From 5df7f2f5c18913f83b64bab12f6bf17df0bc4b01 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Mon, 29 Jan 2018 14:43:46 +0000 Subject: minor changes to test --- Wrappers/Python/test/test_cpu_regularizers.py | 98 +++++++++++++-------------- 1 file changed, 47 insertions(+), 51 deletions(-) (limited to 'Wrappers') diff --git a/Wrappers/Python/test/test_cpu_regularizers.py b/Wrappers/Python/test/test_cpu_regularizers.py index ac595e3..6c97875 100644 --- a/Wrappers/Python/test/test_cpu_regularizers.py +++ b/Wrappers/Python/test/test_cpu_regularizers.py @@ -5,17 +5,12 @@ Created on Fri Aug 4 11:10:05 2017 @author: ofn77899 """ -#from ccpi.viewer.CILViewer2D import Converter -#import vtk import matplotlib.pyplot as plt import numpy as np import os from enum import Enum import timeit -#from PIL import Image -#from Regularizer import Regularizer -#from ccpi.filters.Regularizer import Regularizer from ccpi.filters.cpu_regularizers import SplitBregman_TV , FGP_TV , LLT_model, \ PatchBased_Regul , TGV_PD @@ -67,8 +62,10 @@ filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") Im = plt.imread(filename) Im = np.asarray(Im, dtype='float32') -perc = 0.05 -u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +perc = 0.15 +u0 = Im + np.random.normal(loc = Im , + scale = perc * Im , + size = np.shape(Im)) # map the u0 u0->u0>0 f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = f(u0).astype('float32') @@ -78,7 +75,8 @@ fig = plt.figure() a=fig.add_subplot(2,3,1) a.set_title('noise') -imgplot = plt.imshow(u0,cmap="gray") +imgplot = plt.imshow(u0#,cmap="gray" + ) reg_output = [] ############################################################################## @@ -100,7 +98,7 @@ out = SplitBregman_TV (pars['input'], pars['regularization_parameter'], pars['number_of_iterations'], pars['tolerance_constant'], pars['TV_penalty']) -plotme = out[0] +splitbregman = out[0] txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) @@ -114,7 +112,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme,\ +imgplot = plt.imshow(splitbregman,\ #cmap="gray" ) @@ -124,16 +122,18 @@ start_time = timeit.default_timer() pars = {'algorithm' : FGP_TV , \ 'input' : u0, 'regularization_parameter':5e-4, \ -'number_of_iterations' :10 ,\ -'tolerance_constant':0.001,\ -'TV_penalty': 0 + 'number_of_iterations' :10 ,\ + 'tolerance_constant':0.001,\ + 'TV_penalty': 0 } -out = FGP_TV (pars['input'], pars['regularization_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['TV_penalty']) -plotme = out[0] +out = FGP_TV (pars['input'], + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty']) + +fgp = out[0] txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) @@ -144,7 +144,7 @@ a=fig.add_subplot(2,3,3) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords -imgplot = plt.imshow(plotme, \ +imgplot = plt.imshow(fgp, \ #cmap="gray" ) # place a text box in upper left in axes coords @@ -152,11 +152,6 @@ a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) ###################### LLT_model ######################################### -# * u0 = Im + .03*randn(size(Im)); % adding noise -# [Den] = LLT_model(single(u0), 10, 0.1, 1); -#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -#input, regularization_parameter , time_step, number_of_iterations, -# tolerance_constant, restrictive_Z_smoothing=0 start_time = timeit.default_timer() @@ -164,18 +159,18 @@ pars = {'algorithm': LLT_model , \ 'input' : u0, 'regularization_parameter': 25,\ 'time_step':0.0003, \ -'number_of_iterations' :300,\ -'tolerance_constant':0.001,\ -'restrictive_Z_smoothing': 0 + 'number_of_iterations' :300,\ + 'tolerance_constant':0.001,\ + 'restrictive_Z_smoothing': 0 } out = LLT_model(pars['input'], - pars['regularization_parameter'], - pars['time_step'] , - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['restrictive_Z_smoothing'] ) + pars['regularization_parameter'], + pars['time_step'] , + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['restrictive_Z_smoothing'] ) -plotme = out[0] +llt = out[0] txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) @@ -186,7 +181,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme,\ +imgplot = plt.imshow(llt,\ #cmap="gray" ) @@ -202,15 +197,15 @@ pars = {'algorithm': PatchBased_Regul , \ 'input' : u0, 'regularization_parameter': 0.05,\ 'searching_window_ratio':3, \ -'similarity_window_ratio':1,\ -'PB_filtering_parameter': 0.08 + 'similarity_window_ratio':1,\ + 'PB_filtering_parameter': 0.08 } -out = PatchBased_Regul( - pars['input'], pars['regularization_parameter'], - pars['searching_window_ratio'] , - pars['similarity_window_ratio'] , - pars['PB_filtering_parameter']) -plotme = out[0] +out = PatchBased_Regul(pars['input'], + pars['regularization_parameter'], + pars['searching_window_ratio'] , + pars['similarity_window_ratio'] , + pars['PB_filtering_parameter']) +pbr = out[0] txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) @@ -223,7 +218,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme #,cmap="gray" +imgplot = plt.imshow(pbr #,cmap="gray" ) @@ -240,13 +235,14 @@ pars = {'algorithm': TGV_PD , \ 'regularization_parameter':0.05,\ 'first_order_term': 1.3,\ 'second_order_term': 1, \ -'number_of_iterations': 550 -} -out = TGV_PD(pars['input'], pars['regularization_parameter'], - pars['first_order_term'] , - pars['second_order_term'] , - pars['number_of_iterations']) -plotme = out[0] + 'number_of_iterations': 550 + } +out = TGV_PD(pars['input'], + pars['regularization_parameter'], + pars['first_order_term'] , + pars['second_order_term'] , + pars['number_of_iterations']) +tgv = out[0] txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) @@ -257,7 +253,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme #, cmap="gray") +imgplot = plt.imshow(tgv #, cmap="gray") ) -- cgit v1.2.3