From 0587f96cafac66d9ee04005a80b43514c6d2a753 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Mon, 25 Feb 2019 17:13:28 +0000 Subject: some TGV updates and demos --- Core/regularisers_GPU/TGV_GPU_core.cu | 240 +++++++++++---------- Core/regularisers_GPU/TGV_GPU_core.h | 2 + .../demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 148 +++++++++++-- .../SoftwareX_supp/Demo_SimulData_Recon_SX.py | 29 --- 4 files changed, 261 insertions(+), 158 deletions(-) diff --git a/Core/regularisers_GPU/TGV_GPU_core.cu b/Core/regularisers_GPU/TGV_GPU_core.cu index e4abf72..9b43c21 100644 --- a/Core/regularisers_GPU/TGV_GPU_core.cu +++ b/Core/regularisers_GPU/TGV_GPU_core.cu @@ -38,28 +38,27 @@ limitations under the License. * [1] K. Bredies "Total Generalized Variation" */ -#define BLKXSIZE 8 -#define BLKYSIZE 8 -#define BLKZSIZE 8 - + #define BLKXSIZE2D 8 #define BLKYSIZE2D 8 -#define EPS 1.0e-7 -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) +#define BLKXSIZE 8 +#define BLKYSIZE 8 +#define BLKZSIZE 8 + +#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) /********************************************************************/ /***************************2D Functions*****************************/ /********************************************************************/ -__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, float sigma) +__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, long num_total, float sigma) { - int num_total = dimX*dimY; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { /* symmetric boundary conditions (Neuman) */ if ((i >= 0) && (i < dimX-1)) P1[index] += sigma*((U[(i+1) + dimX*j] - U[index]) - V1[index]); else P1[index] += sigma*(-V1[index]); @@ -69,17 +68,16 @@ __global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float return; } -__global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float alpha1) +__global__ void ProjP_2D_kernel(float *P1, float *P2, long dimX, long dimY, long num_total, float alpha1) { float grad_magn; - int num_total = dimX*dimY; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { grad_magn = sqrtf(pow(P1[index],2) + pow(P2[index],2)); grad_magn = grad_magn/alpha1; if (grad_magn > 1.0f) { @@ -90,17 +88,15 @@ __global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float return; } -__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float sigma) +__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, long num_total, float sigma) { float q1, q2, q11, q22; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { q1 = 0.0f; q2 = 0.0f; q11 = 0.0f; q22 = 0.0f; if ((i >= 0) && (i < dimX-1)) { @@ -120,17 +116,15 @@ __global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, floa return; } -__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int dimY, float alpha0) +__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, long dimX, long dimY, long num_total, float alpha0) { float grad_magn; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { grad_magn = sqrt(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2)); grad_magn = grad_magn/alpha0; if (grad_magn > 1.0f) { @@ -142,26 +136,27 @@ __global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int d return; } -__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, int dimX, int dimY, float lambda, float tau) +__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, long num_total, float lambda, float tau) { float P_v1, P_v2, div; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { P_v1 = 0.0f; P_v2 = 0.0f; - if (i == 0) P_v1 = P1[index]; - if (i == dimX-1) P_v1 = -P1[(i-1) + dimX*j]; if ((i > 0) && (i < dimX-1)) P_v1 = P1[index] - P1[(i-1) + dimX*j]; + else if (i == dimX-1) P_v1 = -P1[(i-1) + dimX*j]; + else if (i == 0) P_v1 = P1[index]; + else P_v1 = 0.0f; - if (j == 0) P_v2 = P2[index]; - if (j == dimY-1) P_v2 = -P2[i + dimX*(j-1)]; if ((j > 0) && (j < dimY-1)) P_v2 = P2[index] - P2[i + dimX*(j-1)]; + else if (j == dimY-1) P_v2 = -P2[i + dimX*(j-1)]; + else if (j == 0) P_v2 = P2[index]; + else P_v2 = 0.0f; + div = P_v1 + P_v2; U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); @@ -169,18 +164,19 @@ __global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, in return; } -__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float tau) +__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, long num_total, float tau) { float q1, q3_x, q2, q3_y, div1, div2; - int num_total = dimX*dimY; - int i1, j1; + long i1, j1; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if (index < num_total) { + + q1 = 0.0f; q3_x = 0.0f; q2 = 0.0f; q3_y = 0.0f; div1 = 0.0f; div2= 0.0f; i1 = (i-1) + dimX*j; j1 = (i) + dimX*(j-1); @@ -222,24 +218,24 @@ __global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float return; } -__global__ void copyIm_TGV_kernel(float *U, float *U_old, int N, int M, int num_total) +__global__ void copyIm_TGV_kernel(float *U, float *U_old, long dimX, long dimY, long num_total) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; if (index < num_total) { U_old[index] = U[index]; } } -__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, long dimX, long dimY, long num_total) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; if (index < num_total) { V1_old[index] = V1[index]; @@ -247,12 +243,12 @@ __global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float } } -__global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total) +__global__ void newU_kernel(float *U, float *U_old, long dimX, long dimY, long num_total) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; if (index < num_total) { U[index] = 2.0f*U[index] - U_old[index]; @@ -260,12 +256,12 @@ __global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total) } -__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, long dimX, long dimY, long num_total) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; if (index < num_total) { V1[index] = 2.0f*V1[index] - V1_old[index]; @@ -576,14 +572,20 @@ __global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ) { - int dimTotal, dev = 0; - CHECK(cudaSetDevice(dev)); - - dimTotal = dimX*dimY*dimZ; + + int deviceCount = -1; // number of devices + cudaGetDeviceCount(&deviceCount); + if (deviceCount == 0) { + fprintf(stderr, "No CUDA devices found\n"); + return -1; + } + + long dimTotal = (long)(dimX*dimY*dimZ); + float *U_old, *d_U0, *d_U, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma; - tau = pow(L2,-0.5); - sigma = pow(L2,-0.5); + tau = powf(L2,-0.5f); + sigma = tau; CHECK(cudaMalloc((void**)&d_U0,dimTotal*sizeof(float))); CHECK(cudaMalloc((void**)&d_U,dimTotal*sizeof(float))); @@ -611,41 +613,51 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo if (dimZ == 1) { /*2D case */ - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); + dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); + dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); for(int n=0; n < iterationsNumb; n++) { /* Calculate Dual Variable P */ - DualP_2D_kernel<<>>(d_U, V1, V2, P1, P2, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); + DualP_2D_kernel<<>>(d_U, V1, V2, P1, P2, (long)(dimX), (long)(dimY), dimTotal, sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for P*/ - ProjP_2D_kernel<<>>(P1, P2, dimX, dimY, alpha1); - CHECK(cudaDeviceSynchronize()); + ProjP_2D_kernel<<>>(P1, P2, (long)(dimX), (long)(dimY), dimTotal, alpha1); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* Calculate Dual Variable Q */ - DualQ_2D_kernel<<>>(V1, V2, Q1, Q2, Q3, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); + DualQ_2D_kernel<<>>(V1, V2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), dimTotal, sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for Q*/ - ProjQ_2D_kernel<<>>(Q1, Q2, Q3, dimX, dimY, alpha0); - CHECK(cudaDeviceSynchronize()); + ProjQ_2D_kernel<<>>(Q1, Q2, Q3, (long)(dimX), (long)(dimY), dimTotal, alpha0); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving U into U_old*/ - copyIm_TGV_kernel<<>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel<<>>(d_U, U_old, (long)(dimX), (long)(dimY), dimTotal); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D_kernel<<>>(d_U, d_U0, P1, P2, dimX, dimY, lambda, tau); - CHECK(cudaDeviceSynchronize()); + DivProjP_2D_kernel<<>>(d_U, d_U0, P1, P2, (long)(dimX), (long)(dimY), dimTotal, lambda, tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get updated solution U*/ - newU_kernel<<>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel<<>>(d_U, U_old, (long)(dimX), (long)(dimY), dimTotal); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving V into V_old*/ - copyIm_TGV_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel_ar2<<>>(V1, V2, V1_old, V2_old, (long)(dimX), (long)(dimY), dimTotal); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* upd V*/ - UpdV_2D_kernel<<>>(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, tau); - CHECK(cudaDeviceSynchronize()); + UpdV_2D_kernel<<>>(V1, V2, P1, P2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), dimTotal, tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get new V*/ - newU_kernel_ar2<<>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel_ar2<<>>(V1, V2, V1_old, V2_old, (long)(dimX), (long)(dimY), dimTotal); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); } } else { @@ -672,34 +684,44 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo /* Calculate Dual Variable P */ DualP_3D_kernel<<>>(d_U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for P*/ ProjP_3D_kernel<<>>(P1, P2, P3, dimX, dimY, dimZ, alpha1); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* Calculate Dual Variable Q */ DualQ_3D_kernel<<>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for Q*/ ProjQ_3D_kernel<<>>(Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, alpha0); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving U into U_old*/ copyIm_TGV_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*adjoint operation -> divergence and projection of P*/ DivProjP_3D_kernel<<>>(d_U, d_U0, P1, P2, P3, dimX, dimY, dimZ, lambda, tau); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get updated solution U*/ newU_kernel3D<<>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving V into V_old*/ copyIm_TGV_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* upd V*/ UpdV_3D_kernel<<>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, tau); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get new V*/ newU_kernel3D_ar3<<>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); } CHECK(cudaFree(Q4)); @@ -724,5 +746,7 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo CHECK(cudaFree(V2)); CHECK(cudaFree(V1_old)); CHECK(cudaFree(V2_old)); + + cudaDeviceReset(); return 0; } diff --git a/Core/regularisers_GPU/TGV_GPU_core.h b/Core/regularisers_GPU/TGV_GPU_core.h index 9f73d1c..e8f9c6e 100644 --- a/Core/regularisers_GPU/TGV_GPU_core.h +++ b/Core/regularisers_GPU/TGV_GPU_core.h @@ -1,6 +1,8 @@ #ifndef __TGV_GPU_H__ #define __TGV_GPU_H__ + #include "CCPiDefines.h" +#include #include extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py index 8a11f04..4cd680e 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -22,7 +22,8 @@ import numpy as np import matplotlib.pyplot as plt import h5py from tomorec.supp.suppTools import normaliser - +import time +from libtiff import TIFF # load dendritic projection data h5f = h5py.File('data/DendrData_3D.h5','r') @@ -36,7 +37,7 @@ h5f.close() data_norm = normaliser(dataRaw, flats, darks, log='log') del dataRaw, darks, flats -intens_max = 2 +intens_max = 2.3 plt.figure() plt.subplot(131) plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) @@ -49,29 +50,38 @@ plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max) plt.title('Tangentogram view') plt.show() - detectorHoriz = np.size(data_norm,2) det_y_crop = [i for i in range(0,detectorHoriz-22)] N_size = 950 # reconstruction domain +time_label = int(time.time()) #%% +""" print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") from tomorec.methodsDIR import RecToolsDIR RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) - DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only + DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions device='gpu') -FBPrec = RectoolsDIR.FBP(data_norm[0:10,:,det_y_crop]) +FBPrec = RectoolsDIR.FBP(data_norm[20:220,:,det_y_crop]) plt.figure() -#plt.imshow(FBPrec[0,150:550,150:550], vmin=0, vmax=0.005, cmap="gray") plt.imshow(FBPrec[0,:,:], vmin=0, vmax=0.005, cmap="gray") plt.title('FBP reconstruction') +FBPrec += np.abs(np.min(FBPrec)) +multiplier = (int)(65535/(np.max(FBPrec))) + +# saving to tiffs (16bit) +for i in range(0,np.size(FBPrec,0)): + tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier)) + tiff.close() +""" #%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("Reconstructing with ADMM method using TomoRec software") @@ -79,7 +89,7 @@ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") # initialise TomoRec ITERATIVE reconstruction class ONCE from tomorec.methodsIR import RecToolsIR RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) - DetectorsDimV = 5, # DetectorsDimV # detector dimension (vertical) for 3D case only + DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) @@ -88,29 +98,125 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # tolerance = 1e-08, # tolerance to stop outer iterations earlier device='gpu') #%% -print ("Reconstructing with ADMM method using ROF-TV penalty") +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = 0.00085,\ + regularisation_iterations = 50) + +sliceSel = 5 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, sagittal view') +plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_sbtv,0)): + tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier)) + tiff.close() -RecADMM_reg_roftv = RectoolsIR.ADMM(data_norm[0:5,:,det_y_crop], +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv) +del RecADMM_reg_sbtv +#%% +print ("Reconstructing with ADMM method using ROF-LLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop], rho_const = 2000.0, \ - iterationsADMM = 3, \ - regularisation = 'FGP_TV', \ - regularisation_parameter = 0.001,\ - regularisation_iterations = 80) + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = 0.0009,\ + regularisation_parameter2 = 0.0007,\ + time_marching_parameter = 0.001,\ + regularisation_iterations = 450) + +sliceSel = 5 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view') +plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_rofllt,0)): + tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier)) + tiff.close() + + +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt) +del RecADMM_reg_rofllt +#%% +RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='cpu') +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:10,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = 0.01,\ + regularisation_iterations = 450) -sliceSel = 2 -max_val = 0.005 +sliceSel = 7 +max_val = 0.003 plt.figure() plt.subplot(131) -plt.imshow(RecADMM_reg_roftv[sliceSel,:,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, axial view') +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, axial view') plt.subplot(132) -plt.imshow(RecADMM_reg_roftv[:,sliceSel,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, coronal view') +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, coronal view') plt.subplot(133) -plt.imshow(RecADMM_reg_roftv[:,:,sliceSel],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, sagittal view') +plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, sagittal view') plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_tgv))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_tgv,0)): + tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier)) + tiff.close() + + +# Saving recpnstructed data with a unique time label +#np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) +del RecADMM_reg_tgv #%% \ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py index 5dbd436..a022ad7 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -197,32 +197,3 @@ Qtools = QualityTools(phantom, RecADMM_reg_tgv) RMSE_admm_tgv = Qtools.rmse() print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv)) #%% -print ("Reconstructing with ADMM method using Diff4th penalty") -RecADMM_reg_diff4th = RectoolsIR.ADMM(projdata_norm, - rho_const = 2000.0, \ - iterationsADMM = 30, \ - regularisation = 'Diff4th', \ - regularisation_parameter = 0.0005,\ - regularisation_iterations = 200) - -sliceSel = int(0.5*N_size) -max_val = 1 -plt.figure() -plt.subplot(131) -plt.imshow(RecADMM_reg_diff4th[sliceSel,:,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, axial view') - -plt.subplot(132) -plt.imshow(RecADMM_reg_diff4th[:,sliceSel,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, coronal view') - -plt.subplot(133) -plt.imshow(RecADMM_reg_diff4th[:,:,sliceSel],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, sagittal view') -plt.show() - -# calculate errors -Qtools = QualityTools(phantom, RecADMM_reg_diff4th) -RMSE_admm_diff4th = Qtools.rmse() -print("Root Mean Square Error for ADMM-Diff4th is {}".format(RMSE_admm_diff4th)) -#%% -- cgit v1.2.3