From 787b534643d5b4cad4e6f8d9c4b524b52d804348 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Mon, 18 Feb 2019 14:48:29 +0000 Subject: TGV3D_GPU added, demos updated fpr Python/Matlab --- Core/regularisers_CPU/TGV_core.c | 40 +- Core/regularisers_CPU/TGV_core.h | 2 + Core/regularisers_GPU/TGV_GPU_core.cu | 455 +++++++++++++++++---- Core/regularisers_GPU/TGV_GPU_core.h | 2 +- Readme.md | 4 +- Wrappers/Python/conda-recipe/run_test.py | 2 +- Wrappers/Python/demos/demo_cpu_regularisers.py | 4 +- Wrappers/Python/demos/demo_cpu_regularisers3D.py | 54 ++- .../Python/demos/demo_cpu_vs_gpu_regularisers.py | 4 +- Wrappers/Python/demos/demo_gpu_regularisers.py | 4 +- Wrappers/Python/demos/demo_gpu_regularisers3D.py | 51 ++- Wrappers/Python/src/cpu_regularisers.pyx | 35 +- Wrappers/Python/src/gpu_regularisers.pyx | 39 +- 13 files changed, 583 insertions(+), 113 deletions(-) diff --git a/Core/regularisers_CPU/TGV_core.c b/Core/regularisers_CPU/TGV_core.c index ef9ef98..805c3d4 100644 --- a/Core/regularisers_CPU/TGV_core.c +++ b/Core/regularisers_CPU/TGV_core.c @@ -139,18 +139,13 @@ float TGV_main(float *U0, float *U, float lambda, float alpha1, float alpha0, in newU3D(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ)); /*saving V into V_old*/ - copyIm(V1, V1_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(V2, V2_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - copyIm(V3, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); + copyIm_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); /* upd V*/ UpdV_3D(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), tau); /*get new V*/ - newU3D(V1, V1_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - newU3D(V2, V2_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - newU3D(V3, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); - + newU3D_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); } /*end of iterations*/ free(P3);free(Q4);free(Q5);free(Q6);free(V3);free(V3_old); } @@ -454,14 +449,39 @@ float UpdV_3D(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, }}} return 1; } + +float copyIm_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ) +{ + long j; +#pragma omp parallel for shared(V1, V2, V3, V1_old, V2_old, V3_old) private(j) + for (j = 0; j 1.0) { + if (grad_magn > 1.0f) { P1[index] /= grad_magn; P2[index] /= grad_magn; } @@ -90,64 +93,56 @@ __global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, floa { float q1, q2, q11, q22; - int i = blockDim.x * blockIdx.x + threadIdx.x; + int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; int index = i + dimX*j; - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) - { q1 = (V1[j*dimX+(i-1)] - V1[index]); - q11 = (V2[j*dimX+(i-1)] - V2[index]); + q1 = 0.0f; q11 = 0.0f; q2 = 0.0f; q22 = 0.0f; + /* boundary conditions (Neuman) */ + if (i != dimX-1){ + q1 = V1[j*dimX+(i+1)] - V1[index]; + q11 = V2[j*dimX+(i+1)] - V2[index]; } - else { - q1 = (V1[j*dimX+(i+1)] - V1[index]); - q11 = (V2[j*dimX+(i+1)] - V2[index]); - } - if (j == dimY-1) { - q2 = (V2[(j-1)*dimX+i] - V2[index]); - q22 = (V1[(j-1)*dimX+i] - V1[index]); - } - else { + if (j != dimY-1) { q2 = V2[(j+1)*dimX+i] - V2[index]; q22 = V1[(j+1)*dimX+i] - V1[index]; } Q1[index] += sigma*(q1); Q2[index] += sigma*(q2); Q3[index] += sigma*(0.5f*(q11 + q22)); - } + } return; } __global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int dimY, float alpha0) { - float grad_magn; + float grad_magn; - int i = blockDim.x * blockIdx.x + threadIdx.x; + int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; int index = i + dimX*j; - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { grad_magn = sqrt(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2)); grad_magn = grad_magn/alpha0; - if (grad_magn > 1.0) { + if (grad_magn > 1.0f) { Q1[index] /= grad_magn; Q2[index] /= grad_magn; Q3[index] /= grad_magn; - } - } + } + } return; } __global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, int dimX, int dimY, float lambda, float tau) { - float P_v1, P_v2, div; + float P_v1, P_v2, div; - int i = blockDim.x * blockIdx.x + threadIdx.x; + int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; int index = i + dimX*j; @@ -166,49 +161,54 @@ __global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, in __global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float tau) { - float q1, q11, q2, q22, div1, div2; + float q1, q3_x, q2, q3_y, div1, div2; - int i = blockDim.x * blockIdx.x + threadIdx.x; + int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; int index = i + dimX*j; - if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { - - /* symmetric boundary conditions (Neuman) */ - if (i == 0) { - q1 = Q1[index]; - q11 = Q3[index]; - } - else { + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY)) { + q2 = 0.0f; q3_y = 0.0f; q1 = 0.0f; q3_x = 0.0; + /* boundary conditions (Neuman) */ + if (i != 0) { q1 = Q1[index] - Q1[j*dimX+(i-1)]; - q11 = Q3[index] - Q3[j*dimX+(i-1)]; - } - if (j == 0) { - q2 = Q2[index]; - q22 = Q3[index]; + q3_x = Q3[index] - Q3[j*dimX+(i-1)]; } - else { + if (j != 0) { q2 = Q2[index] - Q2[(j-1)*dimX+i]; - q22 = Q3[index] - Q3[(j-1)*dimX+i]; + q3_y = Q3[index] - Q3[(j-1)*dimX+i]; } - div1 = q1 + q22; - div2 = q2 + q11; + div1 = q1 + q3_y; + div2 = q3_x + q2; V1[index] += tau*(P1[index] + div1); V2[index] += tau*(P2[index] + div2); - } + } return; } -__global__ void copyIm_TGV_kernel(float *Input, float* Output, int N, int M, int num_total) +__global__ void copyIm_TGV_kernel(float *U, float *U_old, int N, int M, int num_total) { int xIndex = blockDim.x * blockIdx.x + threadIdx.x; int yIndex = blockDim.y * blockIdx.y + threadIdx.y; int index = xIndex + N*yIndex; - if (index < num_total) { - Output[index] = Input[index]; + if (index < num_total) { + U_old[index] = U[index]; + } +} + +__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +{ + int xIndex = blockDim.x * blockIdx.x + threadIdx.x; + int yIndex = blockDim.y * blockIdx.y + threadIdx.y; + + int index = xIndex + N*yIndex; + + if (index < num_total) { + V1_old[index] = V1[index]; + V2_old[index] = V2[index]; } } @@ -220,18 +220,276 @@ __global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total) int index = xIndex + N*yIndex; if (index < num_total) { - U[index] = 2.0f*U[index] - U_old[index]; + U[index] = 2.0f*U[index] - U_old[index]; + } +} + + +__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +{ + int xIndex = blockDim.x * blockIdx.x + threadIdx.x; + int yIndex = blockDim.y * blockIdx.y + threadIdx.y; + + int index = xIndex + N*yIndex; + + if (index < num_total) { + V1[index] = 2.0f*V1[index] - V1_old[index]; + V2[index] = 2.0f*V2[index] - V2_old[index]; + } +} +/********************************************************************/ +/***************************3D Functions*****************************/ +/********************************************************************/ +__global__ void DualP_3D_kernel(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) +{ + int index; + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + + index = (dimX*dimY)*k + j*dimX+i; + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i-1)] - U[index]) - V1[index]); + else P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i+1)] - U[index]) - V1[index]); + if (j == dimY-1) P2[index] += sigma*((U[(dimX*dimY)*k + (j-1)*dimX+i] - U[index]) - V2[index]); + else P2[index] += sigma*((U[(dimX*dimY)*k + (j+1)*dimX+i] - U[index]) - V2[index]); + if (k == dimZ-1) P3[index] += sigma*((U[(dimX*dimY)*(k-1) + j*dimX+i] - U[index]) - V3[index]); + else P3[index] += sigma*((U[(dimX*dimY)*(k+1) + j*dimX+i] - U[index]) - V3[index]); + } + return; +} + +__global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float alpha1) +{ + float grad_magn; + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + index = (dimX*dimY)*k + j*dimX+i; + + grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1; + if (grad_magn > 1.0f) { + P1[index] /= grad_magn; + P2[index] /= grad_magn; + P3[index] /= grad_magn; + } + } + return; +} + +__global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float sigma) +{ + int index; + float q1, q2, q3, q11, q22, q33, q44, q55, q66; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + + index = (dimX*dimY)*k + j*dimX+i; + q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f; + /* symmetric boundary conditions (Neuman) */ + if (i != dimX-1){ + q1 = V1[(dimX*dimY)*k + j*dimX+(i+1)] - V1[index]; + q11 = V2[(dimX*dimY)*k + j*dimX+(i+1)] - V2[index]; + q33 = V3[(dimX*dimY)*k + j*dimX+(i+1)] - V3[index]; + } + if (j != dimY-1) { + q2 = V2[(dimX*dimY)*k + (j+1)*dimX+i] - V2[index]; + q22 = V1[(dimX*dimY)*k + (j+1)*dimX+i] - V1[index]; + q55 = V3[(dimX*dimY)*k + (j+1)*dimX+i] - V3[index]; + } + if (k != dimZ-1) { + q3 = V3[(dimX*dimY)*(k+1) + j*dimX+i] - V3[index]; + q44 = V1[(dimX*dimY)*(k+1) + j*dimX+i] - V1[index]; + q66 = V2[(dimX*dimY)*(k+1) + j*dimX+i] - V2[index]; + } + + Q1[index] += sigma*(q1); /*Q11*/ + Q2[index] += sigma*(q2); /*Q22*/ + Q3[index] += sigma*(q3); /*Q33*/ + Q4[index] += sigma*(0.5f*(q11 + q22)); /* Q21 / Q12 */ + Q5[index] += sigma*(0.5f*(q33 + q44)); /* Q31 / Q13 */ + Q6[index] += sigma*(0.5f*(q55 + q66)); /* Q32 / Q23 */ + } + return; +} + + +__global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float alpha0) +{ + float grad_magn; + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + + index = (dimX*dimY)*k + j*dimX+i; + + grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2)); + grad_magn = grad_magn/alpha0; + if (grad_magn > 1.0f) { + Q1[index] /= grad_magn; + Q2[index] /= grad_magn; + Q3[index] /= grad_magn; + Q4[index] /= grad_magn; + Q5[index] /= grad_magn; + Q6[index] /= grad_magn; + } + } + return; +} +__global__ void DivProjP_3D_kernel(float *U, float *U0, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + float P_v1, P_v2, P_v3, div; + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + + index = (dimX*dimY)*k + j*dimX+i; + + if (i == 0) P_v1 = P1[index]; + else P_v1 = P1[index] - P1[(dimX*dimY)*k + j*dimX+(i-1)]; + if (j == 0) P_v2 = P2[index]; + else P_v2 = P2[index] - P2[(dimX*dimY)*k + (j-1)*dimX+i]; + if (k == 0) P_v3 = P3[index]; + else P_v3 = P3[index] - P3[(dimX*dimY)*(k-1) + (j)*dimX+i]; + + div = P_v1 + P_v2 + P_v3; + U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); + } + return; +} +__global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float tau) +{ + float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3; + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + if ((i >= 0) && (i < dimX) && (j >= 0) && (j < dimY) && (k >= 0) && (k < dimZ)) { + + index = (dimX*dimY)*k + j*dimX+i; + + q1 = 0.0f; q4x= 0.0f; q5x= 0.0f; q2= 0.0f; q4y= 0.0f; q6y= 0.0f; q6z= 0.0f; q5z= 0.0f; q3= 0.0f; + /* Q1 - Q11, Q2 - Q22, Q3 - Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/ + /* symmetric boundary conditions (Neuman) */ + if (i != 0) { + q1 = Q1[index] - Q1[(dimX*dimY)*k + j*dimX+(i-1)]; + q4x = Q4[index] - Q4[(dimX*dimY)*k + j*dimX+(i-1)]; + q5x = Q5[index] - Q5[(dimX*dimY)*k + j*dimX+(i-1)]; + } + if (j != 0) { + q2 = Q2[index] - Q2[(dimX*dimY)*k + (j-1)*dimX+i]; + q4y = Q4[index] - Q4[(dimX*dimY)*k + (j-1)*dimX+i]; + q6y = Q6[index] - Q6[(dimX*dimY)*k + (j-1)*dimX+i]; + } + if (k != 0) { + q6z = Q6[index] - Q6[(dimX*dimY)*(k-1) + (j)*dimX+i]; + q5z = Q5[index] - Q5[(dimX*dimY)*(k-1) + (j)*dimX+i]; + q3 = Q3[index] - Q3[(dimX*dimY)*(k-1) + (j)*dimX+i]; + } + div1 = q1 + q4y + q5z; + div2 = q4x + q2 + q6z; + div3 = q5x + q6y + q3; + + V1[index] += tau*(P1[index] + div1); + V2[index] += tau*(P2[index] + div2); + V3[index] += tau*(P3[index] + div3); + } + return; +} + +__global__ void copyIm_TGV_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) +{ + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + index = (dimX*dimY)*k + j*dimX+i; + + if (index < num_total) { + U_old[index] = U[index]; } } +__global__ void copyIm_TGV_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) +{ + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + index = (dimX*dimY)*k + j*dimX+i; + + if (index < num_total) { + V1_old[index] = V1[index]; + V2_old[index] = V2[index]; + V3_old[index] = V3[index]; + } +} + +__global__ void newU_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) +{ + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + index = (dimX*dimY)*k + j*dimX+i; + + if (index < num_total) { + U[index] = 2.0f*U[index] - U_old[index]; + } +} + +__global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) +{ + int index; + + int i = blockDim.x * blockIdx.x + threadIdx.x; + int j = blockDim.y * blockIdx.y + threadIdx.y; + int k = blockDim.z * blockIdx.z + threadIdx.z; + + index = (dimX*dimY)*k + j*dimX+i; + + if (index < num_total) { + V1[index] = 2.0f*V1[index] - V1_old[index]; + V2[index] = 2.0f*V2[index] - V2_old[index]; + V3[index] = 2.0f*V3[index] - V3_old[index]; + } +} + /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -/********************* MAIN HOST FUNCTION ******************/ +/************************ MAIN HOST FUNCTION ***********************/ /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY) +extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ) { - int dimTotal, dev = 0; - CHECK(cudaSetDevice(dev)); - dimTotal = dimX*dimY; + int dimTotal, dev = 0; + CHECK(cudaSetDevice(dev)); + + dimTotal = dimX*dimY*dimZ; float *U_old, *d_U0, *d_U, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma; tau = pow(L2,-0.5); @@ -254,16 +512,17 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo CHECK(cudaMemcpy(d_U0,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); CHECK(cudaMemcpy(d_U,U0,dimTotal*sizeof(float),cudaMemcpyHostToDevice)); - /*2D case */ + if (dimZ == 1) { + /*2D case */ dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); for(int n=0; n < iterationsNumb; n++) { - /* Calculate Dual Variable P */ + /* Calculate Dual Variable P */ DualP_2D_kernel<<>>(d_U, V1, V2, P1, P2, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); - /*Projection onto convex set for P*/ + CHECK(cudaDeviceSynchronize()); + /*Projection onto convex set for P*/ ProjP_2D_kernel<<>>(P1, P2, dimX, dimY, alpha1); CHECK(cudaDeviceSynchronize()); /* Calculate Dual Variable Q */ @@ -282,18 +541,72 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo newU_kernel<<>>(d_U, U_old, dimX, dimY, dimTotal); CHECK(cudaDeviceSynchronize()); /*saving V into V_old*/ - copyIm_TGV_kernel<<>>(V1, V1_old, dimX, dimY, dimTotal); - copyIm_TGV_kernel<<>>(V2, V2_old, dimX, dimY, dimTotal); + copyIm_TGV_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); CHECK(cudaDeviceSynchronize()); /* upd V*/ UpdV_2D_kernel<<>>(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, tau); CHECK(cudaDeviceSynchronize()); /*get new V*/ - newU_kernel<<>>(V1, V1_old, dimX, dimY, dimTotal); - newU_kernel<<>>(V2, V2_old, dimX, dimY, dimTotal); + newU_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); CHECK(cudaDeviceSynchronize()); + } } - + else { + /*3D case */ + dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); + dim3 dimGrid(idivup(dimX,BLKXSIZE), idivup(dimY,BLKYSIZE),idivup(dimZ,BLKXSIZE)); + + float *P3, *Q4, *Q5, *Q6, *V3, *V3_old; + + CHECK(cudaMalloc((void**)&P3,dimTotal*sizeof(float))); + CHECK(cudaMalloc((void**)&Q4,dimTotal*sizeof(float))); + CHECK(cudaMalloc((void**)&Q5,dimTotal*sizeof(float))); + CHECK(cudaMalloc((void**)&Q6,dimTotal*sizeof(float))); + CHECK(cudaMalloc((void**)&V3,dimTotal*sizeof(float))); + CHECK(cudaMalloc((void**)&V3_old,dimTotal*sizeof(float))); + + for(int n=0; n < iterationsNumb; n++) { + + /* Calculate Dual Variable P */ + DualP_3D_kernel<<>>(d_U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma); + CHECK(cudaDeviceSynchronize()); + /*Projection onto convex set for P*/ + ProjP_3D_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, alpha1); + CHECK(cudaDeviceSynchronize()); + /* Calculate Dual Variable Q */ + DualQ_3D_kernel<<>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, sigma); + CHECK(cudaDeviceSynchronize()); + /*Projection onto convex set for Q*/ + ProjQ_3D_kernel<<>>(Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, alpha0); + CHECK(cudaDeviceSynchronize()); + /*saving U into U_old*/ + copyIm_TGV_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); + CHECK(cudaDeviceSynchronize()); + /*adjoint operation -> divergence and projection of P*/ + DivProjP_3D_kernel<<>>(d_U, d_U0, P1, P2, P3, dimX, dimY, dimZ, lambda, tau); + CHECK(cudaDeviceSynchronize()); + /*get updated solution U*/ + newU_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); + CHECK(cudaDeviceSynchronize()); + /*saving V into V_old*/ + copyIm_TGV_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); + CHECK(cudaDeviceSynchronize()); + /* upd V*/ + UpdV_3D_kernel<<>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, tau); + CHECK(cudaDeviceSynchronize()); + /*get new V*/ + newU_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); + CHECK(cudaDeviceSynchronize()); + } + + CHECK(cudaFree(Q4)); + CHECK(cudaFree(Q5)); + CHECK(cudaFree(Q6)); + CHECK(cudaFree(P3)); + CHECK(cudaFree(V3)); + CHECK(cudaFree(V3_old)); + } + CHECK(cudaMemcpy(U,d_U,dimTotal*sizeof(float),cudaMemcpyDeviceToHost)); CHECK(cudaFree(d_U0)); CHECK(cudaFree(d_U)); diff --git a/Core/regularisers_GPU/TGV_GPU_core.h b/Core/regularisers_GPU/TGV_GPU_core.h index 5a4eb76..9f73d1c 100644 --- a/Core/regularisers_GPU/TGV_GPU_core.h +++ b/Core/regularisers_GPU/TGV_GPU_core.h @@ -3,6 +3,6 @@ #include "CCPiDefines.h" #include -extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY); +extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); #endif diff --git a/Readme.md b/Readme.md index 1db50aa..ebd4d20 100644 --- a/Readme.md +++ b/Readme.md @@ -33,7 +33,7 @@ 1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*) 2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*) 3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*) -4. Total Generalised Variation (TGV) model for higher-order regularisation **2D CPU/GPU** (Ref. *6*) +4. Total Generalised Variation (TGV) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *6*) 5. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *8*) 6. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU** (Ref. *9*) 7. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*) @@ -93,7 +93,7 @@ conda install ccpi-regulariser -c ccpi -c conda-forge #### Python (conda-build) ``` - export CIL_VERSION=0.10.3 + export CIL_VERSION=0.10.4 conda build Wrappers/Python/conda-recipe --numpy 1.12 --python 3.5 conda install ccpi-regulariser=${CIL_VERSION} --use-local --force cd demos/ diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py index 37b9dcc..21f3216 100755 --- a/Wrappers/Python/conda-recipe/run_test.py +++ b/Wrappers/Python/conda-recipe/run_test.py @@ -303,7 +303,7 @@ class TestRegularisers(unittest.TestCase): 'input' : u0,\ 'regularisation_parameter':0.04, \ 'alpha1':1.0,\ - 'alpha0':0.7,\ + 'alpha0':2.0,\ 'number_of_iterations' :250 ,\ 'LipshitzConstant' :12 ,\ } diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 859b633..e6befa9 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -225,8 +225,8 @@ pars = {'algorithm' : TGV, \ 'input' : u0,\ 'regularisation_parameter':0.04, \ 'alpha1':1.0,\ - 'alpha0':0.7,\ - 'number_of_iterations' :250 ,\ + 'alpha0':2.0,\ + 'number_of_iterations' :1350 ,\ 'LipshitzConstant' :12 ,\ } diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py index c42c37b..2d2fc22 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers3D.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -68,7 +68,7 @@ Im2[:,0:M] = Im[:,0:M] Im = Im2 del Im2 """ -slices = 20 +slices = 15 noisyVol = np.zeros((slices,N,M),dtype='float32') noisyRef = np.zeros((slices,N,M),dtype='float32') @@ -96,7 +96,7 @@ pars = {'algorithm': ROF_TV, \ 'input' : noisyVol,\ 'regularisation_parameter':0.04,\ 'number_of_iterations': 500,\ - 'time_marching_parameter': 0.0025 + 'time_marching_parameter': 0.0025 } print ("#############ROF TV CPU####################") start_time = timeit.default_timer() @@ -262,6 +262,54 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :250 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_cpu3D = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'cpu') + + +rms = rmse(idealVol, tgv_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using TGV')) + #%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("________________NDF (3D)___________________") diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index 275e844..230a761 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -323,8 +323,8 @@ pars = {'algorithm' : TGV, \ 'input' : u0,\ 'regularisation_parameter':0.04, \ 'alpha1':1.0,\ - 'alpha0':0.7,\ - 'number_of_iterations' :250 ,\ + 'alpha0':2.0,\ + 'number_of_iterations' :400 ,\ 'LipshitzConstant' :12 ,\ } diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index 9115494..e1c6575 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -223,8 +223,8 @@ pars = {'algorithm' : TGV, \ 'input' : u0,\ 'regularisation_parameter':0.04, \ 'alpha1':1.0,\ - 'alpha0':0.7,\ - 'number_of_iterations' :250 ,\ + 'alpha0':2.0,\ + 'number_of_iterations' :1250 ,\ 'LipshitzConstant' :12 ,\ } diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py index cda2847..b6058d2 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers3D.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -67,7 +67,7 @@ Im = Im2 del Im2 """ -#%% + slices = 20 filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") @@ -266,6 +266,53 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :600 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV GPU####################") +start_time = timeit.default_timer() +tgv_gpu3D = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'gpu') + + +rms = rmse(idealVol, tgv_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using TGV')) #%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________NDF-TV (3D)_________________") diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 7d57ed1..11a0617 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -22,7 +22,7 @@ cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY); +cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); @@ -202,12 +202,8 @@ def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst) elif inputData.ndim == 3: - shape = inputData.shape - out = inputData.copy() - for i in range(shape[0]): - out[i,:,:] = TGV_2D(inputData[i,:,:], regularisation_parameter, - alpha1, alpha0, iterations, LipshitzConst) - return out + return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0, + iterations, LipshitzConst) def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularisation_parameter, @@ -229,7 +225,30 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, alpha0, iterationsNumb, LipshitzConst, - dims[1],dims[0]) + dims[1],dims[0],1) + return outputData +def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularisation_parameter, + float alpha1, + float alpha0, + int iterationsNumb, + float LipshitzConst): + + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0], dims[1], dims[2]], dtype='float32') + + #/* Run TGV iterations for 3D data */ + TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, + alpha1, + alpha0, + iterationsNumb, + LipshitzConst, + dims[2], dims[1], dims[0]) return outputData #***************************************************************# diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx index 47a6149..b52f669 100644 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ b/Wrappers/Python/src/gpu_regularisers.pyx @@ -23,7 +23,7 @@ CUDAErrorMessage = 'CUDA error' cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z); -cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY); +cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z); cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z); cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); @@ -102,12 +102,7 @@ def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip if inputData.ndim == 2: return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst) elif inputData.ndim == 3: - shape = inputData.shape - out = inputData.copy() - for i in range(shape[0]): - out[i,:,:] = TGV2D(inputData[i,:,:], regularisation_parameter, - alpha1, alpha0, iterations, LipshitzConst) - return out + return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst) # Directional Total-variation Fast-Gradient-Projection (FGP) def dTV_FGP_GPU(inputData, refdata, @@ -393,7 +388,6 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, raise ValueError(CUDAErrorMessage); - #***************************************************************# #***************** Total Generalised Variation *****************# #***************************************************************# @@ -417,11 +411,38 @@ def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, alpha0, iterationsNumb, LipshitzConst, - dims[1],dims[0])==0): + dims[1],dims[0], 1)==0): return outputData else: raise ValueError(CUDAErrorMessage); +def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularisation_parameter, + float alpha1, + float alpha0, + int iterationsNumb, + float LipshitzConst): + + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + + # Running CUDA code here + if (TGV_GPU_main( + &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, + alpha1, + alpha0, + iterationsNumb, + LipshitzConst, + dims[2], dims[1], dims[0])==0): + return outputData; + else: + raise ValueError(CUDAErrorMessage); + #****************************************************************# #**************Directional Total-variation FGP ******************# -- cgit v1.2.3