From daca42a322291cc3c7a18c6bbe25b709bcdca249 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Thu, 29 Nov 2018 17:37:56 +0000 Subject: 2D version tested --- .../mex_compile/regularisers_CPU/NeighbSelect.c | 297 +++++++++++++++++++++ .../mex_compile/regularisers_CPU/Nonlocal_TV.c | 162 +++++++++++ 2 files changed, 459 insertions(+) create mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSelect.c create mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSelect.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSelect.c new file mode 100644 index 0000000..d7c56ec --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSelect.c @@ -0,0 +1,297 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "mex.h" +#include +#include +#include +#include +#include +#include "omp.h" + +#define EPS 1.0000e-12 + +/* C-OMP implementation of non-local weight pre-calculation for non-local priors + * Weights and associated indices are stored into pre-allocated arrays and passed + * to the regulariser + * + * + * Input Parameters: + * 1. 2D/3D grayscale image/volume + * 2. Searching window (half-size of the main bigger searching window, e.g. 11) + * 3. Similarity window (half-size of the patch window, e.g. 2) + * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) + * 5. noise-related parameter to calculate non-local weights + * + * Output [2D]: + * 1. AR_i - indeces of i neighbours + * 2. AR_j - indeces of j neighbours + * 3. Weights_ij - associated weights + * + * Output [3D]: + * 1. AR_i - indeces of i neighbours + * 2. AR_j - indeces of j neighbours + * 3. AR_k - indeces of j neighbours + * 4. Weights_ijk - associated weights + * + * compile from Matlab with: + * mex NeighbSearch2D_test.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + */ + +float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, long i, long j, long dimY, long dimX, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2); +float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2); + +/**************************************************/ +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + int number_of_dims, SearchWindow, SimilarWin, NumNeighb, counterG; + long i, j, k, dimX, dimY, dimZ; + unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; + const int *dim_array; + float *A, *Weights, *Eucl_Vec, h, h2; + int dim_array2[3]; /* for 2D data */ + int dim_array3[4]; /* for 3D data */ + + dim_array = mxGetDimensions(prhs[0]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + A = (float *) mxGetData(prhs[0]); /* a 2D or 3D image/volume */ + SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window */ + SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window (patch-search)*/ + NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */ + h = (float) mxGetScalar(prhs[4]); /* NLM parameter */ + h2 = h*h; + + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */ + dim_array3[0] = dimX; dim_array3[1] = dimY; dim_array3[2] = dimZ; dim_array3[3] = NumNeighb; /* 3D case */ + + /****************2D INPUT ***************/ + if (number_of_dims == 2) { + dimZ = 0; + + /* generate a 2D Gaussian kernel for NLM procedure */ + Eucl_Vec = (float*) calloc ((2*SimilarWin+1)*(2*SimilarWin+1),sizeof(float)); + counterG = 0; + for(i=-SimilarWin; i<=SimilarWin; i++) { + for(j=-SimilarWin; j<=SimilarWin; j++) { + Eucl_Vec[counterG] = (float)exp(-(pow(((float) i), 2) + pow(((float) j), 2))/(2*SimilarWin*SimilarWin)); + counterG++; + }} /*main neighb loop */ + + H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); + H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); + Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL)); + + /* for each pixel store indeces of the most similar neighbours (patches) */ +#pragma omp parallel for shared (A, Weights, H_i, H_j) private(i,j) + for(i=0; i= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + normsum = 0.0f; counterG = 0; + for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { + for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { + i2 = i1 + i_c; + j2 = j1 + j_c; + i3 = i + i_c; + j3 = j + j_c; + if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) { + if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) { + normsum += Eucl_Vec[counterG]*pow(Aorig[j3*dimX + (i3)] - Aorig[j2*dimX + (i2)], 2); + counterG++; + }} + + }} + /* writing temporarily into vectors */ + if (normsum > EPS) { + Weight_Vec[counter] = expf(-normsum/h2); + ind_i[counter] = i1; + ind_j[counter] = j1; + counter++; + } + } + }} + /* do sorting to choose the most prominent weights [HIGH to LOW] */ + /* and re-arrange indeces accordingly */ + for (x = 0; x < counter; x++) { + for (y = 0; y < counter; y++) { + if (Weight_Vec[y] < Weight_Vec[x]) { + temp = Weight_Vec[y+1]; + temp_i = ind_i[y+1]; + temp_j = ind_j[y+1]; + Weight_Vec[y+1] = Weight_Vec[y]; + Weight_Vec[y] = temp; + ind_i[y+1] = ind_i[y]; + ind_i[y] = temp_i; + ind_j[y+1] = ind_j[y]; + ind_j[y] = temp_j; + }}} + /*sorting loop finished*/ + + /*now select the NumNeighb more prominent weights and store into arrays */ + for(x=0; x < NumNeighb; x++) { + index = (dimX*dimY*x) + j*dimX+i; + H_i[index] = ind_i[x]; + H_j[index] = ind_j[x]; + Weights[index] = Weight_Vec[x]; + } + + free(ind_i); + free(ind_j); + free(Weight_Vec); + return 1; +} + +float Indeces3D(float *Aorig, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, long i, long j, long k, long dimY, long dimX, long dimZ, float *Eucl_Vec, int NumNeighb, int SearchWindow, int SimilarWin, float h2) +{ + long i1, j1, k1, i_m, j_m, k_m, i_c, j_c, k_c, i2, j2, k2, i3, j3, k3, counter, x, y, index, sizeWin_tot, counterG; + float *Weight_Vec, normsum, temp; + unsigned short *ind_i, *ind_j, *ind_k, temp_i, temp_j, temp_k; + + sizeWin_tot = (2*SearchWindow + 1)*(2*SearchWindow + 1)*(2*SearchWindow + 1); + + Weight_Vec = (float*) calloc(sizeWin_tot, sizeof(float)); + ind_i = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); + ind_j = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); + ind_k = (unsigned short*) calloc(sizeWin_tot, sizeof(unsigned short)); + + counter = 0l; + for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) { + for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) { + for(k_m=-SearchWindow; k_m<=SearchWindow; k_m++) { + k1 = k+k_m; + i1 = i+i_m; + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY)) && ((k1 >= 0) && (k1 < dimZ))) { + normsum = 0.0f; counterG = 0l; + for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) { + for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) { + for(k_c=-SimilarWin; k_c<=SimilarWin; k_c++) { + i2 = i1 + i_c; + j2 = j1 + j_c; + k2 = k1 + k_c; + i3 = i + i_c; + j3 = j + j_c; + k3 = k + k_c; + if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY)) && ((k2 >= 0) && (k2 < dimZ))) { + if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY)) && ((k3 >= 0) && (k3 < dimZ))) { + normsum += Eucl_Vec[counterG]*pow(Aorig[(dimX*dimY*k3) + j3*dimX + (i3)] - Aorig[(dimX*dimY*k2) + j2*dimX + (i2)], 2); + counterG++; + }} + }}} + /* writing temporarily into vectors */ + if (normsum > EPS) { + Weight_Vec[counter] = expf(-normsum/h2); + ind_i[counter] = i1; + ind_j[counter] = j1; + ind_k[counter] = k1; + counter ++; + } + } + }}} + /* do sorting to choose the most prominent weights [HIGH to LOW] */ + /* and re-arrange indeces accordingly */ + for (x = 0; x < counter; x++) { + for (y = 0; y < counter; y++) { + if (Weight_Vec[y] < Weight_Vec[x]) { + temp = Weight_Vec[y+1]; + temp_i = ind_i[y+1]; + temp_j = ind_j[y+1]; + temp_k = ind_k[y+1]; + Weight_Vec[y+1] = Weight_Vec[y]; + Weight_Vec[y] = temp; + ind_i[y+1] = ind_i[y]; + ind_i[y] = temp_i; + ind_j[y+1] = ind_j[y]; + ind_j[y] = temp_j; + ind_k[y+1] = ind_k[y]; + ind_k[y] = temp_k; + }}} + /*sorting loop finished*/ + + /*now select the NumNeighb more prominent weights and store into arrays */ + for(x=0; x < NumNeighb; x++) { + index = dimX*dimY*dimZ*x + (dimX*dimY*k) + j*dimX+i; + + H_i[index] = ind_i[x]; + H_j[index] = ind_j[x]; + H_k[index] = ind_k[x]; + + Weights[index] = Weight_Vec[x]; + } + + free(ind_i); + free(ind_j); + free(ind_k); + free(Weight_Vec); + return 1; +} + diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c new file mode 100644 index 0000000..ee529ea --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c @@ -0,0 +1,162 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "mex.h" +#include +#include +#include +#include +#include +#include "omp.h" + +#define EPS 1.0000e-9 + +/* C-OMP implementation of non-local regulariser + * Weights and associated indices must be given as an input + * + * + * Input Parameters: + * 1. 2D/3D grayscale image/volume + * 2. AR_i - indeces of i neighbours + * 3. AR_j - indeces of j neighbours + * 4. AR_k - indeces of k neighbours (0 - for 2D case) + * 5. Weights_ij(k) - associated weights + * 6. regularisation parameter + * 7. iterations number + + * Output: + * 1. denoised image/volume + * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060. + + */ + +float copyIm(float *A, float *U, long dimX, long dimY, long dimZ); +float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float lambda); +float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float lambda); +/**************************************************/ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + long number_of_dims, i, j, k, dimX, dimY, dimZ, NumNeighb; + int IterNumb, iter; + unsigned short *H_i, *H_j, *H_k; + const int *dim_array; + const int *dim_array2; + float *A_orig, *Output, *Weights, lambda; + + dim_array = mxGetDimensions(prhs[0]); + dim_array2 = mxGetDimensions(prhs[1]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + A_orig = (float *) mxGetData(prhs[0]); /* a 2D image or a set of 2D images (3D stack) */ + H_i = (unsigned short *) mxGetData(prhs[1]); /* indeces of i neighbours */ + H_j = (unsigned short *) mxGetData(prhs[2]); /* indeces of j neighbours */ + H_k = (unsigned short *) mxGetData(prhs[3]); /* indeces of k neighbours */ + Weights = (float *) mxGetData(prhs[4]); /* weights for patches */ + lambda = (float) mxGetScalar(prhs[5]); /* regularisation parameter */ + IterNumb = (int) mxGetScalar(prhs[6]); /* the number of iterations */ + + lambda = 1.0f/lambda; + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /*****2D INPUT *****/ + if (number_of_dims == 2) { + dimZ = 0; + + NumNeighb = dim_array2[2]; + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + copyIm(A_orig, Output, (long)(dimX), (long)(dimY), 1l); + + /* for each pixel store indeces of the most similar neighbours (patches) */ + for(iter=0; iter>>>**********/ +float NLM_H1_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float lambda) +{ + long x, i1, j1, index; + float value = 0.0f, normweight = 0.0f; + + for(x=0; x < NumNeighb; x++) { + index = (dimX*dimY*x) + j*dimX+i; + i1 = H_i[index]; + j1 = H_j[index]; + value += A[j1*dimX+i1]*Weights[index]; + normweight += Weights[index]; + } + A[j*dimX+i] = (lambda*A_orig[j*dimX+i] + value)/(lambda + normweight); + return *A; +} + +/***********<<<
>>>**********/ +float NLM_TV_2D(float *A, float *A_orig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float lambda) +{ + long x, i1, j1, index; + float value = 0.0f, normweight = 0.0f, NLgrad_magn = 0.0f, NLCoeff; + + for(x=0; x < NumNeighb; x++) { + index = (dimX*dimY*x) + j*dimX+i; + index = (dimX*dimY*x) + j*dimX+i; + i1 = H_i[index]; + j1 = H_j[index]; + NLgrad_magn += powf((A[j1*dimX+i1] - A[j*dimX+i]),2)*Weights[index]; + } + + NLgrad_magn = sqrtf(NLgrad_magn); /*Non Local Gradients Magnitude */ + NLCoeff = 2.0f*(1.0f/(NLgrad_magn + EPS)); + + for(x=0; x < NumNeighb; x++) { + index = (dimX*dimY*x) + j*dimX+i; + i1 = H_i[index]; + j1 = H_j[index]; + value += A[j1*dimX+i1]*NLCoeff*Weights[index]; + normweight += Weights[index]*NLCoeff; + } + A[j*dimX+i] = (lambda*A_orig[j*dimX+i] + value)/(lambda + normweight); + return *A; +} + + + +/* Copy Image (float) */ +float copyIm(float *A, float *U, long dimX, long dimY, long dimZ) +{ + long j; +#pragma omp parallel for shared(A, U) private(j) + for (j = 0; j