From d000db76c60654cdb0b07ea7f7967ceeebfbd73a Mon Sep 17 00:00:00 2001 From: Daniil Kazantsev Date: Tue, 14 May 2019 16:13:39 +0100 Subject: fixes all matlab issues --- src/Matlab/mex_compile/compileCPU_mex_Linux.m | 2 +- src/Matlab/mex_compile/compileCPU_mex_WINDOWS.m | 6 +- src/Matlab/mex_compile/compileGPU_mex.m | 8 +- src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c | 30 +++++-- .../regularisers_GPU/PatchSelect_GPU.cpp | 94 ++++++++++++++++++++++ .../mex_compile/regularisers_GPU/ROF_TV_GPU.cpp | 27 +++++-- 6 files changed, 150 insertions(+), 17 deletions(-) create mode 100644 src/Matlab/mex_compile/regularisers_GPU/PatchSelect_GPU.cpp (limited to 'src/Matlab') diff --git a/src/Matlab/mex_compile/compileCPU_mex_Linux.m b/src/Matlab/mex_compile/compileCPU_mex_Linux.m index 19fb1a5..2ed7ea6 100644 --- a/src/Matlab/mex_compile/compileCPU_mex_Linux.m +++ b/src/Matlab/mex_compile/compileCPU_mex_Linux.m @@ -77,5 +77,5 @@ delete PatchSelect_core* Nonlocal_TV_core* delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>'); -pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos'], 1i); +pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos' fsep 'Matlab_demos'], 1i); cd(pathA2); \ No newline at end of file diff --git a/src/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/src/Matlab/mex_compile/compileCPU_mex_WINDOWS.m index 3a9e2af..7d0917f 100644 --- a/src/Matlab/mex_compile/compileCPU_mex_WINDOWS.m +++ b/src/Matlab/mex_compile/compileCPU_mex_WINDOWS.m @@ -7,7 +7,11 @@ % Here I present two ways how software can be compiled, if you have some % other suggestions/remarks please contact me at dkazanc@hotmail.com % >>>>>>>>>>>>>>>>>>>>>>>>>>>>> - +% cuda related messgaes can be solved in Linux: +%export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64" +%export CUDA_HOME=/usr/local/cuda +%export LD_PRELOAD=/home/algol/anaconda3/lib/libstdc++.so.6.0.24 +% >> fsep = '/'; pathcopyFrom = sprintf(['..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i); diff --git a/src/Matlab/mex_compile/compileGPU_mex.m b/src/Matlab/mex_compile/compileGPU_mex.m index 7e15233..56fcd38 100644 --- a/src/Matlab/mex_compile/compileGPU_mex.m +++ b/src/Matlab/mex_compile/compileGPU_mex.m @@ -66,10 +66,14 @@ fprintf('%s \n', 'Compiling ROF-LLT...'); mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu LLT_ROF_GPU.cpp LLT_ROF_GPU_core.o movefile('LLT_ROF_GPU.mex*',Pathmove); +fprintf('%s \n', 'Compiling PatchSelect...'); +!/usr/local/cuda/bin/nvcc -O0 -c PatchSelect_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ +mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu PatchSelect_GPU.cpp PatchSelect_GPU_core.o +movefile('PatchSelect_GPU.mex*',Pathmove); delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h -delete PatchSelect_core* Nonlocal_TV_core* shared.h +delete PatchSelect_GPU_core* Nonlocal_TV_core* shared.h fprintf('%s \n', 'All successfully compiled!'); -pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos'], 1i); +pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos' fsep 'Matlab_demos'], 1i); cd(pathA2); diff --git a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c index ffe7b91..d6bdaa6 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c @@ -26,7 +26,7 @@ * * Input Parameters: * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] scalar or the same size as 1 * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] * 5. eplsilon: tolerance constant [REQUIRED] @@ -38,7 +38,7 @@ * This function is based on the paper by * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" * - * D. Kazantsev, 2016-18 + * D. Kazantsev, 2016-19 */ void mexFunction( @@ -49,18 +49,29 @@ void mexFunction( int number_of_dims, iter_numb; mwSize dimX, dimY, dimZ; const mwSize *dim_array_i; - float *Input, *Output=NULL, lambda, tau, epsil; + float *Input, *Output=NULL, lambda_scalar, tau, epsil; float *infovec=NULL; + float *lambda; dim_array_i = mxGetDimensions(prhs[0]); number_of_dims = mxGetNumberOfDimensions(prhs[0]); /*Handling Matlab input data*/ Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + /*special check to find the input scalar or an array*/ + int mrows = mxGetM(prhs[1]); + int ncols = mxGetN(prhs[1]); + if (mrows==1 && ncols==1) { + lambda = (float*) calloc (1 ,sizeof(float)); + lambda_scalar = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + lambda[0] = lambda_scalar; + } + else { + lambda = (float *) mxGetData(prhs[1]); /* regularization parameter */ + } iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ - epsil = (float) mxGetScalar(prhs[4]); /* tolerance */ + epsil = (float) mxGetScalar(prhs[4]); /* tolerance */ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } if(nrhs != 5) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant, tolerance"); @@ -80,6 +91,11 @@ void mexFunction( mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); - - TV_ROF_CPU_main(Input, Output, infovec, lambda, iter_numb, tau, epsil, dimX, dimY, dimZ); + + if (mrows==1 && ncols==1) { + TV_ROF_CPU_main(Input, Output, infovec, lambda, 0, iter_numb, tau, epsil, dimX, dimY, dimZ); + free(lambda); + } + else TV_ROF_CPU_main(Input, Output, infovec, lambda, 1, iter_numb, tau, epsil, dimX, dimY, dimZ); + } diff --git a/src/Matlab/mex_compile/regularisers_GPU/PatchSelect_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/PatchSelect_GPU.cpp new file mode 100644 index 0000000..13319fa --- /dev/null +++ b/src/Matlab/mex_compile/regularisers_GPU/PatchSelect_GPU.cpp @@ -0,0 +1,94 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC and Diamond Light Source Ltd. + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * Copyright 2018 Diamond Light Source Ltd. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "matrix.h" +#include "mex.h" +#include "PatchSelect_GPU_core.h" + +/* CUDA implementation of non-local weight pre-calculation for non-local priors + * Weights and associated indices are stored into pre-allocated arrays and passed + * to the regulariser + * + * + * Input Parameters: + * 1. 2D/3D grayscale image/volume + * 2. Searching window (half-size of the main bigger searching window, e.g. 11) + * 3. Similarity window (half-size of the patch window, e.g. 2) + * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) + * 5. noise-related parameter to calculate non-local weights + * + * Output [2D]: + * 1. AR_i - indeces of i neighbours + * 2. AR_j - indeces of j neighbours + * 3. Weights_ij - associated weights + * + * Output [3D]: + * 1. AR_i - indeces of i neighbours + * 2. AR_j - indeces of j neighbours + * 3. AR_k - indeces of j neighbours + * 4. Weights_ijk - associated weights + */ +/**************************************************/ +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + int number_of_dims, SearchWindow, SimilarWin, NumNeighb; + mwSize dimX, dimY, dimZ; + const mwSize *dim_array; + unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; + float *A, *Weights = NULL, h; + mwSize dim_array2[3]; /* for 2D data */ + mwSize dim_array3[4]; /* for 3D data */ + + dim_array = mxGetDimensions(prhs[0]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + A = (float *) mxGetData(prhs[0]); /* a 2D or 3D image/volume */ + SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window */ + SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window (patch-search)*/ + NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */ + h = (float) mxGetScalar(prhs[4]); /* NLM parameter */ + + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */ + dim_array3[0] = dimX; dim_array3[1] = dimY; dim_array3[2] = dimZ; dim_array3[3] = NumNeighb; /* 3D case */ + + /****************2D INPUT ***************/ + if (number_of_dims == 2) { + dimZ = 0; + H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); + H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); + Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL)); + } + /****************3D INPUT ***************/ + if (number_of_dims == 3) { + /* + H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); + H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); + H_k = (unsigned short*)mxGetPr(plhs[2] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); + Weights = (float*)mxGetPr(plhs[3] = mxCreateNumericArray(4, dim_array3, mxSINGLE_CLASS, mxREAL)); + */ + mexErrMsgTxt("3D version is not yet supported"); + } + + PatchSelect_GPU_main(A, H_i, H_j, Weights, (long)(dimX), (long)(dimY), SearchWindow, SimilarWin, NumNeighb, h); + } diff --git a/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp index d9b7e83..2cd4469 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp @@ -25,7 +25,7 @@ * * Input Parameters: * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED], scalar or the same size as 1 * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] * 5. eplsilon: tolerance constant [REQUIRED] @@ -37,7 +37,7 @@ * This function is based on the paper by * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" * - * D. Kazantsev, 2016-18 + * D. Kazantsev, 2016-19 */ void mexFunction( int nlhs, mxArray *plhs[], @@ -47,15 +47,26 @@ void mexFunction( int number_of_dims, iter_numb; mwSize dimX, dimY, dimZ; const mwSize *dim_array_i; - float *Input, *Output=NULL, lambda, tau, epsil; + float *Input, *Output=NULL, lambda_scalar, tau, epsil; float *infovec=NULL; - + float *lambda; + dim_array_i = mxGetDimensions(prhs[0]); number_of_dims = mxGetNumberOfDimensions(prhs[0]); /*Handling Matlab input data*/ Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + /*special check to find the input scalar or an array*/ + int mrows = mxGetM(prhs[1]); + int ncols = mxGetN(prhs[1]); + if (mrows==1 && ncols==1) { + lambda = (float*) calloc (1 ,sizeof(float)); + lambda_scalar = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + lambda[0] = lambda_scalar; + } + else { + lambda = (float *) mxGetData(prhs[1]); /* regularization parameter */ + } iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ epsil = (float) mxGetScalar(prhs[4]); /* tolerance */ @@ -79,5 +90,9 @@ void mexFunction( vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); - TV_ROF_GPU_main(Input, Output, infovec, lambda, iter_numb, tau, epsil, dimX, dimY, dimZ); + if (mrows==1 && ncols==1) { + TV_ROF_GPU_main(Input, Output, infovec, lambda, 0, iter_numb, tau, epsil, dimX, dimY, dimZ); + free(lambda); + } + else TV_ROF_GPU_main(Input, Output, infovec, lambda, 1, iter_numb, tau, epsil, dimX, dimY, dimZ); } -- cgit v1.2.3