From a4ee6ded8036fa1a10ef860478f49d2eb2cd11e0 Mon Sep 17 00:00:00 2001 From: algol Date: Thu, 26 Oct 2017 15:28:34 +0100 Subject: Lipshitz constant attached to the regularization parameter --- main_func/FISTA_REC.m | 56 +++++++++++++++++++++++++-------------------------- 1 file changed, 28 insertions(+), 28 deletions(-) (limited to 'main_func') diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m index fa98360..658d2a9 100644 --- a/main_func/FISTA_REC.m +++ b/main_func/FISTA_REC.m @@ -169,12 +169,12 @@ end if (isfield(params,'Regul_tol')) tol = params.Regul_tol; else - tol = 1.0e-04; + tol = 1.0e-05; end if (isfield(params,'Regul_Iterations')) IterationsRegul = params.Regul_Iterations; else - IterationsRegul = 25; + IterationsRegul = 45; end if (isfield(params,'Regul_LambdaLLT')) lambdaHO = params.Regul_LambdaLLT; @@ -381,11 +381,11 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV, IterationsRegul, tol, 'iso'); + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); end else % 3D regularization - [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso'); + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); end objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ); end @@ -394,11 +394,11 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) end else % 3D regularization - X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) + X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) end end if (lambdaHO > 0) @@ -407,11 +407,11 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO, tauHO, iterHO, 3.0e-05, 0); + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); end else % 3D regularization - X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0); + X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); end X = 0.5.*(X + X2); % averaged combination of two solutions @@ -421,10 +421,10 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB); + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const); end else - X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB); + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const); end end if (lambdaPB_GPU > 0) @@ -432,10 +432,10 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU); + X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); end else - X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU); + X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); end end if (LambdaDiff_HO > 0) @@ -443,10 +443,10 @@ if (subsets == 0) if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO, IterationsRegul); + X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); end else - X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO, IterationsRegul); + X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); end end if (LambdaTGV > 0) @@ -454,7 +454,7 @@ if (subsets == 0) lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper lamTGV2 = 0.8; % second-order term for kkk = 1:SlicesZ - X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV, lamTGV1, lamTGV2, IterationsRegul); + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul); end end @@ -588,11 +588,11 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/subsets, IterationsRegul, tol, 'iso'); + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); end else % 3D regularization - [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/subsets, IterationsRegul, tol, 'iso'); + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); end objective(i) = objective(i) + f_val; end @@ -601,11 +601,11 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/subsets, IterationsRegul, tol); % (more memory efficent) + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) end else % 3D regularization - X = SplitBregman_TV(single(X), lambdaSB_TV/subsets, IterationsRegul, tol); % (more memory efficent) + X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) end end if (lambdaHO > 0) @@ -614,11 +614,11 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/subsets, tauHO/subsets, iterHO, 2.0e-05, 0); + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); end else % 3D regularization - X2 = LLT_model(single(X), lambdaHO/subsets, tauHO/subsets, iterHO, 2.0e-05, 0); + X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); end X = 0.5.*(X + X2); % the averaged combination of two solutions end @@ -627,10 +627,10 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/subsets); + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); end else - X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/subsets); + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); end end if (lambdaPB_GPU > 0) @@ -638,10 +638,10 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU); + X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); end else - X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU); + X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); end end if (LambdaDiff_HO > 0) @@ -649,10 +649,10 @@ else if ((strcmp('2D', Dimension) == 1)) % 2D regularization for kkk = 1:SlicesZ - X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO, round(IterationsRegul/subsets)); + X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); end else - X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO, round(IterationsRegul/subsets)); + X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); end end if (LambdaTGV > 0) @@ -660,7 +660,7 @@ else lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper lamTGV2 = 0.5; % second-order term for kkk = 1:SlicesZ - X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/subsets, lamTGV1, lamTGV2, IterationsRegul); + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul); end end -- cgit v1.2.3