From 092302b49d8d5a5bcfeffa278a35a4134171b9a7 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Wed, 20 Feb 2019 16:28:18 +0000 Subject: adding qualmetr class and updates demos --- Wrappers/Python/ccpi/supp/__init__.py | 0 Wrappers/Python/ccpi/supp/qualitymetrics.py | 65 +++++++++++++++++++++++++++++ 2 files changed, 65 insertions(+) create mode 100644 Wrappers/Python/ccpi/supp/__init__.py create mode 100644 Wrappers/Python/ccpi/supp/qualitymetrics.py (limited to 'Wrappers/Python/ccpi') diff --git a/Wrappers/Python/ccpi/supp/__init__.py b/Wrappers/Python/ccpi/supp/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Wrappers/Python/ccpi/supp/qualitymetrics.py b/Wrappers/Python/ccpi/supp/qualitymetrics.py new file mode 100644 index 0000000..f44d832 --- /dev/null +++ b/Wrappers/Python/ccpi/supp/qualitymetrics.py @@ -0,0 +1,65 @@ +#!/usr/bin/env python2 +# -*- coding: utf-8 -*- +""" +A class for some standard image quality metrics +""" +import numpy as np + +class QualityTools: + def __init__(self, im1, im2): + if im1.size != im2.size: + print ('Error: Sizes of images/volumes are different') + raise SystemExit + self.im1 = im1 # image or volume - 1 + self.im2 = im2 # image or volume - 2 + def nrmse(self): + """ Normalised Root Mean Square Error """ + rmse = np.sqrt(np.sum((self.im2 - self.im1) ** 2) / float(self.im1.size)) + max_val = max(np.max(self.im1), np.max(self.im2)) + min_val = min(np.min(self.im1), np.min(self.im2)) + return 1 - (rmse / (max_val - min_val)) + def rmse(self): + """ Root Mean Square Error """ + rmse = np.sqrt(np.sum((self.im1 - self.im2) ** 2) / float(self.im1.size)) + return rmse + def ssim(self, window, k=(0.01, 0.03), l=255): + from scipy.signal import fftconvolve + """See https://ece.uwaterloo.ca/~z70wang/research/ssim/""" + # Check if the window is smaller than the images. + for a, b in zip(window.shape, self.im1.shape): + if a > b: + return None, None + # Values in k must be positive according to the base implementation. + for ki in k: + if ki < 0: + return None, None + + c1 = (k[0] * l) ** 2 + c2 = (k[1] * l) ** 2 + window = window/np.sum(window) + + mu1 = fftconvolve(self.im1, window, mode='valid') + mu2 = fftconvolve(self.im2, window, mode='valid') + mu1_sq = mu1 * mu1 + mu2_sq = mu2 * mu2 + mu1_mu2 = mu1 * mu2 + sigma1_sq = fftconvolve(self.im1 * self.im1, window, mode='valid') - mu1_sq + sigma2_sq = fftconvolve(self.im2 * self.im2, window, mode='valid') - mu2_sq + sigma12 = fftconvolve(self.im1 * self.im2, window, mode='valid') - mu1_mu2 + + if c1 > 0 and c2 > 0: + num = (2 * mu1_mu2 + c1) * (2 * sigma12 + c2) + den = (mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2) + ssim_map = num / den + else: + num1 = 2 * mu1_mu2 + c1 + num2 = 2 * sigma12 + c2 + den1 = mu1_sq + mu2_sq + c1 + den2 = sigma1_sq + sigma2_sq + c2 + ssim_map = np.ones(np.shape(mu1)) + index = (den1 * den2) > 0 + ssim_map[index] = (num1[index] * num2[index]) / (den1[index] * den2[index]) + index = (den1 != 0) & (den2 == 0) + ssim_map[index] = num1[index] / den1[index] + mssim = ssim_map.mean() + return mssim, ssim_map -- cgit v1.2.3