0f / sigma; + float theta1 = 1.0f + theta; + float constant = 1.0f + taulambda; + + float resprimal = 0.0f; + float resdual = 0.0f; + float product = 0.0f; + float unorm = 0.0f; + float qnorm = 0.0f; + + float qxdiff; + float qydiff; + float divdiff; + float gradxdiff[dimZ]; + float gradydiff[dimZ]; + float ubarx[dimZ]; + float ubary[dimZ]; + float udiff_next[dimZ]; + + for(i=0; i < dimX; i++) { + for(k = 0; k < dimZ; k++) { + int l = i * padZ + k; + float u_upd = (u[l] + tau * div[l] + taulambda * Input[l])/constant; + float udiff = u[l] - u_upd; + ctx->udiff[l] = udiff; + ctx->udiff0[l] = udiff; + ctx->div0[l] = div[l]; + u[l] = u_upd; + } + } + + for(j = 0; j < stepY; j++) { + for(i = 0; i < dimX; i++) { + float t[3]; + float M1 = 0.0f, M2 = 0.0f, M3 = 0.0f; + l = (j * dimX + i) * padZ; + m = dimX * padZ; + +//#pragma unroll 64 + for(k = 0; k < dimZ; k++) { + float u_upd = (u[l + k + m] + tau * div[l + k + m] + taulambda * Input[l + k + m]) / constant; + udiff_next[k] = u[l + k + m] - u_upd; + u[l + k + m] = u_upd; + + float gradx_upd = (i == (dimX - 1))?0:(u[l + k + padZ] - u[l + k]); + float grady_upd = (j == (copY - 1))?0:(u[l + k + m] - u[l + k]); + gradxdiff[k] = gradx[l + k] - gradx_upd; + gradydiff[k] = grady[l + k] - grady_upd; + gradx[l + k] = gradx_upd; + grady[l + k] = grady_upd; + + ubarx[k] = gradx_upd - theta * gradxdiff[k]; + ubary[k] = grady_upd - theta * gradydiff[k]; + + float vx = ubarx[k] + divsigma * qx[l + k]; + float vy = ubary[k] + divsigma * qy[l + k]; + + M1 += (vx * vx); M2 += (vx * vy); M3 += (vy * vy); + } + + coefF(t, M1, M2, M3, sigma, p, q, r); + +//#pragma unroll 64 + for(k = 0; k < dimZ; k++) { + float vx = ubarx[k] + divsigma * qx[l + k]; + float vy = ubary[k] + divsigma * qy[l + k]; + float gx_upd = vx * t[0] + vy * t[1]; + float gy_upd = vx * t[1] + vy * t[2]; + + qxdiff = sigma * (ubarx[k] - gx_upd); + qydiff = sigma * (ubary[k] - gy_upd); + + qx[l + k] += qxdiff; + qy[l + k] += qydiff; + + float udiff = ctx->udiff[i * padZ + k]; + ctx->udiff[i * padZ + k] = udiff_next[k]; + unorm += (udiff * udiff); + qnorm += (qxdiff * qxdiff + qydiff * qydiff); + + float div_upd = 0; + div_upd -= (i > 0)?qx[l + k - padZ]:0; + div_upd -= (j > 0)?qy[l + k - m]:0; + div_upd += (i < (dimX-1))?qx[l + k]:0; + div_upd += (j < (copY-1))?qy[l + k]:0; + divdiff = div[l + k] - div_upd; + div[l + k] = div_upd; + + resprimal += ((offY == 0)||(j > 0))?fabs(divtau * udiff + divdiff):0; + resdual += fabs(divsigma * qxdiff + gradxdiff[k]); + resdual += fabs(divsigma * qydiff + gradydiff[k]); + product -= (gradxdiff[k] * qxdiff + gradydiff[k] * qydiff); + } + + } // i + } // j + + + ctx->resprimal = resprimal; + ctx->resdual = resdual; + ctx->product = product; + ctx->unorm = unorm; + ctx->qnorm = qnorm; + + return 0; +} + +static void TNV_CPU_init(float *InputT, float *uT, int dimX, int dimY, int dimZ) { + int i, off, size, err; + + if (sched) return; + + tnv_ctx.dimX = dimX; + tnv_ctx.dimY = dimY; + tnv_ctx.dimZ = dimZ; + // Padding seems actually slower +// tnv_ctx.padZ = 64 * ((dimZ / 64) + ((dimZ % 64)?1:0)); + tnv_ctx.padZ = dimZ; + + hw_sched_init(); + + int threads = hw_sched_get_cpu_count(); + if (threads > dimY) threads = dimY/2; + + int step = dimY / threads; + int extra = dimY % threads; + + tnv_ctx.threads = threads; + tnv_ctx.thr_ctx = (tnv_thread_t*)calloc(threads, sizeof(tnv_thread_t)); + for (i = 0, off = 0; i < threads; i++, off += size) { + tnv_thread_t *ctx = tnv_ctx.thr_ctx + i; + size = step + ((i < extra)?1:0); + + ctx->offY = off; + ctx->stepY = size; + + if (i == (threads-1)) ctx->copY = ctx->stepY; + else ctx->copY = ctx->stepY + 1; + } + + sched = hw_sched_create(threads); + if (!sched) { fprintf(stderr, "Error creating threads\n"); exit(-1); } + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_init); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling init threads", err); exit(-1); } +} + + + /* * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] * The code is modified from the implementation by Joan Duran see @@ -32,50 +499,25 @@ * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] * * Output: - * 1. Filtered/regularized image + * 1. Filtered/regularized image (u) * * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. */ -float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ) +float TNV_CPU_main(float *InputT, float *uT, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ) { - long k, p, q, r, DimTotal; - float taulambda; - float *u_upd, *gx, *gy, *gx_upd, *gy_upd, *qx, *qy, *qx_upd, *qy_upd, *v, *vx, *vy, *gradx, *grady, *gradx_upd, *grady_upd, *gradx_ubar, *grady_ubar, *div, *div_upd; - - p = 1l; - q = 1l; - r = 0l; - + int err; + int iter; + int i,j,k,l,m; + lambda = 1.0f/(2.0f*lambda); - DimTotal = (long)(dimX*dimY*dimZ); - /* PDHG algorithm parameters*/ + tnv_ctx.lambda = lambda; + + // PDHG algorithm parameters float tau = 0.5f; float sigma = 0.5f; float theta = 1.0f; - - // Auxiliar vectors - u_upd = calloc(DimTotal, sizeof(float)); - gx = calloc(DimTotal, sizeof(float)); - gy = calloc(DimTotal, sizeof(float)); - gx_upd = calloc(DimTotal, sizeof(float)); - gy_upd = calloc(DimTotal, sizeof(float)); - qx = calloc(DimTotal, sizeof(float)); - qy = calloc(DimTotal, sizeof(float)); - qx_upd = calloc(DimTotal, sizeof(float)); - qy_upd = calloc(DimTotal, sizeof(float)); - v = calloc(DimTotal, sizeof(float)); - vx = calloc(DimTotal, sizeof(float)); - vy = calloc(DimTotal, sizeof(float)); - gradx = calloc(DimTotal, sizeof(float)); - grady = calloc(DimTotal, sizeof(float)); - gradx_upd = calloc(DimTotal, sizeof(float)); - grady_upd = calloc(DimTotal, sizeof(float)); - gradx_ubar = calloc(DimTotal, sizeof(float)); - grady_ubar = calloc(DimTotal, sizeof(float)); - div = calloc(DimTotal, sizeof(float)); - div_upd = calloc(DimTotal, sizeof(float)); - + // Backtracking parameters float s = 1.0f; float gamma = 0.75f; @@ -84,369 +526,117 @@ float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, float alpha = alpha0; float delta = 1.5f; float eta = 0.95f; + + TNV_CPU_init(InputT, uT, dimX, dimY, dimZ); + + tnv_ctx.InputT = InputT; + tnv_ctx.uT = uT; - // PDHG algorithm parameters - taulambda = tau * lambda; - float divtau = 1.0f / tau; - float divsigma = 1.0f / sigma; - float theta1 = 1.0f + theta; - - /*allocate memory for taulambda */ - //taulambda = (float*) calloc(dimZ, sizeof(float)); - //for(k=0; k < dimZ; k++) {taulambda[k] = tau*lambda[k];} - + int padZ = tnv_ctx.padZ; + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_start); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling start threads", err); exit(-1); } + + // Apply Primal-Dual Hybrid Gradient scheme - int iter = 0; float residual = fLarge; - float ubarx, ubary; - + int started = 0; for(iter = 0; iter < maxIter; iter++) { - // Argument of proximal mapping of fidelity term -#pragma omp parallel for shared(v, u) private(k) - for(k=0; kstepY - 1) * dimX * padZ; + for(i = 0; i < dimX; i++) { + for(k = 0; k < dimZ; k++) { + int l = i * padZ + k; + + float divdiff = ctx->div0[l] - ctx->div[l]; + float udiff = ctx->udiff0[l]; -if(b > 1) -{ - // Decrease step-sizes to fit balancing principle - tau = (beta * tau) / b; - sigma = (beta * sigma) / b; - alpha = alpha0; - - copyIm(u, u_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gx, gx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gy, gy_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(qx, qx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(qy, qy_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(gradx, gradx_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(grady, grady_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(div, div_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - -} else if(resprimal > dual_dot_delta) -{ - // Increase primal step-size and decrease dual step-size - tau = tau / (1.0f - alpha); - sigma = sigma * (1.0f - alpha); - alpha = alpha * eta; - -} else if(resprimal < dual_div_delta) -{ - // Decrease primal step-size and increase dual step-size - tau = tau * (1.0f - alpha); - sigma = sigma / (1.0f - alpha); - alpha = alpha * eta; -} + ctx->div[l] -= ctx0->qy[l + m]; + ctx0->div[m + l + dimX*padZ] = ctx->div[l]; + + divdiff += ctx0->qy[l + m]; + resprimal += fabs(divtau * udiff + divdiff); + } + } + } -// Update variables -taulambda = tau * lambda; -//for(k=0; k < dimZ; k++) taulambda[k] = tau*lambda[k]; + for (j = 0; j < tnv_ctx.threads; j++) { + tnv_thread_t *ctx = tnv_ctx.thr_ctx + j; + resprimal += ctx->resprimal; + resdual += ctx->resdual; + product += ctx->product; + unorm += ctx->unorm; + qnorm += ctx->qnorm; + } -divsigma = 1.0f / sigma; -divtau = 1.0f / tau; + residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ)); + float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm + gamma * tau * qnorm); + float dual_dot_delta = resdual * s * delta; + float dual_div_delta = (resdual * s) / delta; + printf("resprimal: %f, resdual: %f, b: %f (product: %f, unorm: %f, qnorm: %f)\n", resprimal, resdual, b, product, unorm, qnorm); -copyIm(u_upd, u, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gx_upd, gx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gy_upd, gy, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(qx_upd, qx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(qy_upd, qy, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(gradx_upd, gradx, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(grady_upd, grady, (long)(dimX), (long)(dimY), (long)(dimZ)); -copyIm(div_upd, div, (long)(dimX), (long)(dimY), (long)(dimZ)); -// Compute residual at current iteration -residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ)); + if(b > 1) { + + // Decrease step-sizes to fit balancing principle + tau = (beta * tau) / b; + sigma = (beta * sigma) / b; + alpha = alpha0; -// printf("%f \n", residual); -if (residual < tol) { - printf("Iterations stopped at %i with the residual %f \n", iter, residual); - break; } + if (started) { + fprintf(stderr, "\n\n\nWARNING: Back-tracking is required in the middle of iterative optimization! We CAN'T do it in the fast version. The standard TNV recommended\n\n\n"); + } else { + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_restore); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling restore threads", err); exit(-1); } + } + } else { + started = 1; + if(resprimal > dual_dot_delta) { + // Increase primal step-size and decrease dual step-size + tau = tau / (1.0f - alpha); + sigma = sigma * (1.0f - alpha); + alpha = alpha * eta; + } else if(resprimal < dual_div_delta) { + // Decrease primal step-size and increase dual step-size + tau = tau * (1.0f - alpha); + sigma = sigma / (1.0f - alpha); + alpha = alpha * eta; + } + } + if (residual < tol) break; } - printf("Iterations stopped at %i with the residual %f \n", iter, residual); - free (u_upd); free(gx); free(gy); free(gx_upd); free(gy_upd); - free(qx); free(qy); free(qx_upd); free(qy_upd); free(v); free(vx); free(vy); - free(gradx); free(grady); free(gradx_upd); free(grady_upd); free(gradx_ubar); - free(grady_ubar); free(div); free(div_upd); - return *u; -} -float proxG(float *u_upd, float *v, float *f, float taulambda, long dimX, long dimY, long dimZ) -{ - float constant; - long k; - constant = 1.0f + taulambda; -#pragma omp parallel for shared(v, f, u_upd) private(k) - for(k=0; k fTiny) - { - V1 = v1 / mu1; - V3 = v0 / mu1; - } - - if(mu2 > fTiny) - { - V2 = v2 / mu2; - V4 = v0 / mu2; - } - - } else - { - if(M1 > M3) - { - V1 = V4 = 1.0f; - V2 = V3 = 0.0f; - - } else - { - V1 = V4 = 0.0f; - V2 = V3 = 1.0f; - } - } - - // Compute prox_p of the diagonal entries - sig1_upd = sig2_upd = 0.0f; - - if(p == 1) - { - sig1_upd = MAX(sig1 - divsigma, 0.0f); - sig2_upd = MAX(sig2 - divsigma, 0.0f); - - } else if(p == INFNORM) - { - proj[0] = sigma * fabs(sig1); - proj[1] = sigma * fabs(sig2); - - /*l1 projection part */ - sum = fLarge; - num = 0l; - shrinkfactor = 0.0f; - while(sum > 1.0f) - { - sum = 0.0f; - num = 0; - - for(ii = 0; ii < 2; ii++) - { - proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f); - - sum += fabs(proj[ii]); - if(proj[ii]!= 0.0f) - num++; - } - - if(num > 0) - shrinkfactor = (sum - 1.0f) / num; - else - break; - } - /*l1 proj ends*/ - - sig1_upd = sig1 - divsigma * proj[0]; - sig2_upd = sig2 - divsigma * proj[1]; - } - - // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$ - if(sig1 > fTiny) - sig1_upd /= sig1; - - if(sig2 > fTiny) - sig2_upd /= sig2; - - // Compute solution - t1 = sig1_upd * V1 * V1 + sig2_upd * V2 * V2; - t2 = sig1_upd * V1 * V3 + sig2_upd * V2 * V4; - t3 = sig1_upd * V3 * V3 + sig2_upd * V4 * V4; - - for(k = 0; k < dimZ; k++) - { - gx[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t1 + vy[(dimX*dimY)*k + j*dimX + i] * t2; - gy[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t2 + vy[(dimX*dimY)*k + j*dimX + i] * t3; - } - - // Delete allocated memory - free(proj); - }} - - return 1; -} + printf("Iterations stopped at %i with the residual %f \n", iter, residual); + printf("Return: %f\n", *uT); -float divergence(float *qx_upd, float *qy_upd, float *div_upd, long dimX, long dimY, long dimZ) -{ - long i, j, k, l; -#pragma omp parallel for shared(qx_upd,qy_upd,div_upd) private(i, j, k, l) - for(k = 0; k < dimZ; k++) { - for(j = 0; j < dimY; j++) { - l = j * dimX; - for(i = 0; i < dimX; i++) { - if(i != dimX-1) - { - // ux[k][i+l] = u[k][i+1+l] - u[k][i+l] - div_upd[(dimX*dimY)*k + i+1+l] -= qx_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+l] += qx_upd[(dimX*dimY)*k + i+l]; - } - - if(j != dimY-1) - { - // uy[k][i+l] = u[k][i+width+l] - u[k][i+l] - //div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+(j+1)*dimX] -= qy_upd[(dimX*dimY)*k + i+l]; - div_upd[(dimX*dimY)*k + i+l] += qy_upd[(dimX*dimY)*k + i+l]; - } - } - } - } - return *div_upd; +// exit(-1); + return *uT; } diff --git a/src/Core/regularisers_CPU/TNV_core_backtrack.c b/src/Core/regularisers_CPU/TNV_core_backtrack.c new file mode 100755 index 0000000..d771db5 --- /dev/null +++ b/src/Core/regularisers_CPU/TNV_core_backtrack.c @@ -0,0 +1,695 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Copyriht 2020 Suren A. Chlingaryan + * Optimized version with 1/2 of memory consumption and ~4x performance + * This version is algorithmicly comptable with the original, but slight change in results + * is expected due to different order of floating-point operations. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "TNV_core.h" + +#define min(a,b) (((a)<(b))?(a):(b)) + +inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, int q, int r) { + int ii, num; + float divsigma = 1.0f / sigma; + float sum, shrinkfactor; + float T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd; + float proj[2] = {0}; + + // Compute eigenvalues of M + T = M1 + M3; + D = M1 * M3 - M2 * M2; + det = sqrtf(MAX((T * T / 4.0f) - D, 0.0f)); + eig1 = MAX((T / 2.0f) + det, 0.0f); + eig2 = MAX((T / 2.0f) - det, 0.0f); + sig1 = sqrtf(eig1); + sig2 = sqrtf(eig2); + + // Compute normalized eigenvectors + V1 = V2 = V3 = V4 = 0.0f; + + if(M2 != 0.0f) + { + v0 = M2; + v1 = eig1 - M3; + v2 = eig2 - M3; + + mu1 = sqrtf(v0 * v0 + v1 * v1); + mu2 = sqrtf(v0 * v0 + v2 * v2); + + if(mu1 > fTiny) + { + V1 = v1 / mu1; + V3 = v0 / mu1; + } + + if(mu2 > fTiny) + { + V2 = v2 / mu2; + V4 = v0 / mu2; + } + + } else + { + if(M1 > M3) + { + V1 = V4 = 1.0f; + V2 = V3 = 0.0f; + + } else + { + V1 = V4 = 0.0f; + V2 = V3 = 1.0f; + } + } + + // Compute prox_p of the diagonal entries + sig1_upd = sig2_upd = 0.0f; + + if(p == 1) + { + sig1_upd = MAX(sig1 - divsigma, 0.0f); + sig2_upd = MAX(sig2 - divsigma, 0.0f); + + } else if(p == INFNORM) + { + proj[0] = sigma * fabs(sig1); + proj[1] = sigma * fabs(sig2); + + /*l1 projection part */ + sum = fLarge; + num = 0l; + shrinkfactor = 0.0f; + while(sum > 1.0f) + { + sum = 0.0f; + num = 0; + + for(ii = 0; ii < 2; ii++) + { + proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f); + + sum += fabs(proj[ii]); + if(proj[ii]!= 0.0f) + num++; + } + + if(num > 0) + shrinkfactor = (sum - 1.0f) / num; + else + break; + } + /*l1 proj ends*/ + + sig1_upd = sig1 - divsigma * proj[0]; + sig2_upd = sig2 - divsigma * proj[1]; + } + + // Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$ + if(sig1 > fTiny) + sig1_upd /= sig1; + + if(sig2 > fTiny) + sig2_upd /= sig2; + + // Compute solution + t[0] = sig1_upd * V1 * V1 + sig2_upd * V2 * V2; + t[1] = sig1_upd * V1 * V3 + sig2_upd * V2 * V4; + t[2] = sig1_upd * V3 * V3 + sig2_upd * V4 * V4; +} + + +#include "hw_sched.h" +typedef struct { + int offY, stepY, copY; + float *Input, *u, *u_upd, *qx, *qy, *qx_upd, *qy_upd, *gradx, *grady, *gradx_upd, *grady_upd; + float *div, *div_upd; + float resprimal, resdual; + float unorm, qnorm, product; +} tnv_thread_t; + +typedef struct { + int threads; + tnv_thread_t *thr_ctx; + float *InputT, *uT; + int dimX, dimY, dimZ, padZ; + float lambda, sigma, tau, theta; +} tnv_context_t; + +HWSched sched = NULL; +tnv_context_t tnv_ctx; + + +static int tnv_free(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + free(ctx->Input); + free(ctx->u); + free(ctx->u_upd); + free(ctx->qx); + free(ctx->qy); + free(ctx->qx_upd); + free(ctx->qy_upd); + free(ctx->gradx); + free(ctx->grady); + free(ctx->gradx_upd); + free(ctx->grady_upd); + free(ctx->div); + free(ctx->div_upd); + + return 0; +} + +static int tnv_init(HWThread thr, void *hwctx, int device_id, void *data) { + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + +// printf("%i %p - %i %i %i x %i %i\n", device_id, ctx, dimX, dimY, dimZ, offY, stepY); + + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*(stepY+1)*padZ); + + // Auxiliar vectors + ctx->Input = malloc(Dim1Total * sizeof(float)); + ctx->u = malloc(Dim1Total * sizeof(float)); + ctx->u_upd = malloc(Dim1Total * sizeof(float)); + ctx->qx = malloc(DimTotal * sizeof(float)); + ctx->qy = malloc(DimTotal * sizeof(float)); + ctx->qx_upd = malloc(DimTotal * sizeof(float)); + ctx->qy_upd = malloc(DimTotal * sizeof(float)); + ctx->gradx = malloc(DimTotal * sizeof(float)); + ctx->grady = malloc(DimTotal * sizeof(float)); + ctx->gradx_upd = malloc(DimTotal * sizeof(float)); + ctx->grady_upd = malloc(DimTotal * sizeof(float)); + ctx->div = malloc(Dim1Total * sizeof(float)); + ctx->div_upd = malloc(Dim1Total * sizeof(float)); + + if ((!ctx->Input)||(!ctx->u)||(!ctx->u_upd)||(!ctx->qx)||(!ctx->qy)||(!ctx->qx_upd)||(!ctx->qy_upd)||(!ctx->gradx)||(!ctx->grady)||(!ctx->gradx_upd)||(!ctx->grady_upd)||(!ctx->div)||(!ctx->div_upd)) { + fprintf(stderr, "Error allocating memory\n"); + exit(-1); + } + + return 0; +} + +static int tnv_start(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + +// printf("%i %p - %i %i %i (%i) x %i %i\n", device_id, ctx, dimX, dimY, dimZ, padZ, offY, stepY); + + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*copY*padZ); + + memset(ctx->u, 0, Dim1Total * sizeof(float)); + memset(ctx->qx, 0, DimTotal * sizeof(float)); + memset(ctx->qy, 0, DimTotal * sizeof(float)); + memset(ctx->gradx, 0, DimTotal * sizeof(float)); + memset(ctx->grady, 0, DimTotal * sizeof(float)); + memset(ctx->div, 0, Dim1Total * sizeof(float)); + + for(k=0; kInput[j * dimX * padZ + i * padZ + k] = tnv_ctx->InputT[k * dimX * dimY + (j + offY) * dimX + i]; + ctx->u[j * dimX * padZ + i * padZ + k] = tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i]; + } + } + } + + return 0; +} + +static int tnv_finish(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + + for(k=0; kuT[k * dimX * dimY + (j + offY) * dimX + i] = ctx->u[j * dimX * padZ + i * padZ + k]; + } + } + } + + return 0; +} + + +static int tnv_copy(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int stepY = ctx->stepY; + int copY = ctx->copY; + int padZ = tnv_ctx->padZ; + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*copY*padZ); + + // Auxiliar vectors + memcpy(ctx->u, ctx->u_upd, Dim1Total * sizeof(float)); + memcpy(ctx->qx, ctx->qx_upd, DimTotal * sizeof(float)); + memcpy(ctx->qy, ctx->qy_upd, DimTotal * sizeof(float)); + memcpy(ctx->gradx, ctx->gradx_upd, DimTotal * sizeof(float)); + memcpy(ctx->grady, ctx->grady_upd, DimTotal * sizeof(float)); + memcpy(ctx->div, ctx->div_upd, Dim1Total * sizeof(float)); + + return 0; +} + +static int tnv_restore(HWThread thr, void *hwctx, int device_id, void *data) { + int i,j,k; + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int stepY = ctx->stepY; + int copY = ctx->copY; + int padZ = tnv_ctx->padZ; + long DimTotal = (long)(dimX*stepY*padZ); + long Dim1Total = (long)(dimX*copY*padZ); + + // Auxiliar vectors + memcpy(ctx->u_upd, ctx->u, Dim1Total * sizeof(float)); + memcpy(ctx->qx_upd, ctx->qx, DimTotal * sizeof(float)); + memcpy(ctx->qy_upd, ctx->qy, DimTotal * sizeof(float)); + memcpy(ctx->gradx_upd, ctx->gradx, DimTotal * sizeof(float)); + memcpy(ctx->grady_upd, ctx->grady, DimTotal * sizeof(float)); + memcpy(ctx->div_upd, ctx->div, Dim1Total * sizeof(float)); + + return 0; +} + + +static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) { + long i, j, k, l, m; + + tnv_context_t *tnv_ctx = (tnv_context_t*)data; + tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id; + + int dimX = tnv_ctx->dimX; + int dimY = tnv_ctx->dimY; + int dimZ = tnv_ctx->dimZ; + int padZ = tnv_ctx->padZ; + int offY = ctx->offY; + int stepY = ctx->stepY; + int copY = ctx->copY; + + float *Input = ctx->Input; + float *u = ctx->u; + float *u_upd = ctx->u_upd; + float *qx = ctx->qx; + float *qy = ctx->qy; + float *qx_upd = ctx->qx_upd; + float *qy_upd = ctx->qy_upd; + float *gradx = ctx->gradx; + float *grady = ctx->grady; + float *gradx_upd = ctx->gradx_upd; + float *grady_upd = ctx->grady_upd; + float *div = ctx->div; + float *div_upd = ctx->div_upd; + + long p = 1l; + long q = 1l; + long r = 0l; + + float lambda = tnv_ctx->lambda; + float sigma = tnv_ctx->sigma; + float tau = tnv_ctx->tau; + float theta = tnv_ctx->theta; + + float taulambda = tau * lambda; + float divtau = 1.0f / tau; + float divsigma = 1.0f / sigma; + float theta1 = 1.0f + theta; + float constant = 1.0f + taulambda; + + float resprimal = 0.0f; + float resdual = 0.0f; + float product = 0.0f; + float unorm = 0.0f; + float qnorm = 0.0f; + + float udiff[dimZ]; + float qxdiff; + float qydiff; + float divdiff; + float gradxdiff[dimZ]; + float gradydiff[dimZ]; + + for(i=0; i < dimX; i++) { + for(k = 0; k < dimZ; k++) { + int l = i * padZ + k; + u_upd[l] = (u[l] + tau * div[l] + taulambda * Input[l])/constant; + div_upd[l] = 0; + } + } + + for(j = 0; j < stepY; j++) { +/* m = j * dimX * dimZ + (dimX - 1) * dimZ; + for(k = 0; k < dimZ; k++) { + u_upd[k + m] = (u[k + m] + tau * div[k + m] + taulambda * Input[k + m]) / constant; + }*/ + + for(i = 0; i < dimX/* - 1*/; i++) { + float t[3]; + float M1 = 0.0f, M2 = 0.0f, M3 = 0.0f; + l = (j * dimX + i) * padZ; + m = dimX * padZ; + +//#pragma unroll 64 + for(k = 0; k < dimZ; k++) { + u_upd[l + k + m] = (u[l + k + m] + tau * div[l + k + m] + taulambda * Input[l + k + m]) / constant; + + gradx_upd[l + k] = (i == (dimX - 1))?0:(u_upd[l + k + padZ] - u_upd[l + k]); + grady_upd[l + k] = (j == (copY - 1))?0:(u_upd[l + k + m] - u_upd[l + k]); // We need div from the next thread on last iter + + udiff[k] = u[l + k] - u_upd[l + k]; + unorm += (udiff[k] * udiff[k]); +// if ((!k)&&(!i)) printf("%i = %f %f, %f %f\n", offY + j, u[l + k], u_upd[l + k], udiff[k], unorm); + + gradxdiff[k] = gradx[l + k] - gradx_upd[l + k]; + gradydiff[k] = grady[l + k] - grady_upd[l + k]; + + float ubarx = theta1 * gradx_upd[l + k] - theta * gradx[l + k]; + float ubary = theta1 * grady_upd[l + k] - theta * grady[l + k]; +//#define TNV_NEW_STYLE +#ifdef TNV_NEW_STYLE + qx_upd[l + k] = qx[l + k] + sigma * ubarx; + qy_upd[l + k] = qy[l + k] + sigma * ubary; + + float vx = divsigma * qx_upd[l + k]; //+ ubarx + float vy = divsigma * qy_upd[l + k]; //+ ubary +#else + float vx = ubarx + divsigma * qx[l + k]; + float vy = ubary + divsigma * qy[l + k]; +#endif + + M1 += (vx * vx); M2 += (vx * vy); M3 += (vy * vy); + } + + coefF(t, M1, M2, M3, sigma, p, q, r); + +//#pragma unroll 64 + for(k = 0; k < dimZ; k++) { +#ifdef TNV_NEW_STYLE + float vx = divsigma * qx_upd[l + k]; + float vy = divsigma * qy_upd[l + k]; + + float gx_upd = vx * t[0] + vy * t[1]; + float gy_upd = vx * t[1] + vy * t[2]; + + qx_upd[l + k] -= sigma * gx_upd; + qy_upd[l + k] -= sigma * gy_upd; +#else + float ubarx = theta1 * gradx_upd[l + k] - theta * gradx[l + k]; + float ubary = theta1 * grady_upd[l + k] - theta * grady[l + k]; + float vx = ubarx + divsigma * qx[l + k]; + float vy = ubary + divsigma * qy[l + k]; + + float gx_upd = vx * t[0] + vy * t[1]; + float gy_upd = vx * t[1] + vy * t[2]; + + qx_upd[l + k] = qx[l + k] + sigma * (ubarx - gx_upd); + qy_upd[l + k] = qy[l + k] + sigma * (ubary - gy_upd); +#endif + +if(i != (dimX-1)) { + div_upd[l + k] += qx_upd[l + k]; + div_upd[l + k + padZ] -= qx_upd[l + k]; +} +if(j != (copY-1)) { + div_upd[l + k] += qy_upd[l + k]; + div_upd[l + k + m] = -qy_upd[l + k]; // We need to update div in the next thread on last iter +} + + qxdiff = qx[l + k] - qx_upd[l + k]; + qydiff = qy[l + k] - qy_upd[l + k]; + qnorm += (qxdiff * qxdiff + qydiff * qydiff); + + resdual += fabs(divsigma * qxdiff - gradxdiff[k]); + resdual += fabs(divsigma * qydiff - gradydiff[k]); + product += (gradxdiff[k] * qxdiff + gradydiff[k] * qydiff); + + if ((offY == 0)||(j > 0)) { + divdiff = div[l + k] - div_upd[l + k]; // Multiple steps... How we compute without history? + resprimal += fabs(divtau * udiff[k] + divdiff); + } + } + + } // i + } + + + ctx->resprimal = resprimal; + ctx->resdual = resdual; + ctx->product = product; + ctx->unorm = unorm; + ctx->qnorm = qnorm; + + return 0; +} + +static void TNV_CPU_init(float *InputT, float *uT, int dimX, int dimY, int dimZ) { + int i, off, size, err; + + if (sched) return; + + tnv_ctx.dimX = dimX; + tnv_ctx.dimY = dimY; + tnv_ctx.dimZ = dimZ; + // Padding seems actually slower +// tnv_ctx.padZ = 64 * ((dimZ / 64) + ((dimZ % 64)?1:0)); + tnv_ctx.padZ = dimZ; + + hw_sched_init(); + + int threads = hw_sched_get_cpu_count(); + if (threads > dimY) threads = dimY/2; + + int step = dimY / threads; + int extra = dimY % threads; + + tnv_ctx.threads = threads; + tnv_ctx.thr_ctx = (tnv_thread_t*)calloc(threads, sizeof(tnv_thread_t)); + for (i = 0, off = 0; i < threads; i++, off += size) { + tnv_thread_t *ctx = tnv_ctx.thr_ctx + i; + size = step + ((i < extra)?1:0); + + ctx->offY = off; + ctx->stepY = size; + + if (i == (threads-1)) ctx->copY = ctx->stepY; + else ctx->copY = ctx->stepY + 1; + } + + sched = hw_sched_create(threads); + if (!sched) { fprintf(stderr, "Error creating threads\n"); exit(-1); } + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_init); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling init threads", err); exit(-1); } +} + + + +/* + * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] + * The code is modified from the implementation by Joan Duran see + * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package + * + * Input Parameters: + * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume + * 2. lambda - regularisation parameter + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon - tolerance constant [OPTIONAL parameter] + * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] + * + * Output: + * 1. Filtered/regularized image (u) + * + * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. + */ + +float TNV_CPU_main(float *InputT, float *uT, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ) +{ + int err; + int iter; + int i,j,k,l,m; + + lambda = 1.0f/(2.0f*lambda); + tnv_ctx.lambda = lambda; + + // PDHG algorithm parameters + float tau = 0.5f; + float sigma = 0.5f; + float theta = 1.0f; + + // Backtracking parameters + float s = 1.0f; + float gamma = 0.75f; + float beta = 0.95f; + float alpha0 = 0.2f; + float alpha = alpha0; + float delta = 1.5f; + float eta = 0.95f; + + TNV_CPU_init(InputT, uT, dimX, dimY, dimZ); + + tnv_ctx.InputT = InputT; + tnv_ctx.uT = uT; + + int padZ = tnv_ctx.padZ; + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_start); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling start threads", err); exit(-1); } + + + // Apply Primal-Dual Hybrid Gradient scheme + float residual = fLarge; + for(iter = 0; iter < maxIter; iter++) { + float resprimal = 0.0f; + float resdual = 0.0f; + float product = 0.0f; + float unorm = 0.0f; + float qnorm = 0.0f; + + float divtau = 1.0f / tau; + + tnv_ctx.sigma = sigma; + tnv_ctx.tau = tau; + tnv_ctx.theta = theta; + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_step); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling tnv threads", err); exit(-1); } + + // border regions + for (j = 1; j < tnv_ctx.threads; j++) { + tnv_thread_t *ctx0 = tnv_ctx.thr_ctx + (j - 1); + tnv_thread_t *ctx = tnv_ctx.thr_ctx + j; + + m = ctx0->stepY * dimX * padZ; + for(i = 0; i < dimX; i++) { + for(k = 0; k < dimZ; k++) { + int l = i * padZ + k; + + float div_upd_add = ctx0->div_upd[m + l]; + ctx->div_upd[l] += div_upd_add; + ctx0->div_upd[m + l] = ctx->div_upd[l]; + //ctx0->u_upd[m + l] = ctx->u_upd[l]; + + float divdiff = ctx->div[l] - ctx->div_upd[l]; // Multiple steps... How we compute without history? + float udiff = ctx->u[l] - ctx->u_upd[l]; + resprimal += fabs(divtau * udiff + divdiff); + } + } + } + + for (j = 0; j < tnv_ctx.threads; j++) { + tnv_thread_t *ctx = tnv_ctx.thr_ctx + j; + resprimal += ctx->resprimal; + resdual += ctx->resdual; + product += ctx->product; + unorm += ctx->unorm; + qnorm += ctx->qnorm; + } + + residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ)); + float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm + gamma * tau * qnorm); + float dual_dot_delta = resdual * s * delta; + float dual_div_delta = (resdual * s) / delta; + printf("resprimal: %f, resdual: %f, b: %f (product: %f, unorm: %f, qnorm: %f)\n", resprimal, resdual, b, product, unorm, qnorm); + + + if(b > 1) { + // Decrease step-sizes to fit balancing principle + tau = (beta * tau) / b; + sigma = (beta * sigma) / b; + alpha = alpha0; + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_restore); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling restore threads", err); exit(-1); } + } else { + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_copy); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling copy threads", err); exit(-1); } + + if(resprimal > dual_dot_delta) { + // Increase primal step-size and decrease dual step-size + tau = tau / (1.0f - alpha); + sigma = sigma * (1.0f - alpha); + alpha = alpha * eta; + } else if(resprimal < dual_div_delta) { + // Decrease primal step-size and increase dual step-size + tau = tau * (1.0f - alpha); + sigma = sigma / (1.0f - alpha); + alpha = alpha * eta; + } + } + + if (residual < tol) break; + } + + err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_finish); + if (!err) err = hw_sched_wait_task(sched); + if (err) { fprintf(stderr, "Error %i scheduling finish threads", err); exit(-1); } + + + printf("Iterations stopped at %i with the residual %f \n", iter, residual); + printf("Return: %f\n", *uT); + + return *uT; +} diff --git a/src/Core/regularisers_CPU/hw_sched.c b/src/Core/regularisers_CPU/hw_sched.c new file mode 100644 index 0000000..be895cc --- /dev/null +++ b/src/Core/regularisers_CPU/hw_sched.c @@ -0,0 +1,396 @@ +/* + * The PyHST program is Copyright (C) 2002-2011 of the + * European Synchrotron Radiation Facility (ESRF) and + * Karlsruhe Institute of Technology (KIT). + * + * PyHST is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * hst is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program. If not, see . + */ + +#define _GNU_SOURCE +#include +#include +#include + +#ifdef HW_HAVE_SCHED_HEADERS +# include +# include +# include +#endif /* HW_HAVE_SCHED_HEADERS */ + +#include "hw_sched.h" + + +#ifdef HW_USE_THREADS +# define MUTEX_INIT(ctx, name) \ + if (!err) { \ + ctx->name##_mutex = g_mutex_new(); \ + if (!ctx->name##_mutex) err = 1; \ + } + +# define MUTEX_FREE(ctx, name) \ + if (ctx->name##_mutex) g_mutex_free(ctx->name##_mutex); + +# define COND_INIT(ctx, name) \ + MUTEX_INIT(ctx, name##_cond) \ + if (!err) { \ + ctx->name##_cond = g_cond_new(); \ + if (!ctx->name##_cond) { \ + err = 1; \ + MUTEX_FREE(ctx, name##_cond) \ + } \ + } + +# define COND_FREE(ctx, name) \ + if (ctx->name##_cond) g_cond_free(ctx->name##_cond); \ + MUTEX_FREE(ctx, name##_cond) +#else /* HW_USE_THREADS */ +# define MUTEX_INIT(ctx, name) +# define MUTEX_FREE(ctx, name) +# define COND_INIT(ctx, name) +# define COND_FREE(ctx, name) +#endif /* HW_USE_THREADS */ + + +HWRunFunction ppu_run[] = { + (HWRunFunction)NULL +}; + +static int hw_sched_initialized = 0; + +int hw_sched_init(void) { + if (!hw_sched_initialized) { +#ifdef HW_USE_THREADS + g_thread_init(NULL); +#endif /* HW_USE_THREADS */ + hw_sched_initialized = 1; + } + + return 0; +} + + +int hw_sched_get_cpu_count(void) { +#ifdef HW_HAVE_SCHED_HEADERS + int err; + + int cpu_count; + cpu_set_t mask; + + err = sched_getaffinity(getpid(), sizeof(mask), &mask); + if (err) return 1; + +# ifdef CPU_COUNT + cpu_count = CPU_COUNT(&mask); +# else + for (cpu_count = 0; cpu_count < CPU_SETSIZE; cpu_count++) { + if (!CPU_ISSET(cpu_count, &mask)) break; + } +# endif + + if (!cpu_count) cpu_count = 1; + return cpu_count; +#else /* HW_HAVE_SCHED_HEADERS */ + return 1; +#endif /* HW_HAVE_SCHED_HEADERS */ +} + + +HWSched hw_sched_create(int cpu_count) { + int i; + int err = 0; + + HWSched ctx; + + //hw_sched_init(); + + ctx = (HWSched)malloc(sizeof(HWSchedS)); + if (!ctx) return NULL; + + memset(ctx, 0, sizeof(HWSchedS)); + + ctx->status = 1; + + MUTEX_INIT(ctx, sync); + MUTEX_INIT(ctx, data); + COND_INIT(ctx, compl); + COND_INIT(ctx, job); + + if (err) { + hw_sched_destroy(ctx); + return NULL; + } + + if (!cpu_count) cpu_count = hw_sched_get_cpu_count(); + if (cpu_count > HW_MAX_THREADS) cpu_count = HW_MAX_THREADS; + + ctx->n_threads = 0; + for (i = 0; i < cpu_count; i++) { + ctx->thread[ctx->n_threads] = hw_thread_create(ctx, ctx->n_threads, NULL, ppu_run, NULL); + if (ctx->thread[ctx->n_threads]) { +#ifndef HW_USE_THREADS + ctx->thread[ctx->n_threads]->status = HW_THREAD_STATUS_STARTING; +#endif /* HW_USE_THREADS */ + ++ctx->n_threads; + } + } + + if (!ctx->n_threads) { + hw_sched_destroy(ctx); + return NULL; + } + + return ctx; +} + +static int hw_sched_wait_threads(HWSched ctx) { +#ifdef HW_USE_THREADS + int i = 0; + + hw_sched_lock(ctx, compl_cond); + while (i < ctx->n_threads) { + for (; i < ctx->n_threads; i++) { + if (ctx->thread[i]->status == HW_THREAD_STATUS_INIT) { + hw_sched_wait(ctx, compl); + break; + } + } + + } + hw_sched_unlock(ctx, compl_cond); +#endif /* HW_USE_THREADS */ + + ctx->started = 1; + + return 0; +} + +void hw_sched_destroy(HWSched ctx) { + int i; + + if (ctx->n_threads > 0) { + if (!ctx->started) { + hw_sched_wait_threads(ctx); + } + + ctx->status = 0; + hw_sched_lock(ctx, job_cond); + hw_sched_broadcast(ctx, job); + hw_sched_unlock(ctx, job_cond); + + for (i = 0; i < ctx->n_threads; i++) { + hw_thread_destroy(ctx->thread[i]); + } + } + + COND_FREE(ctx, job); + COND_FREE(ctx, compl); + MUTEX_FREE(ctx, data); + MUTEX_FREE(ctx, sync); + + free(ctx); +} + +int hw_sched_set_sequential_mode(HWSched ctx, int *n_blocks, int *cur_block, HWSchedFlags flags) { + ctx->mode = HW_SCHED_MODE_SEQUENTIAL; + ctx->n_blocks = n_blocks; + ctx->cur_block = cur_block; + ctx->flags = flags; + + return 0; +} + +int hw_sched_get_chunk(HWSched ctx, int thread_id) { + int block; + + switch (ctx->mode) { + case HW_SCHED_MODE_PREALLOCATED: + if (ctx->thread[thread_id]->status == HW_THREAD_STATUS_STARTING) { +#ifndef HW_USE_THREADS + ctx->thread[thread_id]->status = HW_THREAD_STATUS_DONE; +#endif /* HW_USE_THREADS */ + return thread_id; + } else { + return HW_SCHED_CHUNK_INVALID; + } + case HW_SCHED_MODE_SEQUENTIAL: + if ((ctx->flags&HW_SCHED_FLAG_INIT_CALL)&&(ctx->thread[thread_id]->status == HW_THREAD_STATUS_STARTING)) { + return HW_SCHED_CHUNK_INIT; + } + hw_sched_lock(ctx, data); + block = *ctx->cur_block; + if (block < *ctx->n_blocks) { + *ctx->cur_block = *ctx->cur_block + 1; + } else { + block = HW_SCHED_CHUNK_INVALID; + } + hw_sched_unlock(ctx, data); + if (block == HW_SCHED_CHUNK_INVALID) { + if (((ctx->flags&HW_SCHED_FLAG_FREE_CALL)&&(ctx->thread[thread_id]->status == HW_THREAD_STATUS_RUNNING))) { + ctx->thread[thread_id]->status = HW_THREAD_STATUS_FINISHING; + return HW_SCHED_CHUNK_FREE; + } + if ((ctx->flags&HW_SCHED_FLAG_TERMINATOR_CALL)&&((ctx->thread[thread_id]->status == HW_THREAD_STATUS_RUNNING)||(ctx->thread[thread_id]->status == HW_THREAD_STATUS_FINISHING))) { + int i; + hw_sched_lock(ctx, data); + for (i = 0; i < ctx->n_threads; i++) { + if (thread_id == i) continue; + if ((ctx->thread[i]->status != HW_THREAD_STATUS_DONE)&&(ctx->thread[i]->status != HW_THREAD_STATUS_FINISHING2)&&(ctx->thread[i]->status != HW_THREAD_STATUS_IDLE)) { + break; + } + } + ctx->thread[thread_id]->status = HW_THREAD_STATUS_FINISHING2; + hw_sched_unlock(ctx, data); + if (i == ctx->n_threads) { + return HW_SCHED_CHUNK_TERMINATOR; + } + } + } + return block; + default: + return HW_SCHED_CHUNK_INVALID; + } + + return -1; +} + + +int hw_sched_schedule_task(HWSched ctx, void *appctx, HWEntry entry) { +#ifdef HW_USE_THREADS + if (!ctx->started) { + hw_sched_wait_threads(ctx); + } +#else /* HW_USE_THREADS */ + int err; + int i, chunk_id, n_threads; + HWRunFunction run; + HWThread thrctx; +#endif /* HW_USE_THREADS */ + + ctx->ctx = appctx; + ctx->entry = entry; + + switch (ctx->mode) { + case HW_SCHED_MODE_SEQUENTIAL: + *ctx->cur_block = 0; + break; + default: + ; + } + +#ifdef HW_USE_THREADS + hw_sched_lock(ctx, compl_cond); + + hw_sched_lock(ctx, job_cond); + hw_sched_broadcast(ctx, job); + hw_sched_unlock(ctx, job_cond); +#else /* HW_USE_THREADS */ + n_threads = ctx->n_threads; + + for (i = 0; i < n_threads; i++) { + thrctx = ctx->thread[i]; + thrctx->err = 0; + } + + i = 0; + thrctx = ctx->thread[i]; + chunk_id = hw_sched_get_chunk(ctx, thrctx->thread_id); + + while (chunk_id >= 0) { + run = hw_run_entry(thrctx->runs, entry); + err = run(thrctx, thrctx->hwctx, chunk_id, appctx); + if (err) { + thrctx->err = err; + break; + } + + if ((++i) == n_threads) i = 0; + thrctx = ctx->thread[i]; + chunk_id = hw_sched_get_chunk(ctx, thrctx->thread_id); + } +#endif /* HW_USE_THREADS */ + + return 0; +} + +int hw_sched_wait_task(HWSched ctx) { + int err = 0; + int i = 0, n_threads = ctx->n_threads; + +#ifdef HW_USE_THREADS + while (i < ctx->n_threads) { + for (; i < ctx->n_threads; i++) { + if (ctx->thread[i]->status == HW_THREAD_STATUS_DONE) { + ctx->thread[i]->status = HW_THREAD_STATUS_IDLE; + } else { + hw_sched_wait(ctx, compl); + break; + } + } + + } + + hw_sched_unlock(ctx, compl_cond); +#endif /* HW_USE_THREADS */ + + for (i = 0; i < n_threads; i++) { + HWThread thrctx = ctx->thread[i]; + if (thrctx->err) return err = thrctx->err; + +#ifndef HW_USE_THREADS + thrctx->status = HW_THREAD_STATUS_IDLE; +#endif /* HW_USE_THREADS */ + } + + return err; +} + +int hw_sched_execute_task(HWSched ctx, void *appctx, HWEntry entry) { + int err; + + err = hw_sched_schedule_task(ctx, appctx, entry); + if (err) return err; + + return hw_sched_wait_task(ctx); +} + +int hw_sched_schedule_thread_task(HWSched ctx, void *appctx, HWEntry entry) { + int err; + + ctx->saved_mode = ctx->mode; + ctx->mode = HW_SCHED_MODE_PREALLOCATED; + err = hw_sched_schedule_task(ctx, appctx, entry); + + return err; +} + + +int hw_sched_wait_thread_task(HWSched ctx) { + int err; + + err = hw_sched_wait_task(ctx); + ctx->mode = ctx->saved_mode; + + return err; +} + +int hw_sched_execute_thread_task(HWSched ctx, void *appctx, HWEntry entry) { + int err; + int saved_mode = ctx->mode; + + ctx->mode = HW_SCHED_MODE_PREALLOCATED; + err = hw_sched_execute_task(ctx, appctx, entry); + ctx->mode = saved_mode; + + return err; +} diff --git a/src/Core/regularisers_CPU/hw_sched.h b/src/Core/regularisers_CPU/hw_sched.h new file mode 100644 index 0000000..c5d1285 --- /dev/null +++ b/src/Core/regularisers_CPU/hw_sched.h @@ -0,0 +1,151 @@ +/* + * The PyHST program is Copyright (C) 2002-2011 of the + * European Synchrotron Radiation Facility (ESRF) and + * Karlsruhe Institute of Technology (KIT). + * + * PyHST is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * hst is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program. If not, see . + */ + +#ifndef _HW_SCHED_H +#define _HW_SCHED_H + +#include + + // enable threading +#define HW_HAVE_SCHED_HEADERS +#define HW_USE_THREADS + + +typedef struct HWSchedT *HWSched; +#ifdef HW_USE_THREADS +typedef GMutex *HWMutex; +#else /* HW_USE_THREADS */ +typedef void *HWMutex; +#endif /* HW_USE_THREADS */ + + +#include "hw_thread.h" + +enum HWSchedModeT { + HW_SCHED_MODE_PREALLOCATED = 0, + HW_SCHED_MODE_SEQUENTIAL +}; +typedef enum HWSchedModeT HWSchedMode; + +enum HWSchedChunkT { + HW_SCHED_CHUNK_INVALID = -1, + HW_SCHED_CHUNK_INIT = -2, + HW_SCHED_CHUNK_FREE = -3, + HW_SCHED_CHUNK_TERMINATOR = -4 +}; +typedef enum HWSchedChunkT HWSchedChunk; + +enum HWSchedFlagsT { + HW_SCHED_FLAG_INIT_CALL = 1, //! Executed in each thread before real chunks + HW_SCHED_FLAG_FREE_CALL = 2, //! Executed in each thread after real chunks + HW_SCHED_FLAG_TERMINATOR_CALL = 4 //! Executed in one of the threads after all threads are done +}; +typedef enum HWSchedFlagsT HWSchedFlags; + + +#define HW_SINGLE_MODE +//#define HW_DETECT_CPU_CORES +#define HW_MAX_THREADS 128 + +#ifdef HW_SINGLE_MODE + typedef HWRunFunction HWEntry; +# define hw_run_entry(runs, entry) entry +#else /* HW_SINGLE_MODE */ + typedef int HWEntry; +# define hw_run_entry(runs, entry) runs[entry] +#endif /* HW_SINGLE_MODE */ + +#ifndef HW_HIDE_DETAILS +struct HWSchedT { + int status; + int started; + + int n_threads; + HWThread thread[HW_MAX_THREADS]; + +#ifdef HW_USE_THREADS + GCond *job_cond, *compl_cond; + GMutex *job_cond_mutex, *compl_cond_mutex, *data_mutex; + GMutex *sync_mutex; +#endif /* HW_USE_THREADS */ + + HWSchedMode mode; + HWSchedMode saved_mode; + HWSchedFlags flags; + int *n_blocks; + int *cur_block; + + HWEntry entry; + void *ctx; +}; +typedef struct HWSchedT HWSchedS; +#endif /* HW_HIDE_DETAILS */ + +# ifdef __cplusplus +extern "C" { +# endif + +HWSched hw_sched_create(int ppu_count); +int hw_sched_init(void); +void hw_sched_destroy(HWSched ctx); +int hw_sched_get_cpu_count(void); + +int hw_sched_set_sequential_mode(HWSched ctx, int *n_blocks, int *cur_block, HWSchedFlags flags); +int hw_sched_get_chunk(HWSched ctx, int thread_id); +int hw_sched_schedule_task(HWSched ctx, void *appctx, HWEntry entry); +int hw_sched_wait_task(HWSched ctx); +int hw_sched_execute_task(HWSched ctx, void *appctx, HWEntry entry); + +int hw_sched_schedule_thread_task(HWSched ctx, void *appctx, HWEntry entry); +int hw_sched_wait_thread_task(HWSched ctx); +int hw_sched_execute_thread_task(HWSched ctx, void *appctx, HWEntry entry); + +HWMutex hw_sched_create_mutex(void); +void hw_sched_destroy_mutex(HWMutex ctx); + +#ifdef HW_USE_THREADS +# define hw_sched_lock(ctx, type) g_mutex_lock(ctx->type##_mutex) +# define hw_sched_unlock(ctx, type) g_mutex_unlock(ctx->type##_mutex) +# define hw_sched_broadcast(ctx, type) g_cond_broadcast(ctx->type##_cond) +# define hw_sched_signal(ctx, type) g_cond_signal(ctx->type##_cond) +# define hw_sched_wait(ctx, type) g_cond_wait(ctx->type##_cond, ctx->type##_cond_mutex) + +#define hw_sched_create_mutex(void) g_mutex_new() +#define hw_sched_destroy_mutex(ctx) g_mutex_free(ctx) +#define hw_sched_lock_mutex(ctx) g_mutex_lock(ctx) +#define hw_sched_unlock_mutex(ctx) g_mutex_unlock(ctx) +#else /* HW_USE_THREADS */ +# define hw_sched_lock(ctx, type) +# define hw_sched_unlock(ctx, type) +# define hw_sched_broadcast(ctx, type) +# define hw_sched_signal(ctx, type) +# define hw_sched_wait(ctx, type) + +#define hw_sched_create_mutex(void) NULL +#define hw_sched_destroy_mutex(ctx) +#define hw_sched_lock_mutex(ctx) +#define hw_sched_unlock_mutex(ctx) +#endif /* HW_USE_THREADS */ + +# ifdef __cplusplus +} +# endif + +#endif /* _HW_SCHED_H */ + diff --git a/src/Core/regularisers_CPU/hw_thread.c b/src/Core/regularisers_CPU/hw_thread.c new file mode 100644 index 0000000..41b1800 --- /dev/null +++ b/src/Core/regularisers_CPU/hw_thread.c @@ -0,0 +1,141 @@ +/* + * The PyHST program is Copyright (C) 2002-2011 of the + * European Synchrotron Radiation Facility (ESRF) and + * Karlsruhe Institute of Technology (KIT). + * + * PyHST is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * hst is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program. If not, see . + */ + +#include +#include +#include + +#include "hw_sched.h" +#include "hw_thread.h" + +#ifdef HW_USE_THREADS +static void *hw_thread_function(HWThread ctx) { + int err; + int chunk_id; + + HWRunFunction *runs; + HWRunFunction run; + HWSched sched; + void *hwctx; + + sched = ctx->sched; + runs = ctx->run; + hwctx = ctx->hwctx; + + hw_sched_lock(sched, job_cond); + + hw_sched_lock(sched, compl_cond); + ctx->status = HW_THREAD_STATUS_IDLE; + hw_sched_broadcast(sched, compl); + hw_sched_unlock(sched, compl_cond); + + while (sched->status) { + hw_sched_wait(sched, job); + if (!sched->status) break; + + ctx->err = 0; + ctx->status = HW_THREAD_STATUS_STARTING; + hw_sched_unlock(sched, job_cond); + + run = hw_run_entry(runs, sched->entry); +#if 0 + // Offset to interleave transfers if the GPUBox is used + // Just check with CUDA_LAUNCH_BLOCKED the togpu time and put it here + // It should be still significantly less than BP time + // We can do callibration during initilization in future + + usleep(12000 * ctx->thread_id); +#endif + chunk_id = hw_sched_get_chunk(sched, ctx->thread_id); + + /* Should be after get_chunk, since we can check if it's first time */ + ctx->status = HW_THREAD_STATUS_RUNNING; + while (chunk_id != HW_SCHED_CHUNK_INVALID) { + //printf("Thread %i processing slice %i\n", ctx->thread_id, chunk_id); + err = run(ctx, hwctx, chunk_id, sched->ctx); + if (err) { + ctx->err = err; + break; + } + chunk_id = hw_sched_get_chunk(sched, ctx->thread_id); + } + + hw_sched_lock(sched, job_cond); + + hw_sched_lock(sched, compl_cond); + ctx->status = HW_THREAD_STATUS_DONE; + hw_sched_broadcast(sched, compl); + hw_sched_unlock(sched, compl_cond); + } + + hw_sched_unlock(sched, job_cond); + + g_thread_exit(NULL); + return NULL; /* TODO: check this */ +} +#endif /* HW_USE_THREADS */ + + +HWThread hw_thread_create(HWSched sched, int thread_id, void *hwctx, HWRunFunction *run_func, HWFreeFunction free_func) { + GError *err; + + HWThread ctx; + + ctx = (HWThread)malloc(sizeof(HWThreadS)); + if (!ctx) return ctx; + + memset(ctx, 0, sizeof(HWThreadS)); + + ctx->sched = sched; + ctx->hwctx = hwctx; + ctx->run = run_func; + ctx->free = free_func; + ctx->thread_id = thread_id; + ctx->status = HW_THREAD_STATUS_INIT; + +#ifdef HW_USE_THREADS + ctx->thread = g_thread_create((GThreadFunc)hw_thread_function, ctx, 1, &err); + if (!ctx->thread) { + g_error_free(err); + + hw_thread_destroy(ctx); + return NULL; + } +#endif /* HW_USE_THREADS */ + + return ctx; +} + +void hw_thread_destroy(HWThread ctx) { +#ifdef HW_USE_THREADS + if (ctx->thread) { + g_thread_join(ctx->thread); + } +#endif /* HW_USE_THREADS */ + + if (ctx->data) { + free(ctx->data); + } + + if (ctx->free) { + ctx->free(ctx->hwctx); + } + + free(ctx); +} diff --git a/src/Core/regularisers_CPU/hw_thread.h b/src/Core/regularisers_CPU/hw_thread.h new file mode 100644 index 0000000..de7f60f --- /dev/null +++ b/src/Core/regularisers_CPU/hw_thread.h @@ -0,0 +1,76 @@ +/* + * The PyHST program is Copyright (C) 2002-2011 of the + * European Synchrotron Radiation Facility (ESRF) and + * Karlsruhe Institute of Technology (KIT). + * + * PyHST is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * hst is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program. If not, see . + */ + +#ifndef _HW_THREAD_H +#define _HW_THREAD_H + +#include + +typedef struct HWThreadT *HWThread; +typedef int (*HWRunFunction)(HWThread thread, void *ctx, int block, void *attr); +typedef int (*HWFreeFunction)(void *ctx); + +#include "hw_sched.h" + +enum HWThreadStatusT { + HW_THREAD_STATUS_IDLE = 0, + HW_THREAD_STATUS_STARTING = 1, + HW_THREAD_STATUS_RUNNING = 2, + HW_THREAD_STATUS_FINISHING = 3, + HW_THREAD_STATUS_FINISHING2 = 4, + HW_THREAD_STATUS_DONE = 5, + HW_THREAD_STATUS_INIT = 6 +}; +typedef enum HWThreadStatusT HWThreadStatus; + + +#ifndef HW_HIDE_DETAILS +struct HWThreadT { + int thread_id; + HWSched sched; + +#ifdef HW_USE_THREADS + GThread *thread; +#endif /* HW_USE_THREADS */ + + void *hwctx; + HWRunFunction *run; + HWFreeFunction free; + + int err; + HWThreadStatus status; + + void *data; /**< Per-thread data storage, will be free'd if set */ +}; +typedef struct HWThreadT HWThreadS; +#endif /* HW_HIDE_DETAILS */ + +# ifdef __cplusplus +extern "C" { +# endif + +HWThread hw_thread_create(HWSched sched, int thread_id, void *hwctx, HWRunFunction *run_func, HWFreeFunction free_func); +void hw_thread_destroy(HWThread ctx); + +# ifdef __cplusplus +} +# endif + + +#endif /* _HW_THREAD_H */ -- cgit v1.2.3