diff options
Diffstat (limited to 'src/Python')
39 files changed, 0 insertions, 7504 deletions
diff --git a/src/Python/CMakeLists.txt b/src/Python/CMakeLists.txt deleted file mode 100644 index 506159a..0000000 --- a/src/Python/CMakeLists.txt +++ /dev/null @@ -1,183 +0,0 @@ -# Copyright 2017 Edoardo Pasca -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# variables that must be set for conda compilation - -#PREFIX=C:\Apps\Miniconda2\envs\cil\Library -#LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include -set (NUMPY_VERSION 1.12) - -## Tries to parse the output of conda env list to determine the current -## active conda environment -message ("Trying to determine your active conda environment...") -execute_process(COMMAND "conda" "env" "list" - OUTPUT_VARIABLE _CONDA_ENVS - RESULT_VARIABLE _CONDA_RESULT - ERROR_VARIABLE _CONDA_ERR) - if(NOT _CONDA_RESULT) - string(REPLACE "\n" ";" ENV_LIST ${_CONDA_ENVS}) - foreach(line ${ENV_LIST}) - string(REGEX MATCHALL "(.+)[*](.+)" match ${line}) - if (NOT ${match} EQUAL "") - #message("MATCHED " ${CMAKE_MATCH_0}) - #message("MATCHED " ${CMAKE_MATCH_1}) - #message("MATCHED " ${CMAKE_MATCH_2}) - string(STRIP ${CMAKE_MATCH_1} CONDA_ENVIRONMENT) - string(STRIP ${CMAKE_MATCH_2} CONDA_ENVIRONMENT_PATH) - endif() - endforeach() - else() - message(FATAL_ERROR "ERROR with conda command " ${_CONDA_ERR}) - endif() - -if (${CONDA_ENVIRONMENT} AND ${CONDA_ENVIRONMENT_PATH}) - message (FATAL_ERROR "CONDA NOT FOUND") -else() - message("**********************************************************") - message("Using current conda environmnet " ${CONDA_ENVIRONMENT}) - message("Using current conda environmnet path " ${CONDA_ENVIRONMENT_PATH}) -endif() - -message("CIL VERSION " ${CIL_VERSION}) - -# set the Python variables for the Conda environment -include(FindAnacondaEnvironment.cmake) -findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH}) - -message("Python found " ${PYTHON_VERSION_STRING}) -message("Python found Major " ${PYTHON_VERSION_MAJOR}) -message("Python found Minor " ${PYTHON_VERSION_MINOR}) - -findPythonPackagesPath() -message("PYTHON_PACKAGES_FOUND " ${PYTHON_PACKAGES_PATH}) - -## CACHE SOME VARIABLES ## -set (CONDA_ENVIRONMENT ${CONDA_ENVIRONMENT} CACHE INTERNAL "active conda environment" FORCE) -set (CONDA_ENVIRONMENT_PATH ${CONDA_ENVIRONMENT_PATH} CACHE INTERNAL "active conda environment" FORCE) - -set (PYTHON_VERSION_STRING ${PYTHON_VERSION_STRING} CACHE INTERNAL "conda environment Python version string" FORCE) -set (PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "conda environment Python version major" FORCE) -set (PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "conda environment Python version minor" FORCE) -set (PYTHON_VERSION_PATCH ${PYTHON_VERSION_PATCH} CACHE INTERNAL "conda environment Python version patch" FORCE) -set (PYTHON_PACKAGES_PATH ${PYTHON_PACKAGES_PATH} CACHE INTERNAL "conda environment Python packages path" FORCE) - -if (WIN32) - #set (CONDA_ENVIRONMENT_PATH "C:\\Apps\\Miniconda2\\envs\\${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") - set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}\\Library" CACHE PATH "env dir") - set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}\\include" CACHE PATH "env dir") -elseif (UNIX) - #set (CONDA_ENVIRONMENT_PATH "/apps/anaconda/2.4/envs/${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") - set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}/lib/python${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}" CACHE PATH "env dir") - set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}/include" CACHE PATH "env dir") -endif() - -######### CONFIGURE REGULARIZER PACKAGE ############# - -# copy the Pyhon files of the package regularizer -file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging/) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi) -# regularizers -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/Regularizer.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) - -# Copy and configure the relative conda build and recipes -configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py) -file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) - -if (WIN32) - - file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) - configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile.bat) - -elseif(UNIX) - - message ("We are on UNIX") - file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) - # assumes we will use bash - configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile.sh) - -endif() - -########## CONFIGURE FISTA RECONSTRUCTOR PACKAGE -# fista reconstructor -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/DeviceModel.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/AstraDevice.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) - -configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py) -file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) -file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) - -if (WIN32) - - file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) - configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.bat) - -elseif(UNIX) - message ("We are on UNIX") - file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) - # assumes we will use bash - configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.sh) -endif() - -############################# TARGETS - -########################## REGULARIZER PACKAGE ############################### - -# runs cmake on the build tree to update the code from source -add_custom_target(update_code - COMMAND ${CMAKE_COMMAND} - ARGS ${CMAKE_SOURCE_DIR} - WORKING_DIRECTORY ${CMAKE_BINARY_DIR} - ) - - -add_custom_target(fista - COMMAND bash - compile-fista.sh - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} - DEPENDS ${update_code} - ) - -add_custom_target(regularizers - COMMAND bash - compile.sh - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} - DEPENDS update_code - ) - -add_custom_target(install-fista - COMMAND ${CONDA_EXECUTABLE} - install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} - ) - -add_custom_target(install-regularizers - COMMAND ${CONDA_EXECUTABLE} - install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} - ) -### add tests - -#add_executable(RegularizersTest ) -#find_package(tiff) -#if (TIFF_FOUND) -# message("LibTIFF Found") -# message("TIFF_INCLUDE_DIR " ${TIFF_INCLUDE_DIR}) -# message("TIFF_LIBRARIES" ${TIFF_LIBRARIES}) -#else() -# message("LibTIFF not found") -#endif() diff --git a/src/Python/FindAnacondaEnvironment.cmake b/src/Python/FindAnacondaEnvironment.cmake deleted file mode 100644 index 6475128..0000000 --- a/src/Python/FindAnacondaEnvironment.cmake +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright 2017 Edoardo Pasca -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# #.rst: -# FindAnacondaEnvironment -# -------------- -# -# Find Python executable and library for a specific Anaconda environment -# -# This module finds the Python interpreter for a specific Anaconda enviroment, -# if installed and determines where the include files and libraries are. -# This code sets the following variables: -# -# :: -# PYTHONINTERP_FOUND - if the Python interpret has been found -# PYTHON_EXECUTABLE - the Python interpret found -# PYTHON_LIBRARY - path to the python library -# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) -# PYTHON_INCLUDE_DIRS - path to where Python.h is found -# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) -# PYTHON_VERSION_MAJOR - major Python version -# PYTHON_VERSION_MINOR - minor Python version -# PYTHON_VERSION_PATCH - patch Python version - - - -function (findPythonForAnacondaEnvironment env) - if (WIN32) - file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE) - elseif (UNIX) - file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE) - endif() - - - message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE}) - ####### FROM FindPythonInterpr ######## - # determine python version string - if(PYTHON_EXECUTABLE) - execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c - "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))" - OUTPUT_VARIABLE _VERSION - RESULT_VARIABLE _PYTHON_VERSION_RESULT - ERROR_QUIET) - if(NOT _PYTHON_VERSION_RESULT) - string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}") - list(GET _VERSION 0 _PYTHON_VERSION_MAJOR) - list(GET _VERSION 1 _PYTHON_VERSION_MINOR) - list(GET _VERSION 2 _PYTHON_VERSION_PATCH) - if(PYTHON_VERSION_PATCH EQUAL 0) - # it's called "Python 2.7", not "2.7.0" - string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}") - endif() - else() - # sys.version predates sys.version_info, so use that - execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)" - OUTPUT_VARIABLE _VERSION - RESULT_VARIABLE _PYTHON_VERSION_RESULT - ERROR_QUIET) - if(NOT _PYTHON_VERSION_RESULT) - string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}") - string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}") - string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}") - if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)") - set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}") - else() - set(PYTHON_VERSION_PATCH "0") - endif() - else() - # sys.version was first documented for Python 1.5, so assume - # this is older. - set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE) - set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE) - set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE) - set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE) - endif() - endif() - unset(_PYTHON_VERSION_RESULT) - unset(_VERSION) - endif() - ############################################### - - set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE) - set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE) - set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE) - set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE) - set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE) - set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE) - message("My version found " ${PYTHON_VERSION_STRING}) - ## find conda executable - if (WIN32) - set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE) - elseif(UNIX) - set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE) - endif() -endfunction() - - - -set(Python_ADDITIONAL_VERSIONS 3.5) - -find_package(PythonInterp) -if (PYTHONINTERP_FOUND) - - message("Found interpret " ${PYTHON_EXECUTABLE}) - message("Python Library " ${PYTHON_LIBRARY}) - message("Python Include Dir " ${PYTHON_INCLUDE_DIR}) - message("Python Include Path " ${PYTHON_INCLUDE_PATH}) - - foreach(pv ${PYTHON_VERSION_STRING}) - message("Found interpret " ${pv}) - endforeach() -endif() - - - -find_package(PythonLibs) -if (PYTHONLIB_FOUND) - message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES}) - message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH}) - message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS}) - message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} ) -else() - message("No PythonLibs Found") -endif() - - - - -function(findPythonPackagesPath) - execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())" - RESULT_VARIABLE PYTHON_CVPY_PROCESS - OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH - OUTPUT_STRIP_TRAILING_WHITESPACE) - #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH}) - if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages") - set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages") - endif() - - SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE) - -endfunction() - - diff --git a/src/Python/Matlab2Python_utils.cpp b/src/Python/Matlab2Python_utils.cpp deleted file mode 100644 index ee76bc7..0000000 --- a/src/Python/Matlab2Python_utils.cpp +++ /dev/null @@ -1,276 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION - -#include <iostream> -#include <cmath> - -#include <boost/python.hpp> -#include <boost/python/numpy.hpp> -#include "boost/tuple/tuple.hpp" - -#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) -#include <windows.h> -// this trick only if compiler is MSVC -__if_not_exists(uint8_t) { typedef __int8 uint8_t; } -__if_not_exists(uint16_t) { typedef __int8 uint16_t; } -#endif - -namespace bp = boost::python; -namespace np = boost::python::numpy; - -/*! in the Matlab implementation this is called as -void mexFunction( -int nlhs, mxArray *plhs[], -int nrhs, const mxArray *prhs[]) -where: -prhs Array of pointers to the INPUT mxArrays -nrhs int number of INPUT mxArrays - -nlhs Array of pointers to the OUTPUT mxArrays -plhs int number of OUTPUT mxArrays - -*********************************************************** - -*********************************************************** -double mxGetScalar(const mxArray *pm); -args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. -Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. -*********************************************************** -char *mxArrayToString(const mxArray *array_ptr); -args: array_ptr Pointer to mxCHAR array. -Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. -Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. -*********************************************************** -mxClassID mxGetClassID(const mxArray *pm); -args: pm Pointer to an mxArray -Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, -mxGetClassId returns a unique value identifying the class of the array contents. -Use mxIsClass to determine whether an array is of a specific user-defined type. - -mxClassID Value MATLAB Type MEX Type C Primitive Type -mxINT8_CLASS int8 int8_T char, byte -mxUINT8_CLASS uint8 uint8_T unsigned char, byte -mxINT16_CLASS int16 int16_T short -mxUINT16_CLASS uint16 uint16_T unsigned short -mxINT32_CLASS int32 int32_T int -mxUINT32_CLASS uint32 uint32_T unsigned int -mxINT64_CLASS int64 int64_T long long -mxUINT64_CLASS uint64 uint64_T unsigned long long -mxSINGLE_CLASS single float float -mxDOUBLE_CLASS double double double - -**************************************************************** -double *mxGetPr(const mxArray *pm); -args: pm Pointer to an mxArray of type double -Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. -**************************************************************** -mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, -mxClassID classid, mxComplexity ComplexFlag); -args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. -dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. -For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. -classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. -For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. -ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). -Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). -If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not -enough free heap space to create the mxArray. -*/ - -void mexErrMessageText(char* text) { - std::cerr << text << std::endl; -} - -/* -double mxGetScalar(const mxArray *pm); -args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. -Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. -*/ - -template<typename T> -double mxGetScalar(const np::ndarray plh) { - return (double)bp::extract<T>(plh[0]); -} - - - -template<typename T> -T * mxGetData(const np::ndarray pm) { - //args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. - //Returns: Pointer to the value of the first real(nonimaginary) element of the mxArray.In C, mxGetScalar returns a double. - /*Access the numpy array pointer: - char * get_data() const; - Returns: Array’s raw data pointer as a char - Note: This returns char so stride math works properly on it.User will have to reinterpret_cast it. - probably this would work. - A = reinterpret_cast<float *>(prhs[0]); - */ - //return reinterpret_cast<T *>(prhs[0]); -} - -template<typename T> -np::ndarray zeros(int dims , int * dim_array, T el) { - bp::tuple shape; - if (dims == 3) - shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); - else if (dims == 2) - shape = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<T>(); - np::ndarray zz = np::zeros(shape, dtype); - return zz; -} - - -bp::list mexFunction( np::ndarray input ) { - int number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - - /**************************************************************************/ - np::ndarray zz = zeros(3, dim_array, (int)0); - np::ndarray fzz = zeros(3, dim_array, (float)0); - /**************************************************************************/ - - int * A = reinterpret_cast<int *>( input.get_data() ); - int * B = reinterpret_cast<int *>( zz.get_data() ); - float * C = reinterpret_cast<float *>(fzz.get_data()); - - //Copy data and cast - for (int i = 0; i < dim_array[0]; i++) { - for (int j = 0; j < dim_array[1]; j++) { - for (int k = 0; k < dim_array[2]; k++) { - int index = k + dim_array[2] * j + dim_array[2] * dim_array[1] * i; - int val = (*(A + index)); - float fval = sqrt((float)val); - std::memcpy(B + index , &val, sizeof(int)); - std::memcpy(C + index , &fval, sizeof(float)); - } - } - } - - - bp::list result; - - result.append<int>(number_of_dims); - result.append<int>(dim_array[0]); - result.append<int>(dim_array[1]); - result.append<int>(dim_array[2]); - result.append<np::ndarray>(zz); - result.append<np::ndarray>(fzz); - - //result.append<bp::tuple>(tup); - return result; - -} -bp::list doSomething(np::ndarray input, PyObject *pyobj , PyObject *pyobj2) { - - boost::python::object output(boost::python::handle<>(boost::python::borrowed(pyobj))); - int isOutput = !(output == boost::python::api::object()); - - boost::python::object calculate(boost::python::handle<>(boost::python::borrowed(pyobj2))); - int isCalculate = !(calculate == boost::python::api::object()); - - int number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - - /**************************************************************************/ - np::ndarray zz = zeros(3, dim_array, (int)0); - np::ndarray fzz = zeros(3, dim_array, (float)0); - /**************************************************************************/ - - int * A = reinterpret_cast<int *>(input.get_data()); - int * B = reinterpret_cast<int *>(zz.get_data()); - float * C = reinterpret_cast<float *>(fzz.get_data()); - - //Copy data and cast - for (int i = 0; i < dim_array[0]; i++) { - for (int j = 0; j < dim_array[1]; j++) { - for (int k = 0; k < dim_array[2]; k++) { - int index = k + dim_array[2] * j + dim_array[2] * dim_array[1] * i; - int val = (*(A + index)); - float fval = sqrt((float)val); - std::memcpy(B + index, &val, sizeof(int)); - std::memcpy(C + index, &fval, sizeof(float)); - // if the PyObj is not None evaluate the function - if (isOutput) - output(fval); - if (isCalculate) { - float nfval = (float)bp::extract<float>(calculate(val)); - if (isOutput) - output(nfval); - std::memcpy(C + index, &nfval, sizeof(float)); - } - } - } - } - - - bp::list result; - - result.append<int>(number_of_dims); - result.append<int>(dim_array[0]); - result.append<int>(dim_array[1]); - result.append<int>(dim_array[2]); - result.append<np::ndarray>(zz); - result.append<np::ndarray>(fzz); - - //result.append<bp::tuple>(tup); - return result; - -} - - -BOOST_PYTHON_MODULE(prova) -{ - np::initialize(); - - //To specify that this module is a package - bp::object package = bp::scope(); - package.attr("__path__") = "prova"; - - np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); - np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); - - //import_array(); - //numpy_boost_python_register_type<float, 1>(); - //numpy_boost_python_register_type<float, 2>(); - //numpy_boost_python_register_type<float, 3>(); - //numpy_boost_python_register_type<double, 3>(); - def("mexFunction", mexFunction); - def("doSomething", doSomething); -} diff --git a/src/Python/Regularizer.py b/src/Python/Regularizer.py deleted file mode 100644 index 15dbbb4..0000000 --- a/src/Python/Regularizer.py +++ /dev/null @@ -1,322 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Tue Aug 8 14:26:00 2017 - -@author: ofn77899 -""" - -import regularizers -import numpy as np -from enum import Enum -import timeit - -class Regularizer(): - '''Class to handle regularizer algorithms to be used during reconstruction - - Currently 5 CPU (OMP) regularization algorithms are available: - - 1) SplitBregman_TV - 2) FGP_TV - 3) LLT_model - 4) PatchBased_Regul - 5) TGV_PD - - Usage: - the regularizer can be invoked as object or as static method - Depending on the actual regularizer the input parameter may vary, and - a different default setting is defined. - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - - out = reg(input=u0, regularization_parameter=10., number_of_iterations=30, - tolerance_constant=1e-4, - TV_Penalty=Regularizer.TotalVariationPenalty.l1) - - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., - number_of_iterations=30, tolerance_constant=1e-4, - TV_Penalty=Regularizer.TotalVariationPenalty.l1) - - A number of optional parameters can be passed or skipped - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) - - ''' - class Algorithm(Enum): - SplitBregman_TV = regularizers.SplitBregman_TV - FGP_TV = regularizers.FGP_TV - LLT_model = regularizers.LLT_model - PatchBased_Regul = regularizers.PatchBased_Regul - TGV_PD = regularizers.TGV_PD - # Algorithm - - class TotalVariationPenalty(Enum): - isotropic = 0 - l1 = 1 - # TotalVariationPenalty - - def __init__(self , algorithm, debug = True): - self.setAlgorithm ( algorithm ) - self.debug = debug - # __init__ - - def setAlgorithm(self, algorithm): - self.algorithm = algorithm - self.pars = self.getDefaultParsForAlgorithm(algorithm) - # setAlgorithm - - def getDefaultParsForAlgorithm(self, algorithm): - pars = dict() - - if algorithm == Regularizer.Algorithm.SplitBregman_TV : - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['number_of_iterations'] = 35 - pars['tolerance_constant'] = 0.0001 - pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic - - elif algorithm == Regularizer.Algorithm.FGP_TV : - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['number_of_iterations'] = 50 - pars['tolerance_constant'] = 0.001 - pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic - - elif algorithm == Regularizer.Algorithm.LLT_model: - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['time_step'] = None - pars['number_of_iterations'] = None - pars['tolerance_constant'] = None - pars['restrictive_Z_smoothing'] = 0 - - elif algorithm == Regularizer.Algorithm.PatchBased_Regul: - pars['algorithm'] = algorithm - pars['input'] = None - pars['searching_window_ratio'] = None - pars['similarity_window_ratio'] = None - pars['PB_filtering_parameter'] = None - pars['regularization_parameter'] = None - - elif algorithm == Regularizer.Algorithm.TGV_PD: - pars['algorithm'] = algorithm - pars['input'] = None - pars['first_order_term'] = None - pars['second_order_term'] = None - pars['number_of_iterations'] = None - pars['regularization_parameter'] = None - - else: - raise Exception('Unknown regularizer algorithm') - - return pars - # parsForAlgorithm - - def setParameter(self, **kwargs): - '''set named parameter for the regularization engine - - raises Exception if the named parameter is not recognized - Typical usage is: - - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - reg.setParameter(input=u0) - reg.setParameter(regularization_parameter=10.) - - it can be also used as - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - reg.setParameter(input=u0 , regularization_parameter=10.) - ''' - - for key , value in kwargs.items(): - if key in self.pars.keys(): - self.pars[key] = value - else: - raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) - # setParameter - - def getParameter(self, **kwargs): - ret = {} - for key , value in kwargs.items(): - if key in self.pars.keys(): - ret[key] = self.pars[key] - else: - raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) - # setParameter - - - def __call__(self, input = None, regularization_parameter = None, **kwargs): - '''Actual call for the regularizer. - - One can either set the regularization parameters first and then call the - algorithm or set the regularization parameter during the call (as - is done in the static methods). - ''' - - if kwargs is not None: - for key, value in kwargs.items(): - #print("{0} = {1}".format(key, value)) - self.pars[key] = value - - if input is not None: - self.pars['input'] = input - if regularization_parameter is not None: - self.pars['regularization_parameter'] = regularization_parameter - - if self.debug: - print ("--------------------------------------------------") - for key, value in self.pars.items(): - if key== 'algorithm' : - print("{0} = {1}".format(key, value.__name__)) - elif key == 'input': - print("{0} = {1}".format(key, np.shape(value))) - else: - print("{0} = {1}".format(key, value)) - - - if None in self.pars: - raise Exception("Not all parameters have been provided") - - input = self.pars['input'] - regularization_parameter = self.pars['regularization_parameter'] - if self.algorithm == Regularizer.Algorithm.SplitBregman_TV : - return self.algorithm(input, regularization_parameter, - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['TV_penalty'].value ) - elif self.algorithm == Regularizer.Algorithm.FGP_TV : - return self.algorithm(input, regularization_parameter, - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['TV_penalty'].value ) - elif self.algorithm == Regularizer.Algorithm.LLT_model : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - return self.algorithm(input, - regularization_parameter, - self.pars['time_step'] , - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['restrictive_Z_smoothing'] ) - elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - return self.algorithm(input, regularization_parameter, - self.pars['searching_window_ratio'] , - self.pars['similarity_window_ratio'] , - self.pars['PB_filtering_parameter']) - elif self.algorithm == Regularizer.Algorithm.TGV_PD : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - if len(np.shape(input)) == 2: - return self.algorithm(input, regularization_parameter, - self.pars['first_order_term'] , - self.pars['second_order_term'] , - self.pars['number_of_iterations']) - elif len(np.shape(input)) == 3: - #assuming it's 3D - # run independent calls on each slice - out3d = input.copy() - for i in range(np.shape(input)[2]): - out = self.algorithm(input, regularization_parameter, - self.pars['first_order_term'] , - self.pars['second_order_term'] , - self.pars['number_of_iterations']) - # copy the result in the 3D image - out3d.T[i] = out[0].copy() - # append the rest of the info that the algorithm returns - output = [out3d] - for i in range(1,len(out)): - output.append(out[i]) - return output - - - - - - # __call__ - - @staticmethod - def SplitBregman_TV(input, regularization_parameter , **kwargs): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - out = list( reg(input, regularization_parameter, **kwargs) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def FGP_TV(input, regularization_parameter , **kwargs): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.FGP_TV) - out = list( reg(input, regularization_parameter, **kwargs) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def LLT_model(input, regularization_parameter , time_step, number_of_iterations, - tolerance_constant, restrictive_Z_smoothing=0): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.LLT_model) - out = list( reg(input, regularization_parameter, time_step=time_step, - number_of_iterations=number_of_iterations, - tolerance_constant=tolerance_constant, - restrictive_Z_smoothing=restrictive_Z_smoothing) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def PatchBased_Regul(input, regularization_parameter, - searching_window_ratio, - similarity_window_ratio, - PB_filtering_parameter): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul) - out = list( reg(input, - regularization_parameter, - searching_window_ratio=searching_window_ratio, - similarity_window_ratio=similarity_window_ratio, - PB_filtering_parameter=PB_filtering_parameter ) - ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def TGV_PD(input, regularization_parameter , first_order_term, - second_order_term, number_of_iterations): - start_time = timeit.default_timer() - - reg = Regularizer(Regularizer.Algorithm.TGV_PD) - out = list( reg(input, regularization_parameter, - first_order_term=first_order_term, - second_order_term=second_order_term, - number_of_iterations=number_of_iterations) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - - return out - - def printParametersToString(self): - txt = r'' - for key, value in self.pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt - diff --git a/src/Python/ccpi/__init__.py b/src/Python/ccpi/__init__.py deleted file mode 100644 index e69de29..0000000 --- a/src/Python/ccpi/__init__.py +++ /dev/null diff --git a/src/Python/ccpi/imaging/Regularizer.py b/src/Python/ccpi/imaging/Regularizer.py deleted file mode 100644 index 23799d6..0000000 --- a/src/Python/ccpi/imaging/Regularizer.py +++ /dev/null @@ -1,334 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Tue Aug 8 14:26:00 2017 - -@author: ofn77899 -""" - -from ccpi.imaging import cpu_regularizers -import numpy as np -from enum import Enum -import timeit - -class Regularizer(): - '''Class to handle regularizer algorithms to be used during reconstruction - - Currently 5 CPU (OMP) regularization algorithms are available: - - 1) SplitBregman_TV - 2) FGP_TV - 3) LLT_model - 4) PatchBased_Regul - 5) TGV_PD - - Usage: - the regularizer can be invoked as object or as static method - Depending on the actual regularizer the input parameter may vary, and - a different default setting is defined. - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - - out = reg(input=u0, regularization_parameter=10., number_of_iterations=30, - tolerance_constant=1e-4, - TV_Penalty=Regularizer.TotalVariationPenalty.l1) - - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., - number_of_iterations=30, tolerance_constant=1e-4, - TV_Penalty=Regularizer.TotalVariationPenalty.l1) - - A number of optional parameters can be passed or skipped - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) - - ''' - class Algorithm(Enum): - SplitBregman_TV = cpu_regularizers.SplitBregman_TV - FGP_TV = cpu_regularizers.FGP_TV - LLT_model = cpu_regularizers.LLT_model - PatchBased_Regul = cpu_regularizers.PatchBased_Regul - TGV_PD = cpu_regularizers.TGV_PD - # Algorithm - - class TotalVariationPenalty(Enum): - isotropic = 0 - l1 = 1 - # TotalVariationPenalty - - def __init__(self , algorithm, debug = True): - self.setAlgorithm ( algorithm ) - self.debug = debug - # __init__ - - def setAlgorithm(self, algorithm): - self.algorithm = algorithm - self.pars = self.getDefaultParsForAlgorithm(algorithm) - # setAlgorithm - - def getDefaultParsForAlgorithm(self, algorithm): - pars = dict() - - if algorithm == Regularizer.Algorithm.SplitBregman_TV : - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['number_of_iterations'] = 35 - pars['tolerance_constant'] = 0.0001 - pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic - - elif algorithm == Regularizer.Algorithm.FGP_TV : - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['number_of_iterations'] = 50 - pars['tolerance_constant'] = 0.001 - pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic - - elif algorithm == Regularizer.Algorithm.LLT_model: - pars['algorithm'] = algorithm - pars['input'] = None - pars['regularization_parameter'] = None - pars['time_step'] = None - pars['number_of_iterations'] = None - pars['tolerance_constant'] = None - pars['restrictive_Z_smoothing'] = 0 - - elif algorithm == Regularizer.Algorithm.PatchBased_Regul: - pars['algorithm'] = algorithm - pars['input'] = None - pars['searching_window_ratio'] = None - pars['similarity_window_ratio'] = None - pars['PB_filtering_parameter'] = None - pars['regularization_parameter'] = None - - elif algorithm == Regularizer.Algorithm.TGV_PD: - pars['algorithm'] = algorithm - pars['input'] = None - pars['first_order_term'] = None - pars['second_order_term'] = None - pars['number_of_iterations'] = None - pars['regularization_parameter'] = None - - else: - raise Exception('Unknown regularizer algorithm') - - self.acceptedInputKeywords = pars.keys() - - return pars - # parsForAlgorithm - - def setParameter(self, **kwargs): - '''set named parameter for the regularization engine - - raises Exception if the named parameter is not recognized - Typical usage is: - - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - reg.setParameter(input=u0) - reg.setParameter(regularization_parameter=10.) - - it can be also used as - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - reg.setParameter(input=u0 , regularization_parameter=10.) - ''' - - for key , value in kwargs.items(): - if key in self.pars.keys(): - self.pars[key] = value - else: - raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) - # setParameter - - def getParameter(self, key): - if type(key) is str: - if key in self.acceptedInputKeywords: - return self.pars[key] - else: - raise Exception('Unrecongnised parameter: {0} '.format(key) ) - elif type(key) is list: - outpars = [] - for k in key: - outpars.append(self.getParameter(k)) - return outpars - else: - raise Exception('Unhandled input {0}' .format(str(type(key)))) - # getParameter - - - def __call__(self, input = None, regularization_parameter = None, - output_all = False, **kwargs): - '''Actual call for the regularizer. - - One can either set the regularization parameters first and then call the - algorithm or set the regularization parameter during the call (as - is done in the static methods). - ''' - - if kwargs is not None: - for key, value in kwargs.items(): - #print("{0} = {1}".format(key, value)) - self.pars[key] = value - - if input is not None: - self.pars['input'] = input - if regularization_parameter is not None: - self.pars['regularization_parameter'] = regularization_parameter - - if self.debug: - print ("--------------------------------------------------") - for key, value in self.pars.items(): - if key== 'algorithm' : - print("{0} = {1}".format(key, value.__name__)) - elif key == 'input': - print("{0} = {1}".format(key, np.shape(value))) - else: - print("{0} = {1}".format(key, value)) - - - if None in self.pars: - raise Exception("Not all parameters have been provided") - - input = self.pars['input'] - regularization_parameter = self.pars['regularization_parameter'] - if self.algorithm == Regularizer.Algorithm.SplitBregman_TV : - ret = self.algorithm(input, regularization_parameter, - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['TV_penalty'].value ) - elif self.algorithm == Regularizer.Algorithm.FGP_TV : - ret = self.algorithm(input, regularization_parameter, - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['TV_penalty'].value ) - elif self.algorithm == Regularizer.Algorithm.LLT_model : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - ret = self.algorithm(input, - regularization_parameter, - self.pars['time_step'] , - self.pars['number_of_iterations'], - self.pars['tolerance_constant'], - self.pars['restrictive_Z_smoothing'] ) - elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - ret = self.algorithm(input, regularization_parameter, - self.pars['searching_window_ratio'] , - self.pars['similarity_window_ratio'] , - self.pars['PB_filtering_parameter']) - elif self.algorithm == Regularizer.Algorithm.TGV_PD : - #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) - # no default - if len(np.shape(input)) == 2: - ret = self.algorithm(input, regularization_parameter, - self.pars['first_order_term'] , - self.pars['second_order_term'] , - self.pars['number_of_iterations']) - elif len(np.shape(input)) == 3: - #assuming it's 3D - # run independent calls on each slice - out3d = input.copy() - for i in range(np.shape(input)[0]): - out = self.algorithm(input[i], regularization_parameter, - self.pars['first_order_term'] , - self.pars['second_order_term'] , - self.pars['number_of_iterations']) - # copy the result in the 3D image - out3d[i] = out[0].copy() - # append the rest of the info that the algorithm returns - output = [out3d] - for i in range(1,len(out)): - output.append(out[i]) - ret = output - - - - if output_all: - return ret - else: - return ret[0] - - # __call__ - - @staticmethod - def SplitBregman_TV(input, regularization_parameter , **kwargs): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - out = list( reg(input, regularization_parameter, **kwargs) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def FGP_TV(input, regularization_parameter , **kwargs): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.FGP_TV) - out = list( reg(input, regularization_parameter, **kwargs) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def LLT_model(input, regularization_parameter , time_step, number_of_iterations, - tolerance_constant, restrictive_Z_smoothing=0): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.LLT_model) - out = list( reg(input, regularization_parameter, time_step=time_step, - number_of_iterations=number_of_iterations, - tolerance_constant=tolerance_constant, - restrictive_Z_smoothing=restrictive_Z_smoothing) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def PatchBased_Regul(input, regularization_parameter, - searching_window_ratio, - similarity_window_ratio, - PB_filtering_parameter): - start_time = timeit.default_timer() - reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul) - out = list( reg(input, - regularization_parameter, - searching_window_ratio=searching_window_ratio, - similarity_window_ratio=similarity_window_ratio, - PB_filtering_parameter=PB_filtering_parameter ) - ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - return out - - @staticmethod - def TGV_PD(input, regularization_parameter , first_order_term, - second_order_term, number_of_iterations): - start_time = timeit.default_timer() - - reg = Regularizer(Regularizer.Algorithm.TGV_PD) - out = list( reg(input, regularization_parameter, - first_order_term=first_order_term, - second_order_term=second_order_term, - number_of_iterations=number_of_iterations) ) - out.append(reg.pars) - txt = reg.printParametersToString() - txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) - out.append(txt) - - return out - - def printParametersToString(self): - txt = r'' - for key, value in self.pars.items(): - if key== 'algorithm' : - txt += "{0} = {1}".format(key, value.__name__) - elif key == 'input': - txt += "{0} = {1}".format(key, np.shape(value)) - else: - txt += "{0} = {1}".format(key, value) - txt += '\n' - return txt - diff --git a/src/Python/ccpi/imaging/__init__.py b/src/Python/ccpi/imaging/__init__.py deleted file mode 100644 index e69de29..0000000 --- a/src/Python/ccpi/imaging/__init__.py +++ /dev/null diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py deleted file mode 100644 index 57435f8..0000000 --- a/src/Python/ccpi/reconstruction/AstraDevice.py +++ /dev/null @@ -1,95 +0,0 @@ -import astra -from ccpi.reconstruction.DeviceModel import DeviceModel -import numpy - -class AstraDevice(DeviceModel): - '''Concrete class for Astra Device''' - - def __init__(self, - device_type, - data_aquisition_geometry, - reconstructed_volume_geometry): - - super(AstraDevice, self).__init__(device_type, - data_aquisition_geometry, - reconstructed_volume_geometry) - - self.type = device_type - self.proj_geom = astra.creators.create_proj_geom( - device_type, - self.acquisition_data_geometry['detectorSpacingX'], - self.acquisition_data_geometry['detectorSpacingY'], - self.acquisition_data_geometry['cameraX'], - self.acquisition_data_geometry['cameraY'], - self.acquisition_data_geometry['angles'], - ) - - self.vol_geom = astra.creators.create_vol_geom( - self.reconstructed_volume_geometry['X'], - self.reconstructed_volume_geometry['Y'], - self.reconstructed_volume_geometry['Z'] - ) - - def doForwardProject(self, volume): - '''Forward projects the volume according to the device geometry - -Uses Astra-toolbox -''' - - try: - sino_id, y = astra.creators.create_sino3d_gpu( - volume, self.proj_geom, self.vol_geom) - astra.matlab.data3d('delete', sino_id) - return y - except Exception as e: - print(e) - print("Value Error: ", self.proj_geom, self.vol_geom) - - def doBackwardProject(self, projections): - '''Backward projects the projections according to the device geometry - -Uses Astra-toolbox -''' - idx, volume = \ - astra.creators.create_backprojection3d_gpu( - projections, - self.proj_geom, - self.vol_geom) - - astra.matlab.data3d('delete', idx) - return volume - - def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}): - '''Create a new device based on the current device by changing some parameter - -VERY RISKY''' - acquisition_data_geometry = self.acquisition_data_geometry.copy() - for k,v in proj_par.items(): - if k in acquisition_data_geometry.keys(): - acquisition_data_geometry[k] = v - proj_geom = [ - acquisition_data_geometry['cameraX'], - acquisition_data_geometry['cameraY'], - acquisition_data_geometry['detectorSpacingX'], - acquisition_data_geometry['detectorSpacingY'], - acquisition_data_geometry['angles'] - ] - - reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy() - for k,v in vol_par.items(): - if k in reconstructed_volume_geometry.keys(): - reconstructed_volume_geometry[k] = v - - vol_geom = [ - reconstructed_volume_geometry['X'], - reconstructed_volume_geometry['Y'], - reconstructed_volume_geometry['Z'] - ] - return AstraDevice(self.type, proj_geom, vol_geom) - - - -if __name__=="main": - a = AstraDevice() - - diff --git a/src/Python/ccpi/reconstruction/DeviceModel.py b/src/Python/ccpi/reconstruction/DeviceModel.py deleted file mode 100644 index eeb9a34..0000000 --- a/src/Python/ccpi/reconstruction/DeviceModel.py +++ /dev/null @@ -1,63 +0,0 @@ -from abc import ABCMeta, abstractmethod -from enum import Enum - -class DeviceModel(metaclass=ABCMeta): - '''Abstract class that defines the device for projection and backprojection - -This class defines the methods that must be implemented by concrete classes. - - ''' - - class DeviceType(Enum): - '''Type of device -PARALLEL BEAM -PARALLEL BEAM 3D -CONE BEAM -HELICAL''' - - PARALLEL = 'parallel' - PARALLEL3D = 'parallel3d' - CONE_BEAM = 'cone-beam' - HELICAL = 'helical' - - def __init__(self, - device_type, - data_aquisition_geometry, - reconstructed_volume_geometry): - '''Initializes the class - -Mandatory parameters are: -device_type from DeviceType Enum -data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX, - detectorSpacingY, angles) -reconstructed_volume_geometry: tuple (dimX,dimY,dimZ) -''' - self.device_geometry = device_type - self.acquisition_data_geometry = { - 'cameraX': data_aquisition_geometry[0], - 'cameraY': data_aquisition_geometry[1], - 'detectorSpacingX' : data_aquisition_geometry[2], - 'detectorSpacingY' : data_aquisition_geometry[3], - 'angles' : data_aquisition_geometry[4],} - self.reconstructed_volume_geometry = { - 'X': reconstructed_volume_geometry[0] , - 'Y': reconstructed_volume_geometry[1] , - 'Z': reconstructed_volume_geometry[2] } - - @abstractmethod - def doForwardProject(self, volume): - '''Forward projects the volume according to the device geometry''' - return NotImplemented - - - @abstractmethod - def doBackwardProject(self, projections): - '''Backward projects the projections according to the device geometry''' - return NotImplemented - - @abstractmethod - def createReducedDevice(self): - '''Create a Device to do forward/backward projections on 2D slices''' - return NotImplemented - - diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py deleted file mode 100644 index e40ad24..0000000 --- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py +++ /dev/null @@ -1,882 +0,0 @@ -# -*- coding: utf-8 -*- -############################################################################### -#This work is part of the Core Imaging Library developed by -#Visual Analytics and Imaging System Group of the Science Technology -#Facilities Council, STFC -# -#Copyright 2017 Edoardo Pasca, Srikanth Nagella -#Copyright 2017 Daniil Kazantsev -# -#Licensed under the Apache License, Version 2.0 (the "License"); -#you may not use this file except in compliance with the License. -#You may obtain a copy of the License at -#http://www.apache.org/licenses/LICENSE-2.0 -#Unless required by applicable law or agreed to in writing, software -#distributed under the License is distributed on an "AS IS" BASIS, -#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -#See the License for the specific language governing permissions and -#limitations under the License. -############################################################################### - - - -import numpy -#from ccpi.reconstruction.parallelbeam import alg - -#from ccpi.imaging.Regularizer import Regularizer -from enum import Enum - -import astra -from ccpi.reconstruction.AstraDevice import AstraDevice - - - -class FISTAReconstructor(): - '''FISTA-based reconstruction algorithm using ASTRA-toolbox - - ''' - # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> - # ___Input___: - # params.[] file: - # - .proj_geom (geometry of the projector) [required] - # - .vol_geom (geometry of the reconstructed object) [required] - # - .sino (vectorized in 2D or 3D sinogram) [required] - # - .iterFISTA (iterations for the main loop, default 40) - # - .L_const (Lipschitz constant, default Power method) ) - # - .X_ideal (ideal image, if given) - # - .weights (statisitcal weights, size of the sinogram) - # - .ROI (Region-of-interest, only if X_ideal is given) - # - .initialize (a 'warm start' using SIRT method from ASTRA) - #----------------Regularization choices------------------------ - # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) - # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) - # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) - # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) - # - .Regul_Iterations (iterations for the selected penalty, default 25) - # - .Regul_tauLLT (time step parameter for LLT term) - # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) - # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) - #----------------Visualization parameters------------------------ - # - .show (visualize reconstruction 1/0, (0 default)) - # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) - # - .slice (for 3D volumes - slice number to imshow) - # ___Output___: - # 1. X - reconstructed image/volume - # 2. output - a structure with - # - .Resid_error - residual error (if X_ideal is given) - # - .objective: value of the objective function - # - .L_const: Lipshitz constant to avoid recalculations - - # References: - # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse - # Problems" by A. Beck and M Teboulle - # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo - # 3. "A novel tomographic reconstruction method based on the robust - # Student's t function for suppressing data outliers" D. Kazantsev et.al. - # D. Kazantsev, 2016-17 - def __init__(self, projector_geometry, - output_geometry, - input_sinogram, - device, - **kwargs): - # handle parmeters: - # obligatory parameters - self.pars = dict() - self.pars['projector_geometry'] = projector_geometry # proj_geom - self.pars['output_geometry'] = output_geometry # vol_geom - self.pars['input_sinogram'] = input_sinogram # sino - sliceZ, nangles, detectors = numpy.shape(input_sinogram) - self.pars['detectors'] = detectors - self.pars['number_of_angles'] = nangles - self.pars['SlicesZ'] = sliceZ - self.pars['output_volume'] = None - self.pars['device_model'] = device - - self.use_device = True - - print (self.pars) - # handle optional input parameters (at instantiation) - - # Accepted input keywords - kw = ( - # mandatory fields - 'projector_geometry', - 'output_geometry', - 'input_sinogram', - 'detectors', - 'number_of_angles', - 'SlicesZ', - # optional fields - 'number_of_iterations', - 'Lipschitz_constant' , - 'ideal_image' , - 'weights' , - 'region_of_interest' , - 'initialize' , - 'regularizer' , - 'ring_lambda_R_L1', - 'ring_alpha', - 'subsets', - 'output_volume', - 'os_subsets', - 'os_indices', - 'os_bins', - 'device_model', - 'reduced_device_model') - self.acceptedInputKeywords = list(kw) - - # handle keyworded parameters - if kwargs is not None: - for key, value in kwargs.items(): - if key in kw: - #print("{0} = {1}".format(key, value)) - self.pars[key] = value - - # set the default values for the parameters if not set - if 'number_of_iterations' in kwargs.keys(): - self.pars['number_of_iterations'] = kwargs['number_of_iterations'] - else: - self.pars['number_of_iterations'] = 40 - if 'weights' in kwargs.keys(): - self.pars['weights'] = kwargs['weights'] - else: - self.pars['weights'] = \ - numpy.ones(numpy.shape( - self.pars['input_sinogram'])) - if 'Lipschitz_constant' in kwargs.keys(): - self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] - else: - self.pars['Lipschitz_constant'] = None - - if not 'ideal_image' in kwargs.keys(): - self.pars['ideal_image'] = None - - if not 'region_of_interest'in kwargs.keys() : - if self.pars['ideal_image'] == None: - self.pars['region_of_interest'] = None - else: - ## nonzero if the image is larger than m - fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1) - - self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0) - - # the regularizer must be a correctly instantiated object - if not 'regularizer' in kwargs.keys() : - self.pars['regularizer'] = None - - #RING REMOVAL - if not 'ring_lambda_R_L1' in kwargs.keys(): - self.pars['ring_lambda_R_L1'] = 0 - if not 'ring_alpha' in kwargs.keys(): - self.pars['ring_alpha'] = 1 - - # ORDERED SUBSET - if not 'subsets' in kwargs.keys(): - self.pars['subsets'] = 0 - else: - self.createOrderedSubsets() - - if not 'initialize' in kwargs.keys(): - self.pars['initialize'] = False - - reduced_device = device.createReducedDevice() - self.setParameter(reduced_device_model=reduced_device) - - - - def setParameter(self, **kwargs): - '''set named parameter for the reconstructor engine - - raises Exception if the named parameter is not recognized - - ''' - for key , value in kwargs.items(): - if key in self.acceptedInputKeywords: - self.pars[key] = value - else: - raise Exception('Wrong parameter {0} for '.format(key) + - 'reconstructor') - # setParameter - - def getParameter(self, key): - if type(key) is str: - if key in self.acceptedInputKeywords: - return self.pars[key] - else: - raise Exception('Unrecongnised parameter: {0} '.format(key) ) - elif type(key) is list: - outpars = [] - for k in key: - outpars.append(self.getParameter(k)) - return outpars - else: - raise Exception('Unhandled input {0}' .format(str(type(key)))) - - - def calculateLipschitzConstantWithPowerMethod(self): - ''' using Power method (PM) to establish L constant''' - - N = self.pars['output_geometry']['GridColCount'] - proj_geom = self.pars['projector_geometry'] - vol_geom = self.pars['output_geometry'] - weights = self.pars['weights'] - SlicesZ = self.pars['SlicesZ'] - - - - if (proj_geom['type'] == 'parallel') or \ - (proj_geom['type'] == 'parallel3d'): - #% for parallel geometry we can do just one slice - #print('Calculating Lipshitz constant for parallel beam geometry...') - niter = 5;# % number of iteration for the PM - #N = params.vol_geom.GridColCount; - #x1 = rand(N,N,1); - x1 = numpy.random.rand(1,N,N) - #sqweight = sqrt(weights(:,:,1)); - sqweight = numpy.sqrt(weights[0:1,:,:]) - proj_geomT = proj_geom.copy(); - proj_geomT['DetectorRowCount'] = 1; - vol_geomT = vol_geom.copy(); - vol_geomT['GridSliceCount'] = 1; - - #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - - - for i in range(niter): - # [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT); - # s = norm(x1(:)); - # x1 = x1/s; - # [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - # y = sqweight.*y; - # astra_mex_data3d('delete', sino_id); - # astra_mex_data3d('delete', id); - #print ("iteration {0}".format(i)) - - sino_id, y = astra.creators.create_sino3d_gpu(x1, - proj_geomT, - vol_geomT) - - y = (sqweight * y).copy() # element wise multiplication - - #b=fig.add_subplot(2,1,2) - #imgplot = plt.imshow(x1[0]) - #plt.show() - - #astra_mex_data3d('delete', sino_id); - astra.matlab.data3d('delete', sino_id) - del x1 - - idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(), - proj_geomT, - vol_geomT) - del y - - - s = numpy.linalg.norm(x1) - ### this line? - x1 = (x1/s).copy(); - - # ### this line? - # sino_id, y = astra.creators.create_sino3d_gpu(x1, - # proj_geomT, - # vol_geomT); - # y = sqweight * y; - astra.matlab.data3d('delete', sino_id); - astra.matlab.data3d('delete', idx) - print ("iteration {0} s= {1}".format(i,s)) - - #end - del proj_geomT - del vol_geomT - #plt.show() - else: - #% divergen beam geometry - print('Calculating Lipshitz constant for divergen beam geometry...') - niter = 8; #% number of iteration for PM - x1 = numpy.random.rand(SlicesZ , N , N); - #sqweight = sqrt(weights); - sqweight = numpy.sqrt(weights[0]) - - sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); - y = sqweight*y; - #astra_mex_data3d('delete', sino_id); - astra.matlab.data3d('delete', sino_id); - - for i in range(niter): - #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); - idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, - proj_geom, - vol_geom) - s = numpy.linalg.norm(x1) - ### this line? - x1 = x1/s; - ### this line? - #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); - sino_id, y = astra.creators.create_sino3d_gpu(x1, - proj_geom, - vol_geom); - - y = sqweight*y; - #astra_mex_data3d('delete', sino_id); - #astra_mex_data3d('delete', id); - astra.matlab.data3d('delete', sino_id); - astra.matlab.data3d('delete', idx); - #end - #clear x1 - del x1 - - - return s - - - def setRegularizer(self, regularizer): - if regularizer is not None: - self.pars['regularizer'] = regularizer - - - def initialize(self): - # convenience variable storage - proj_geom = self.pars['projector_geometry'] - vol_geom = self.pars['output_geometry'] - sino = self.pars['input_sinogram'] - - # a 'warm start' with SIRT method - # Create a data object for the reconstruction - rec_id = astra.matlab.data3d('create', '-vol', - vol_geom); - - #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino); - sinogram_id = astra.matlab.data3d('create', '-proj3d', - proj_geom, - sino) - - sirt_config = astra.astra_dict('SIRT3D_CUDA') - sirt_config['ReconstructionDataId' ] = rec_id - sirt_config['ProjectionDataId'] = sinogram_id - - sirt = astra.algorithm.create(sirt_config) - astra.algorithm.run(sirt, iterations=35) - X = astra.matlab.data3d('get', rec_id) - - # clean up memory - astra.matlab.data3d('delete', rec_id) - astra.matlab.data3d('delete', sinogram_id) - astra.algorithm.delete(sirt) - - - - return X - - def createOrderedSubsets(self, subsets=None): - if subsets is None: - try: - subsets = self.getParameter('subsets') - except Exception(): - subsets = 0 - #return subsets - else: - self.setParameter(subsets=subsets) - - - angles = self.getParameter('projector_geometry')['ProjectionAngles'] - - #binEdges = numpy.linspace(angles.min(), - # angles.max(), - # subsets + 1) - binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) - # get rearranged subset indices - IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32) - counterM = 0 - for ii in range(binsDiscr.max()): - counter = 0 - for jj in range(subsets): - curr_index = ii + jj + counter - #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) - if binsDiscr[jj] > ii: - if (counterM < numpy.size(IndicesReorg)): - IndicesReorg[counterM] = curr_index - counterM = counterM + 1 - - counter = counter + binsDiscr[jj] - 1 - - # store the OS in parameters - self.setParameter(os_subsets=subsets, - os_bins=binsDiscr, - os_indices=IndicesReorg) - - - def prepareForIteration(self): - print ("FISTA Reconstructor: prepare for iteration") - - self.residual_error = numpy.zeros((self.pars['number_of_iterations'])) - self.objective = numpy.zeros((self.pars['number_of_iterations'])) - - #2D array (for 3D data) of sparse "ring" - detectors, nangles, sliceZ = numpy.shape(self.pars['input_sinogram']) - self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float) - # another ring variable - self.r_x = self.r.copy() - - self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram'])) - - if self.getParameter('Lipschitz_constant') is None: - self.pars['Lipschitz_constant'] = \ - self.calculateLipschitzConstantWithPowerMethod() - # errors vector (if the ground truth is given) - self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations'))); - # objective function values vector - self.objective = numpy.zeros((self.getParameter('number_of_iterations'))); - - - # prepareForIteration - - def iterate (self, Xin=None): - if self.getParameter('subsets') == 0: - return self.iterateStandard(Xin) - else: - return self.iterateOrderedSubsets(Xin) - - def iterateStandard(self, Xin=None): - print ("FISTA Reconstructor: iterate") - - if Xin is None: - if self.getParameter('initialize'): - X = self.initialize() - else: - N = vol_geom['GridColCount'] - X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) - else: - # copy by reference - X = Xin - # store the output volume in the parameters - self.setParameter(output_volume=X) - X_t = X.copy() - # convenience variable storage - proj_geom , vol_geom, sino , \ - SlicesZ , ring_lambda_R_L1 , weights = \ - self.getParameter([ 'projector_geometry' , - 'output_geometry', - 'input_sinogram', - 'SlicesZ' , - 'ring_lambda_R_L1', - 'weights']) - - t = 1 - - device = self.getParameter('device_model') - reduced_device = self.getParameter('reduced_device_model') - - for i in range(self.getParameter('number_of_iterations')): - print("iteration", i) - X_old = X.copy() - t_old = t - r_old = self.r.copy() - pg = self.getParameter('projector_geometry')['type'] - if pg == 'parallel' or \ - pg == 'fanflat' or \ - pg == 'fanflat_vec': - # if the geometry is parallel use slice-by-slice - # projection-backprojection routine - #sino_updt = zeros(size(sino),'single'); - - if self.use_device : - self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) - - for kkk in range(SlicesZ): - self.sino_updt[kkk] = \ - reduced_device.doForwardProject( X_t[kkk:kkk+1] ) - else: - proj_geomT = proj_geom.copy() - proj_geomT['DetectorRowCount'] = 1 - vol_geomT = vol_geom.copy() - vol_geomT['GridSliceCount'] = 1; - self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) - for kkk in range(SlicesZ): - sino_id, self.sino_updt[kkk] = \ - astra.creators.create_sino3d_gpu( - X_t[kkk:kkk+1], proj_geomT, vol_geomT) - astra.matlab.data3d('delete', sino_id) - else: - # for divergent 3D geometry (watch the GPU memory overflow in - # ASTRA versions < 1.8) - #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - - if self.use_device: - self.sino_updt = device.doForwardProject(X_t) - else: - sino_id, self.sino_updt = astra.creators.create_sino3d_gpu( - X_t, proj_geom, vol_geom) - astra.matlab.data3d('delete', sino_id) - - - ## RING REMOVAL - if ring_lambda_R_L1 != 0: - self.ringRemoval(i) - else: - self.residual = weights * (self.sino_updt - sino) - self.objective[i] = 0.5 * numpy.linalg.norm(self.residual) - #objective(i) = 0.5*norm(residual(:)); % for the objective function output - ## Projection/Backprojection Routine - X, X_t = self.projectionBackprojection(X, X_t) - - ## REGULARIZATION - Y = self.regularize(X) - X = Y.copy() - ## Update Loop - X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old) - - print ("t" , t) - print ("X min {0} max {1}".format(X_t.min(),X_t.max())) - self.setParameter(output_volume=X) - return X - ## iterate - - def ringRemoval(self, i): - print ("FISTA Reconstructor: ring removal") - residual = self.residual - lambdaR_L1 , alpha_ring , weights , L_const , sino= \ - self.getParameter(['ring_lambda_R_L1', - 'ring_alpha' , 'weights', - 'Lipschitz_constant', - 'input_sinogram']) - r_x = self.r_x - sino_updt = self.sino_updt - - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(self.getParameter('input_sinogram')) - if lambdaR_L1 > 0 : - for kkk in range(anglesNumb): - - residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - vec = residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:].squeeze() - self.r = (r_x - (1./L_const) * vec).copy() - self.objective[i] = (0.5 * (residual ** 2).sum()) - - def projectionBackprojection(self, X, X_t): - print ("FISTA Reconstructor: projection-backprojection routine") - - # a few useful variables - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(self.getParameter('input_sinogram')) - residual = self.residual - proj_geom , vol_geom , L_const = \ - self.getParameter(['projector_geometry' , - 'output_geometry', - 'Lipschitz_constant']) - - device, reduced_device = self.getParameter(['device_model', - 'reduced_device_model']) - - if self.getParameter('projector_geometry')['type'] == 'parallel' or \ - self.getParameter('projector_geometry')['type'] == 'fanflat' or \ - self.getParameter('projector_geometry')['type'] == 'fanflat_vec': - # if the geometry is parallel use slice-by-slice - # projection-backprojection routine - #sino_updt = zeros(size(sino),'single'); - x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) - - if self.use_device: - proj_geomT = proj_geom.copy() - proj_geomT['DetectorRowCount'] = 1 - vol_geomT = vol_geom.copy() - vol_geomT['GridSliceCount'] = 1; - - for kkk in range(SlicesZ): - - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residual[kkk:kkk+1], - proj_geomT, vol_geomT) - astra.matlab.data3d('delete', x_id) - else: - for kkk in range(SliceZ): - x_temp[kkk] = \ - reduced_device.doBackwardProject(residual[kkk:kkk+1]) - else: - if self.use_device: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residual, proj_geom, vol_geom) - astra.matlab.data3d('delete', x_id) - else: - x_temp = \ - device.doBackwardProject(residual) - - - X = X_t - (1/L_const) * x_temp - #astra.matlab.data3d('delete', sino_id) - return (X , X_t) - - - def regularize(self, X , output_all=False): - #print ("FISTA Reconstructor: regularize") - - regularizer = self.getParameter('regularizer') - if regularizer is not None: - return regularizer(input=X, - output_all=output_all) - else: - return X - - def updateLoop(self, i, X, X_old, r_old, t, t_old): - print ("FISTA Reconstructor: update loop") - lambdaR_L1 = self.getParameter('ring_lambda_R_L1') - - t = (1 + numpy.sqrt(1 + 4 * t**2))/2 - X_t = X + (((t_old -1)/t) * (X - X_old)) - - if lambdaR_L1 > 0: - self.r = numpy.max( - numpy.abs(self.r) - lambdaR_L1 , 0) * \ - numpy.sign(self.r) - self.r_x = self.r + \ - (((t_old-1)/t) * (self.r - r_old)) - - if self.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, self.objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], self.objective[i])) - return (X , X_t, t) - - def iterateOrderedSubsets(self, Xin=None): - print ("FISTA Reconstructor: Ordered Subsets iterate") - - if Xin is None: - if self.getParameter('initialize'): - X = self.initialize() - else: - N = vol_geom['GridColCount'] - X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) - else: - # copy by reference - X = Xin - # store the output volume in the parameters - self.setParameter(output_volume=X) - X_t = X.copy() - - # some useful constants - proj_geom , vol_geom, sino , \ - SlicesZ, weights , alpha_ring ,\ - lambdaR_L1 , L_const , iterFISTA = self.getParameter( - ['projector_geometry' , 'output_geometry', 'input_sinogram', - 'SlicesZ' , 'weights', 'ring_alpha' , - 'ring_lambda_R_L1', 'Lipschitz_constant', - 'number_of_iterations']) - - - # errors vector (if the ground truth is given) - Resid_error = numpy.zeros((iterFISTA)); - # objective function values vector - #objective = numpy.zeros((iterFISTA)); - objective = self.objective - - - t = 1 - - ## additional for - proj_geomSUB = proj_geom.copy() - self.residual2 = numpy.zeros(numpy.shape(sino)) - residual2 = self.residual2 - sino_updt_FULL = self.residual.copy() - r_x = self.r.copy() - - print ("starting iterations") - ## % Outer FISTA iterations loop - for i in range(self.getParameter('number_of_iterations')): - # With OS approach it becomes trickier to correlate independent - # subsets, hence additional work is required one solution is to - # work with a full sinogram at times - - r_old = self.r.copy() - t_old = t - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(self.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 - if (i > 1 and lambdaR_L1 > 0) : - for kkk in range(anglesNumb): - - residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt_FULL[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - - vec = self.residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:] # 1 or 0? - r_x = self.r_x - # update ring variable - self.r = (r_x - (1./L_const) * vec).copy() - - # subset loop - counterInd = 1 - geometry_type = self.getParameter('projector_geometry')['type'] - angles = self.getParameter('projector_geometry')['ProjectionAngles'] - - for ss in range(self.getParameter('subsets')): - #print ("Subset {0}".format(ss)) - X_old = X.copy() - t_old = t - - # the number of projections per subset - numProjSub = self.getParameter('os_bins')[ss] - CurrSubIndices = self.getParameter('os_indices')\ - [counterInd:counterInd+numProjSub] - #print ("Len CurrSubIndices {0}".format(numProjSub)) - mask = numpy.zeros(numpy.shape(angles), dtype=bool) - #cc = 0 - for j in range(len(CurrSubIndices)): - mask[int(CurrSubIndices[j])] = True - proj_geomSUB['ProjectionAngles'] = angles[mask] - - if self.use_device: - device = self.getParameter('device_model')\ - .createReducedDevice( - proj_par={'angles':angles[mask]}, - vol_par={}) - - shape = list(numpy.shape(self.getParameter('input_sinogram'))) - shape[1] = numProjSub - sino_updt_Sub = numpy.zeros(shape) - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - - for kkk in range(SlicesZ): - if self.use_device: - sinoT = device.doForwardProject(X_t[kkk:kkk+1]) - else: - sino_id, sinoT = astra.creators.create_sino3d_gpu ( - X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) - astra.matlab.data3d('delete', sino_id) - sino_updt_Sub[kkk] = sinoT.T.copy() - - else: - # for 3D geometry (watch the GPU memory overflow in - # ASTRA < 1.8) - if self.use_device: - sino_updt_Sub = device.doForwardProject(X_t) - - else: - sino_id, sino_updt_Sub = \ - astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom) - - astra.matlab.data3d('delete', sino_id) - - #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub)) - if lambdaR_L1 > 0 : - ## RING REMOVAL - #print ("ring removal") - residualSub , sino_updt_Sub, sino_updt_FULL = \ - self.ringRemovalOrderedSubsets(ss, - counterInd, - sino_updt_Sub, - sino_updt_FULL) - else: - #PWLS model - #print ("PWLS model") - residualSub = weights[:,CurrSubIndices,:] * \ - ( sino_updt_Sub - \ - sino[:,CurrSubIndices,:].squeeze() ) - objective[i] = 0.5 * numpy.linalg.norm(residualSub) - - # projection/backprojection routine - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - # if geometry is 2D use slice-by-slice projection-backprojection - # routine - x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) - for kkk in range(SlicesZ): - if self.use_device: - x_temp[kkk] = device.doBackwardProject( - residualSub[kkk:kkk+1]) - else: - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residualSub[kkk:kkk+1], - proj_geomSUB, vol_geom) - astra.matlab.data3d('delete', x_id) - - else: - if self.use_device: - x_temp = device.doBackwardProject( - residualSub) - else: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residualSub, proj_geomSUB, vol_geom) - - astra.matlab.data3d('delete', x_id) - - X = X_t - (1/L_const) * x_temp - - ## REGULARIZATION - X = self.regularize(X) - - ## Update subset Loop - t = (1 + numpy.sqrt(1 + 4 * t**2))/2 - X_t = X + (((t_old -1)/t) * (X - X_old)) - # FINAL - ## update iteration loop - if lambdaR_L1 > 0: - self.r = numpy.max( - numpy.abs(self.r) - lambdaR_L1 , 0) * \ - numpy.sign(self.r) - self.r_x = self.r + \ - (((t_old-1)/t) * (self.r - r_old)) - - if self.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, self.objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], self.objective[i])) - print("X min {0} max {1}".format(X.min(),X.max())) - self.setParameter(output_volume=X) - counterInd = counterInd + numProjSub - - return X - - def ringRemovalOrderedSubsets(self, ss,counterInd, - sino_updt_Sub, sino_updt_FULL): - residual = self.residual - r_x = self.r_x - weights , alpha_ring , sino = \ - self.getParameter( ['weights', 'ring_alpha', 'input_sinogram']) - numProjSub = self.getParameter('os_bins')[ss] - CurrSubIndices = self.getParameter('os_indices')\ - [counterInd:counterInd+numProjSub] - - shape = list(numpy.shape(self.getParameter('input_sinogram'))) - shape[1] = numProjSub - - residualSub = numpy.zeros(shape) - - for kkk in range(numProjSub): - #print ("ring removal indC ... {0}".format(kkk)) - indC = int(CurrSubIndices[kkk]) - residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ - (sino_updt_Sub[:,kkk,:].squeeze() - \ - sino[:,indC,:].squeeze() - alpha_ring * r_x) - # filling the full sinogram - sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() - - return (residualSub , sino_updt_Sub, sino_updt_FULL) - - diff --git a/src/Python/ccpi/reconstruction/Reconstructor.py b/src/Python/ccpi/reconstruction/Reconstructor.py deleted file mode 100644 index ba67327..0000000 --- a/src/Python/ccpi/reconstruction/Reconstructor.py +++ /dev/null @@ -1,598 +0,0 @@ -# -*- coding: utf-8 -*- -############################################################################### -#This work is part of the Core Imaging Library developed by -#Visual Analytics and Imaging System Group of the Science Technology -#Facilities Council, STFC -# -#Copyright 2017 Edoardo Pasca, Srikanth Nagella -#Copyright 2017 Daniil Kazantsev -# -#Licensed under the Apache License, Version 2.0 (the "License"); -#you may not use this file except in compliance with the License. -#You may obtain a copy of the License at -#http://www.apache.org/licenses/LICENSE-2.0 -#Unless required by applicable law or agreed to in writing, software -#distributed under the License is distributed on an "AS IS" BASIS, -#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -#See the License for the specific language governing permissions and -#limitations under the License. -############################################################################### - - - -import numpy -import h5py -from ccpi.reconstruction.parallelbeam import alg - -from Regularizer import Regularizer -from enum import Enum - -import astra - - -class Reconstructor: - - class Algorithm(Enum): - CGLS = alg.cgls - CGLS_CONV = alg.cgls_conv - SIRT = alg.sirt - MLEM = alg.mlem - CGLS_TICHONOV = alg.cgls_tikhonov - CGLS_TVREG = alg.cgls_TVreg - FISTA = 'fista' - - def __init__(self, algorithm = None, projection_data = None, - angles = None, center_of_rotation = None , - flat_field = None, dark_field = None, - iterations = None, resolution = None, isLogScale = False, threads = None, - normalized_projection = None): - - self.pars = dict() - self.pars['algorithm'] = algorithm - self.pars['projection_data'] = projection_data - self.pars['normalized_projection'] = normalized_projection - self.pars['angles'] = angles - self.pars['center_of_rotation'] = numpy.double(center_of_rotation) - self.pars['flat_field'] = flat_field - self.pars['iterations'] = iterations - self.pars['dark_field'] = dark_field - self.pars['resolution'] = resolution - self.pars['isLogScale'] = isLogScale - self.pars['threads'] = threads - if (iterations != None): - self.pars['iterationValues'] = numpy.zeros((iterations)) - - if projection_data != None and dark_field != None and flat_field != None: - norm = self.normalize(projection_data, dark_field, flat_field, 0.1) - self.pars['normalized_projection'] = norm - - - def setPars(self, parameters): - keys = ['algorithm','projection_data' ,'normalized_projection', \ - 'angles' , 'center_of_rotation' , 'flat_field', \ - 'iterations','dark_field' , 'resolution', 'isLogScale' , \ - 'threads' , 'iterationValues', 'regularize'] - - for k in keys: - if k not in parameters.keys(): - self.pars[k] = None - else: - self.pars[k] = parameters[k] - - - def sanityCheck(self): - projection_data = self.pars['projection_data'] - dark_field = self.pars['dark_field'] - flat_field = self.pars['flat_field'] - angles = self.pars['angles'] - - if projection_data != None and dark_field != None and \ - angles != None and flat_field != None: - data_shape = numpy.shape(projection_data) - angle_shape = numpy.shape(angles) - - if angle_shape[0] != data_shape[0]: - #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ - # (angle_shape[0] , data_shape[0]) ) - return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ - (angle_shape[0] , data_shape[0]) ) - - if data_shape[1:] != numpy.shape(flat_field): - #raise Exception('Projection and flat field dimensions do not match') - return (False , 'Projection and flat field dimensions do not match') - if data_shape[1:] != numpy.shape(dark_field): - #raise Exception('Projection and dark field dimensions do not match') - return (False , 'Projection and dark field dimensions do not match') - - return (True , '' ) - elif self.pars['normalized_projection'] != None: - data_shape = numpy.shape(self.pars['normalized_projection']) - angle_shape = numpy.shape(angles) - - if angle_shape[0] != data_shape[0]: - #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ - # (angle_shape[0] , data_shape[0]) ) - return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ - (angle_shape[0] , data_shape[0]) ) - else: - return (True , '' ) - else: - return (False , 'Not enough data') - - def reconstruct(self, parameters = None): - if parameters != None: - self.setPars(parameters) - - go , reason = self.sanityCheck() - if go: - return self._reconstruct() - else: - raise Exception(reason) - - - def _reconstruct(self, parameters=None): - if parameters!=None: - self.setPars(parameters) - parameters = self.pars - - if parameters['algorithm'] != None and \ - parameters['normalized_projection'] != None and \ - parameters['angles'] != None and \ - parameters['center_of_rotation'] != None and \ - parameters['iterations'] != None and \ - parameters['resolution'] != None and\ - parameters['threads'] != None and\ - parameters['isLogScale'] != None: - - - if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS, - Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT): - #store parameters - self.pars = parameters - result = parameters['algorithm']( - parameters['normalized_projection'] , - parameters['angles'], - parameters['center_of_rotation'], - parameters['resolution'], - parameters['iterations'], - parameters['threads'] , - parameters['isLogScale'] - ) - return result - elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV, - Reconstructor.Algorithm.CGLS_TICHONOV, - Reconstructor.Algorithm.CGLS_TVREG) : - self.pars = parameters - result = parameters['algorithm']( - parameters['normalized_projection'] , - parameters['angles'], - parameters['center_of_rotation'], - parameters['resolution'], - parameters['iterations'], - parameters['threads'] , - parameters['regularize'], - numpy.zeros((parameters['iterations'])), - parameters['isLogScale'] - ) - - elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA: - pass - - else: - if parameters['projection_data'] != None and \ - parameters['dark_field'] != None and \ - parameters['flat_field'] != None: - norm = self.normalize(parameters['projection_data'], - parameters['dark_field'], - parameters['flat_field'], 0.1) - self.pars['normalized_projection'] = norm - return self._reconstruct(parameters) - - - - def _normalize(self, projection, dark, flat, def_val=0): - a = (projection - dark) - b = (flat-dark) - with numpy.errstate(divide='ignore', invalid='ignore'): - c = numpy.true_divide( a, b ) - c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 - return c - - def normalize(self, projections, dark, flat, def_val=0): - norm = [self._normalize(projection, dark, flat, def_val) for projection in projections] - return numpy.asarray (norm, dtype=numpy.float32) - - - -class FISTA(): - '''FISTA-based reconstruction algorithm using ASTRA-toolbox - - ''' - # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> - # ___Input___: - # params.[] file: - # - .proj_geom (geometry of the projector) [required] - # - .vol_geom (geometry of the reconstructed object) [required] - # - .sino (vectorized in 2D or 3D sinogram) [required] - # - .iterFISTA (iterations for the main loop, default 40) - # - .L_const (Lipschitz constant, default Power method) ) - # - .X_ideal (ideal image, if given) - # - .weights (statisitcal weights, size of the sinogram) - # - .ROI (Region-of-interest, only if X_ideal is given) - # - .initialize (a 'warm start' using SIRT method from ASTRA) - #----------------Regularization choices------------------------ - # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) - # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) - # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) - # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) - # - .Regul_Iterations (iterations for the selected penalty, default 25) - # - .Regul_tauLLT (time step parameter for LLT term) - # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) - # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) - #----------------Visualization parameters------------------------ - # - .show (visualize reconstruction 1/0, (0 default)) - # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) - # - .slice (for 3D volumes - slice number to imshow) - # ___Output___: - # 1. X - reconstructed image/volume - # 2. output - a structure with - # - .Resid_error - residual error (if X_ideal is given) - # - .objective: value of the objective function - # - .L_const: Lipshitz constant to avoid recalculations - - # References: - # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse - # Problems" by A. Beck and M Teboulle - # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo - # 3. "A novel tomographic reconstruction method based on the robust - # Student's t function for suppressing data outliers" D. Kazantsev et.al. - # D. Kazantsev, 2016-17 - def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs): - self.params = dict() - self.params['projector_geometry'] = projector_geometry - self.params['output_geometry'] = output_geometry - self.params['input_sinogram'] = input_sinogram - detectors, nangles, sliceZ = numpy.shape(input_sinogram) - self.params['detectors'] = detectors - self.params['number_og_angles'] = nangles - self.params['SlicesZ'] = sliceZ - - # Accepted input keywords - kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' , - 'weights' , 'region_of_interest' , 'initialize' , - 'regularizer' , - 'ring_lambda_R_L1', - 'ring_alpha') - - # handle keyworded parameters - if kwargs is not None: - for key, value in kwargs.items(): - if key in kw: - #print("{0} = {1}".format(key, value)) - self.pars[key] = value - - # set the default values for the parameters if not set - if 'number_of_iterations' in kwargs.keys(): - self.pars['number_of_iterations'] = kwargs['number_of_iterations'] - else: - self.pars['number_of_iterations'] = 40 - if 'weights' in kwargs.keys(): - self.pars['weights'] = kwargs['weights'] - else: - self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram'])) - if 'Lipschitz_constant' in kwargs.keys(): - self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] - else: - self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod() - - if not self.pars['ideal_image'] in kwargs.keys(): - self.pars['ideal_image'] = None - - if not self.pars['region_of_interest'] : - if self.pars['ideal_image'] == None: - pass - else: - self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0) - - if not self.pars['regularizer'] : - self.pars['regularizer'] = None - else: - # the regularizer must be a correctly instantiated object - if not self.pars['ring_lambda_R_L1']: - self.pars['ring_lambda_R_L1'] = 0 - if not self.pars['ring_alpha']: - self.pars['ring_alpha'] = 1 - - - - - def calculateLipschitzConstantWithPowerMethod(self): - ''' using Power method (PM) to establish L constant''' - - #N = params.vol_geom.GridColCount - N = self.pars['output_geometry'].GridColCount - proj_geom = self.params['projector_geometry'] - vol_geom = self.params['output_geometry'] - weights = self.pars['weights'] - SlicesZ = self.pars['SlicesZ'] - - if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'): - #% for parallel geometry we can do just one slice - #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...'); - niter = 15;# % number of iteration for the PM - #N = params.vol_geom.GridColCount; - #x1 = rand(N,N,1); - x1 = numpy.random.rand(1,N,N) - #sqweight = sqrt(weights(:,:,1)); - sqweight = numpy.sqrt(weights.T[0]) - proj_geomT = proj_geom.copy(); - proj_geomT.DetectorRowCount = 1; - vol_geomT = vol_geom.copy(); - vol_geomT['GridSliceCount'] = 1; - - - for i in range(niter): - if i == 0: - #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT); - y = sqweight * y # element wise multiplication - #astra_mex_data3d('delete', sino_id); - astra.matlab.data3d('delete', sino_id) - - idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT); - s = numpy.linalg.norm(x1) - ### this line? - x1 = x1/s; - ### this line? - sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - y = sqweight*y; - astra.matlab.data3d('delete', sino_id); - astra.matlab.data3d('delete', idx); - #end - del proj_geomT - del vol_geomT - else - #% divergen beam geometry - #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...'); - niter = 8; #% number of iteration for PM - x1 = numpy.random.rand(SlicesZ , N , N); - #sqweight = sqrt(weights); - sqweight = numpy.sqrt(weights.T[0]) - - sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); - y = sqweight*y; - #astra_mex_data3d('delete', sino_id); - astra.matlab.data3d('delete', sino_id); - - for i in range(niter): - #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); - idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, - proj_geom, - vol_geom) - s = numpy.linalg.norm(x1) - ### this line? - x1 = x1/s; - ### this line? - #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); - sino_id, y = astra.creators.create_sino3d_gpu(x1, - proj_geom, - vol_geom); - - y = sqweight*y; - #astra_mex_data3d('delete', sino_id); - #astra_mex_data3d('delete', id); - astra.matlab.data3d('delete', sino_id); - astra.matlab.data3d('delete', idx); - #end - #clear x1 - del x1 - - return s - - - def setRegularizer(self, regularizer): - if regularizer - self.pars['regularizer'] = regularizer - - - - - -def getEntry(location): - for item in nx[location].keys(): - print (item) - - -print ("Loading Data") - -##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif" -####ind = [i * 1049 for i in range(360)] -#### use only 360 images -##images = 200 -##ind = [int(i * 1049 / images) for i in range(images)] -##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None) - -#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs" -fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs" -nx = h5py.File(fname, "r") - -# the data are stored in a particular location in the hdf5 -for item in nx['entry1/tomo_entry/data'].keys(): - print (item) - -data = nx.get('entry1/tomo_entry/data/rotation_angle') -angles = numpy.zeros(data.shape) -data.read_direct(angles) -print (angles) -# angles should be in degrees - -data = nx.get('entry1/tomo_entry/data/data') -stack = numpy.zeros(data.shape) -data.read_direct(stack) -print (data.shape) - -print ("Data Loaded") - - -# Normalize -data = nx.get('entry1/tomo_entry/instrument/detector/image_key') -itype = numpy.zeros(data.shape) -data.read_direct(itype) -# 2 is dark field -darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ] -dark = darks[0] -for i in range(1, len(darks)): - dark += darks[i] -dark = dark / len(darks) -#dark[0][0] = dark[0][1] - -# 1 is flat field -flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ] -flat = flats[0] -for i in range(1, len(flats)): - flat += flats[i] -flat = flat / len(flats) -#flat[0][0] = dark[0][1] - - -# 0 is projection data -proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ] -angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ] -angle_proj = numpy.asarray (angle_proj) -angle_proj = angle_proj.astype(numpy.float32) - -# normalized data are -# norm = (projection - dark)/(flat-dark) - -def normalize(projection, dark, flat, def_val=0.1): - a = (projection - dark) - b = (flat-dark) - with numpy.errstate(divide='ignore', invalid='ignore'): - c = numpy.true_divide( a, b ) - c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 - return c - - -norm = [normalize(projection, dark, flat) for projection in proj] -norm = numpy.asarray (norm) -norm = norm.astype(numpy.float32) - -#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm, -# angles = angle_proj, center_of_rotation = 86.2 , -# flat_field = flat, dark_field = dark, -# iterations = 15, resolution = 1, isLogScale = False, threads = 3) - -#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj, -# angles = angle_proj, center_of_rotation = 86.2 , -# flat_field = flat, dark_field = dark, -# iterations = 15, resolution = 1, isLogScale = False, threads = 3) -#img_cgls = recon.reconstruct() -# -#pars = dict() -#pars['algorithm'] = Reconstructor.Algorithm.SIRT -#pars['projection_data'] = proj -#pars['angles'] = angle_proj -#pars['center_of_rotation'] = numpy.double(86.2) -#pars['flat_field'] = flat -#pars['iterations'] = 15 -#pars['dark_field'] = dark -#pars['resolution'] = 1 -#pars['isLogScale'] = False -#pars['threads'] = 3 -# -#img_sirt = recon.reconstruct(pars) -# -#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM -#img_mlem = recon.reconstruct() - -############################################################ -############################################################ -#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV -#recon.pars['regularize'] = numpy.double(0.1) -#img_cgls_conv = recon.reconstruct() - -niterations = 15 -threads = 3 - -img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) -img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) -img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) - -iteration_values = numpy.zeros((niterations,)) -img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, - iteration_values, False) -print ("iteration values %s" % str(iteration_values)) - -iteration_values = numpy.zeros((niterations,)) -img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, - numpy.double(1e-5), iteration_values , False) -print ("iteration values %s" % str(iteration_values)) -iteration_values = numpy.zeros((niterations,)) -img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, - numpy.double(1e-5), iteration_values , False) -print ("iteration values %s" % str(iteration_values)) - - -##numpy.save("cgls_recon.npy", img_data) -import matplotlib.pyplot as plt -fig, ax = plt.subplots(1,6,sharey=True) -ax[0].imshow(img_cgls[80]) -ax[0].axis('off') # clear x- and y-axes -ax[1].imshow(img_sirt[80]) -ax[1].axis('off') # clear x- and y-axes -ax[2].imshow(img_mlem[80]) -ax[2].axis('off') # clear x- and y-axesplt.show() -ax[3].imshow(img_cgls_conv[80]) -ax[3].axis('off') # clear x- and y-axesplt.show() -ax[4].imshow(img_cgls_tikhonov[80]) -ax[4].axis('off') # clear x- and y-axesplt.show() -ax[5].imshow(img_cgls_TVreg[80]) -ax[5].axis('off') # clear x- and y-axesplt.show() - - -plt.show() - -#viewer = edo.CILViewer() -#viewer.setInputAsNumpy(img_cgls2) -#viewer.displaySliceActor(0) -#viewer.startRenderLoop() - -import vtk - -def NumpyToVTKImageData(numpyarray): - if (len(numpy.shape(numpyarray)) == 3): - doubleImg = vtk.vtkImageData() - shape = numpy.shape(numpyarray) - doubleImg.SetDimensions(shape[0], shape[1], shape[2]) - doubleImg.SetOrigin(0,0,0) - doubleImg.SetSpacing(1,1,1) - doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1) - #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation()) - doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1) - - for i in range(shape[0]): - for j in range(shape[1]): - for k in range(shape[2]): - doubleImg.SetScalarComponentFromDouble( - i,j,k,0, numpyarray[i][j][k]) - #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) ) - # rescale to appropriate VTK_UNSIGNED_SHORT - stats = vtk.vtkImageAccumulate() - stats.SetInputData(doubleImg) - stats.Update() - iMin = stats.GetMin()[0] - iMax = stats.GetMax()[0] - scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin) - - shiftScaler = vtk.vtkImageShiftScale () - shiftScaler.SetInputData(doubleImg) - shiftScaler.SetScale(scale) - shiftScaler.SetShift(iMin) - shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT) - shiftScaler.Update() - return shiftScaler.GetOutput() - -#writer = vtk.vtkMetaImageWriter() -#writer.SetFileName(alg + "_recon.mha") -#writer.SetInputData(NumpyToVTKImageData(img_cgls2)) -#writer.Write() diff --git a/src/Python/ccpi/reconstruction/__init__.py b/src/Python/ccpi/reconstruction/__init__.py deleted file mode 100644 index e69de29..0000000 --- a/src/Python/ccpi/reconstruction/__init__.py +++ /dev/null diff --git a/src/Python/compile-fista.bat.in b/src/Python/compile-fista.bat.in deleted file mode 100644 index b1db686..0000000 --- a/src/Python/compile-fista.bat.in +++ /dev/null @@ -1,7 +0,0 @@ -set CIL_VERSION=@CIL_VERSION@ - -set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ -set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ - -REM activate @CONDA_ENVIRONMENT@ -conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge diff --git a/src/Python/compile-fista.sh.in b/src/Python/compile-fista.sh.in deleted file mode 100644 index 267f014..0000000 --- a/src/Python/compile-fista.sh.in +++ /dev/null @@ -1,9 +0,0 @@ -#!/bin/sh -# compile within the right conda environment -#module load python/anaconda -#source activate @CONDA_ENVIRONMENT@ - -export CIL_VERSION=@CIL_VERSION@ -export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ - -conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/src/Python/compile.bat.in b/src/Python/compile.bat.in deleted file mode 100644 index e5342ed..0000000 --- a/src/Python/compile.bat.in +++ /dev/null @@ -1,7 +0,0 @@ -set CIL_VERSION=@CIL_VERSION@ - -set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ -set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ - -REM activate @CONDA_ENVIRONMENT@ -conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
\ No newline at end of file diff --git a/src/Python/compile.sh.in b/src/Python/compile.sh.in deleted file mode 100644 index 93fdba2..0000000 --- a/src/Python/compile.sh.in +++ /dev/null @@ -1,9 +0,0 @@ -#!/bin/sh -# compile within the right conda environment -#module load python/anaconda -#source activate @CONDA_ENVIRONMENT@ - -export CIL_VERSION=@CIL_VERSION@ -export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ - -conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/src/Python/conda-recipe/bld.bat b/src/Python/conda-recipe/bld.bat deleted file mode 100644 index 69491de..0000000 --- a/src/Python/conda-recipe/bld.bat +++ /dev/null @@ -1,14 +0,0 @@ -IF NOT DEFINED CIL_VERSION ( -ECHO CIL_VERSION Not Defined. -exit 1 -) - -mkdir "%SRC_DIR%\ccpi" -xcopy /e "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi" - -cd %SRC_DIR%\ccpi\Python - -%PYTHON% setup.py build_ext -if errorlevel 1 exit 1 -%PYTHON% setup.py install -if errorlevel 1 exit 1 diff --git a/src/Python/conda-recipe/build.sh b/src/Python/conda-recipe/build.sh deleted file mode 100644 index 855047f..0000000 --- a/src/Python/conda-recipe/build.sh +++ /dev/null @@ -1,14 +0,0 @@ - -if [ -z "$CIL_VERSION" ]; then - echo "Need to set CIL_VERSION" - exit 1 -fi -mkdir "$SRC_DIR/ccpi" -cp -r "$RECIPE_DIR/../.." "$SRC_DIR/ccpi" - -cd $SRC_DIR/ccpi/Python - -$PYTHON setup.py build_ext -$PYTHON setup.py install - - diff --git a/src/Python/conda-recipe/meta.yaml b/src/Python/conda-recipe/meta.yaml deleted file mode 100644 index 9ef9156..0000000 --- a/src/Python/conda-recipe/meta.yaml +++ /dev/null @@ -1,30 +0,0 @@ -package: - name: ccpi-regularizers - version: {{ environ['CIL_VERSION'] }} - - -build: - preserve_egg_dir: False - script_env: - - CIL_VERSION -# number: 0 - -requirements: - build: - - python - - numpy - - setuptools - - boost ==1.65 - - boost-cpp ==1.65 - - cython - - run: - - python - - numpy - - boost ==1.64 - - -about: - home: http://www.ccpi.ac.uk - license: BSD license - summary: 'CCPi Core Imaging Library Quantification Toolbox' diff --git a/src/Python/demo/demo_dendrites.py b/src/Python/demo/demo_dendrites.py deleted file mode 100644 index f5dc845..0000000 --- a/src/Python/demo/demo_dendrites.py +++ /dev/null @@ -1,168 +0,0 @@ - -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -Based on DemoRD2.m -""" - -import h5py -import numpy - -from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor -import astra -import matplotlib.pyplot as plt -from ccpi.imaging.Regularizer import Regularizer -from ccpi.reconstruction.AstraDevice import AstraDevice -from ccpi.reconstruction.DeviceModel import DeviceModel - -def RMSE(signal1, signal2): - '''RMSE Root Mean Squared Error''' - if numpy.shape(signal1) == numpy.shape(signal2): - err = (signal1 - signal2) - err = numpy.sum( err * err )/numpy.size(signal1); # MSE - err = sqrt(err); # RMSE - return err - else: - raise Exception('Input signals must have the same shape') - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") -Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") -angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") -recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] -size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] -slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] - -Z_slices = 20 -det_row_count = Z_slices -# next definition is just for consistency of naming -det_col_count = size_det - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX - - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -image_size_x = recon_size -image_size_y = recon_size -image_size_z = Z_slices -vol_geom = astra.creators.create_vol_geom( image_size_x, - image_size_y, - image_size_z) - - -## Create a Acquisition Device Model -## Must specify some parameters of the acquisition: - -astradevice = AstraDevice( - DeviceModel.DeviceType.PARALLEL3D.value, - [det_row_count , det_col_count , - detectorSpacingX, detectorSpacingY , - angles_rad - ], - [ image_size_x, image_size_y, image_size_z ] ) - -fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D, - device=astradevice, - Lipschitz_constant = 767893952.0, - subsets = 8) - -print("Reconstruction using FISTA-OS-PWLS without regularization...") -fistaRecon.setParameter(number_of_iterations = 5) - -### adjust the regularization parameter -##lc = fistaRecon.getParameter('Lipschitz_constant') -##fistaRecon.getParameter('regularizer')\ -## .setParameter(regularization_parameter=5e6/lc) -fistaRecon.use_device = True -if True: - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA-OS-PWLS.npy",X) - -## setup a regularizer algorithm -regul = Regularizer(Regularizer.Algorithm.FGP_TV) -regul.setParameter(regularization_parameter=5e6, - number_of_iterations=50, - tolerance_constant=1e-4, - TV_penalty=Regularizer.TotalVariationPenalty.isotropic) -if False: - # adjust the regularization parameter - lc = fistaRecon.getParameter('Lipschitz_constant') - regul.setParameter(regularization_parameter=5e6/lc) - fistaRecon.setParameter(regularizer=regul) - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA-OS-PWLS-TV.npy",X) - -if False: - # adjust the regularization parameter - lc = fistaRecon.getParameter('Lipschitz_constant') - regul.setParameter(regularization_parameter=5e6/lc) - fistaRecon.setParameter(regularizer=regul) - fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21) - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA-OS-GH-TV.npy",X) - -if False: - # adjust the regularization parameter - lc = fistaRecon.getParameter('Lipschitz_constant') - regul.setParameter( - algorithm=Regularizer.Algorithm.TGV_PD, - regularization_parameter=0.5/lc, - number_of_iterations=5) - fistaRecon.setParameter(regularizer=regul) - fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21) - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA-OS-GH-TGV.npy",X) - -if False: - # adjust the regularization parameter - lc = fistaRecon.getParameter('Lipschitz_constant') - regul.setParameter( - algorithm=Regularizer.Algorithm.PatchBased_Regul, - regularization_parameter=3/lc, - searching_window_ratio=3, - similarity_window_ratio=1, - PB_filtering_parameter=0.04 - - ) - fistaRecon.setParameter(regularizer=regul) - fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21) - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA-OS-CPU_PB.npy",X) - -if False: - fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D, - device=astradevice, - Lipschitz_constant = 7.6792e8, - number_of_iterations=50) - - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("../test/X.npy")) - numpy.save("FISTA.npy",X) diff --git a/src/Python/fista-recipe/build.sh b/src/Python/fista-recipe/build.sh deleted file mode 100644 index e3f3552..0000000 --- a/src/Python/fista-recipe/build.sh +++ /dev/null @@ -1,10 +0,0 @@ -if [ -z "$CIL_VERSION" ]; then - echo "Need to set CIL_VERSION" - exit 1 -fi -mkdir "$SRC_DIR/ccpifista" -cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista" - -cd $SRC_DIR/ccpifista - -$PYTHON setup-fista.py install diff --git a/src/Python/fista-recipe/meta.yaml b/src/Python/fista-recipe/meta.yaml deleted file mode 100644 index 265541f..0000000 --- a/src/Python/fista-recipe/meta.yaml +++ /dev/null @@ -1,29 +0,0 @@ -package: - name: ccpi-fista - version: {{ environ['CIL_VERSION'] }} - - -build: - preserve_egg_dir: False - script_env: - - CIL_VERSION -# number: 0 - -requirements: - build: - - python - - numpy - - setuptools - - run: - - python - - numpy - #- astra-toolbox - - ccpi-regularizers - - - -about: - home: http://www.ccpi.ac.uk - license: Apache v.2.0 license - summary: 'CCPi Core Imaging Library (Viewer)' diff --git a/src/Python/fista_module.cpp b/src/Python/fista_module.cpp deleted file mode 100644 index f3add76..0000000 --- a/src/Python/fista_module.cpp +++ /dev/null @@ -1,1047 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION - -#include <iostream> -#include <cmath> - -#include <boost/python.hpp> -#include <boost/python/numpy.hpp> -#include "boost/tuple/tuple.hpp" - -#include "SplitBregman_TV_core.h" -#include "FGP_TV_core.h" -#include "LLT_model_core.h" -#include "PatchBased_Regul_core.h" -#include "TGV_PD_core.h" -#include "utils.h" - - - -#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) -#include <windows.h> -// this trick only if compiler is MSVC -__if_not_exists(uint8_t) { typedef __int8 uint8_t; } -__if_not_exists(uint16_t) { typedef __int8 uint16_t; } -#endif - -namespace bp = boost::python; -namespace np = boost::python::numpy; - -/*! in the Matlab implementation this is called as -void mexFunction( -int nlhs, mxArray *plhs[], -int nrhs, const mxArray *prhs[]) -where: -prhs Array of pointers to the INPUT mxArrays -nrhs int number of INPUT mxArrays - -nlhs Array of pointers to the OUTPUT mxArrays -plhs int number of OUTPUT mxArrays - -*********************************************************** - -*********************************************************** -double mxGetScalar(const mxArray *pm); -args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. -Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. -*********************************************************** -char *mxArrayToString(const mxArray *array_ptr); -args: array_ptr Pointer to mxCHAR array. -Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. -Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. -*********************************************************** -mxClassID mxGetClassID(const mxArray *pm); -args: pm Pointer to an mxArray -Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, -mxGetClassId returns a unique value identifying the class of the array contents. -Use mxIsClass to determine whether an array is of a specific user-defined type. - -mxClassID Value MATLAB Type MEX Type C Primitive Type -mxINT8_CLASS int8 int8_T char, byte -mxUINT8_CLASS uint8 uint8_T unsigned char, byte -mxINT16_CLASS int16 int16_T short -mxUINT16_CLASS uint16 uint16_T unsigned short -mxINT32_CLASS int32 int32_T int -mxUINT32_CLASS uint32 uint32_T unsigned int -mxINT64_CLASS int64 int64_T long long -mxUINT64_CLASS uint64 uint64_T unsigned long long -mxSINGLE_CLASS single float float -mxDOUBLE_CLASS double double double - -**************************************************************** -double *mxGetPr(const mxArray *pm); -args: pm Pointer to an mxArray of type double -Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. -**************************************************************** -mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, -mxClassID classid, mxComplexity ComplexFlag); -args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. -dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. -For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. -classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. -For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. -ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). -Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). -If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not -enough free heap space to create the mxArray. -*/ - - - -bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { - - // the result is in the following list - bp::list result; - - int number_of_dims, dimX, dimY, dimZ, ll, j, count; - //const int *dim_array; - float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old; - - //number_of_dims = mxGetNumberOfDimensions(prhs[0]); - //dim_array = mxGetDimensions(prhs[0]); - - number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - - // Parameter handling is be done in Python - ///*Handling Matlab input data*/ - //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - - ///*Handling Matlab input data*/ - //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ - A = reinterpret_cast<float *>(input.get_data()); - - //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ - mu = (float)d_mu; - - //iter = 35; /* default iterations number */ - - //epsil = 0.0001; /* default tolerance constant */ - epsil = (float)d_epsil; - //methTV = 0; /* default isotropic TV penalty */ - //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ - //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ - //if (nrhs == 5) { - // char *penalty_type; - // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - // mxFree(penalty_type); - //} - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } - - lambda = 2.0f*mu; - count = 1; - re_old = 0.0f; - /*Handling Matlab output data*/ - dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npU = np::zeros(shape, dtype); - np::ndarray npU_old = np::zeros(shape, dtype); - np::ndarray npDx = np::zeros(shape, dtype); - np::ndarray npDy = np::zeros(shape, dtype); - np::ndarray npBx = np::zeros(shape, dtype); - np::ndarray npBy = np::zeros(shape, dtype); - - U = reinterpret_cast<float *>(npU.get_data()); - U_old = reinterpret_cast<float *>(npU_old.get_data()); - Dx = reinterpret_cast<float *>(npDx.get_data()); - Dy = reinterpret_cast<float *>(npDy.get_data()); - Bx = reinterpret_cast<float *>(npBx.get_data()); - By = reinterpret_cast<float *>(npBy.get_data()); - - - - copyIm(A, U, dimX, dimY, dimZ); /*initialize */ - - /* begin outer SB iterations */ - for (ll = 0; ll < iter; ll++) { - - /*storing old values*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*GS iteration */ - gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); - - if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); - else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); - - updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for (j = 0; j < dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j], 2); - re1 += pow(U_old[j], 2); - } - re = sqrt(re) / sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*copyIm(U_old, U, dimX, dimY, dimZ); */ - - } - //printf("SB iterations stopped at iteration: %i\n", ll); - result.append<np::ndarray>(npU); - result.append<int>(ll); - } - if (number_of_dims == 3) { - /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npU = np::zeros(shape, dtype); - np::ndarray npU_old = np::zeros(shape, dtype); - np::ndarray npDx = np::zeros(shape, dtype); - np::ndarray npDy = np::zeros(shape, dtype); - np::ndarray npDz = np::zeros(shape, dtype); - np::ndarray npBx = np::zeros(shape, dtype); - np::ndarray npBy = np::zeros(shape, dtype); - np::ndarray npBz = np::zeros(shape, dtype); - - U = reinterpret_cast<float *>(npU.get_data()); - U_old = reinterpret_cast<float *>(npU_old.get_data()); - Dx = reinterpret_cast<float *>(npDx.get_data()); - Dy = reinterpret_cast<float *>(npDy.get_data()); - Dz = reinterpret_cast<float *>(npDz.get_data()); - Bx = reinterpret_cast<float *>(npBx.get_data()); - By = reinterpret_cast<float *>(npBy.get_data()); - Bz = reinterpret_cast<float *>(npBz.get_data()); - - copyIm(A, U, dimX, dimY, dimZ); /*initialize */ - - /* begin outer SB iterations */ - for (ll = 0; ll<iter; ll++) { - - /*storing old values*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*GS iteration */ - gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); - - if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); - else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); - - updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) - { - re += pow(U[j] - U_old[j], 2); - re1 += pow(U[j], 2); - } - re = sqrt(re) / sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - /*printf("%f %i %i \n", re, ll, count); */ - re_old = re; - } - //printf("SB iterations stopped at iteration: %i\n", ll); - result.append<np::ndarray>(npU); - result.append<int>(ll); - } - return result; - - } - - - -bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { - - // the result is in the following list - bp::list result; - - int number_of_dims, dimX, dimY, dimZ, ll, j, count; - float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL; - float lambda, tk, tkp1, re, re1, re_old, epsil, funcval; - - //number_of_dims = mxGetNumberOfDimensions(prhs[0]); - //dim_array = mxGetDimensions(prhs[0]); - - number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - // Parameter handling is be done in Python - ///*Handling Matlab input data*/ - //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - - ///*Handling Matlab input data*/ - //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ - A = reinterpret_cast<float *>(input.get_data()); - - //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ - lambda = (float)d_mu; - - //iter = 35; /* default iterations number */ - - //epsil = 0.0001; /* default tolerance constant */ - epsil = (float)d_epsil; - //methTV = 0; /* default isotropic TV penalty */ - //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ - //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ - //if (nrhs == 5) { - // char *penalty_type; - // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - // mxFree(penalty_type); - //} - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } - - //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<float>(); - np::ndarray out1 = np::zeros(shape1, dtype); - - //float *funcvalA = (float *)mxGetData(plhs[1]); - float * funcvalA = reinterpret_cast<float *>(out1.get_data()); - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - tk = 1.0f; - tkp1 = 1.0f; - count = 1; - re_old = 0.0f; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ - - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - - np::ndarray npD = np::zeros(shape, dtype); - np::ndarray npD_old = np::zeros(shape, dtype); - np::ndarray npP1 = np::zeros(shape, dtype); - np::ndarray npP2 = np::zeros(shape, dtype); - np::ndarray npP1_old = np::zeros(shape, dtype); - np::ndarray npP2_old = np::zeros(shape, dtype); - np::ndarray npR1 = np::zeros(shape, dtype); - np::ndarray npR2 = np::zeros(shape, dtype); - - D = reinterpret_cast<float *>(npD.get_data()); - D_old = reinterpret_cast<float *>(npD_old.get_data()); - P1 = reinterpret_cast<float *>(npP1.get_data()); - P2 = reinterpret_cast<float *>(npP2.get_data()); - P1_old = reinterpret_cast<float *>(npP1_old.get_data()); - P2_old = reinterpret_cast<float *>(npP2_old.get_data()); - R1 = reinterpret_cast<float *>(npR1.get_data()); - R2 = reinterpret_cast<float *>(npR2.get_data()); - - /* begin iterations */ - for (ll = 0; ll<iter; ll++) { - /* computing the gradient of the objective function */ - Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); - - /*Taking a step towards minus of the gradient*/ - Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); - - - - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); - - /* calculate norm */ - re = 0.0f; re1 = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j], 2); - re1 += pow(D[j], 2); - } - re = sqrt(re) / sqrt(re1); - if (re < epsil) count++; - if (count > 3) { - Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - break; - } - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - break; - } - } - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - tk = tkp1; - - /* calculating the objective function value */ - if (ll == (iter - 1)) { - Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - } - } - //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - result.append<np::ndarray>(npD); - result.append<np::ndarray>(out1); - result.append<int>(ll); - } - if (number_of_dims == 3) { - /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npD = np::zeros(shape, dtype); - np::ndarray npD_old = np::zeros(shape, dtype); - np::ndarray npP1 = np::zeros(shape, dtype); - np::ndarray npP2 = np::zeros(shape, dtype); - np::ndarray npP3 = np::zeros(shape, dtype); - np::ndarray npP1_old = np::zeros(shape, dtype); - np::ndarray npP2_old = np::zeros(shape, dtype); - np::ndarray npP3_old = np::zeros(shape, dtype); - np::ndarray npR1 = np::zeros(shape, dtype); - np::ndarray npR2 = np::zeros(shape, dtype); - np::ndarray npR3 = np::zeros(shape, dtype); - - D = reinterpret_cast<float *>(npD.get_data()); - D_old = reinterpret_cast<float *>(npD_old.get_data()); - P1 = reinterpret_cast<float *>(npP1.get_data()); - P2 = reinterpret_cast<float *>(npP2.get_data()); - P3 = reinterpret_cast<float *>(npP3.get_data()); - P1_old = reinterpret_cast<float *>(npP1_old.get_data()); - P2_old = reinterpret_cast<float *>(npP2_old.get_data()); - P3_old = reinterpret_cast<float *>(npP3_old.get_data()); - R1 = reinterpret_cast<float *>(npR1.get_data()); - R2 = reinterpret_cast<float *>(npR2.get_data()); - R3 = reinterpret_cast<float *>(npR3.get_data()); - /* begin iterations */ - for (ll = 0; ll<iter; ll++) { - /* computing the gradient of the objective function */ - Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - /*Taking a step towards minus of the gradient*/ - Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - - /* projection step */ - Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); - - /* calculate norm - stopping rules*/ - re = 0.0f; re1 = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j], 2); - re1 += pow(D[j], 2); - } - re = sqrt(re) / sqrt(re1); - /* stop if the norm residual is less than the tolerance EPS */ - if (re < epsil) count++; - if (count > 3) { - Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - break; - } - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - break; - } - } - - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - copyIm(P3, P3_old, dimX, dimY, dimZ); - tk = tkp1; - - if (ll == (iter - 1)) { - Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - funcval = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - //funcvalA[0] = sqrt(funcval); - float fv = sqrt(funcval); - std::memcpy(funcvalA, &fv, sizeof(float)); - } - - } - //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - result.append<np::ndarray>(npD); - result.append<np::ndarray>(out1); - result.append<int>(ll); - } - - return result; -} - -bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) { - // the result is in the following list - bp::list result; - - int number_of_dims, dimX, dimY, dimZ, ll, j, count; - //const int *dim_array; - float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old; - unsigned short *Map = NULL; - - number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - - ///*Handling Matlab input data*/ - //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } - //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ - //tau = (float)mxGetScalar(prhs[2]); /* time-step */ - //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/ - //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */ - //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ - - U0 = reinterpret_cast<float *>(input.get_data()); - lambda = (float)d_lambda; - tau = (float)d_tau; - // iter is passed as parameter - epsil = (float)d_epsil; - // switcher is passed as parameter - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; - - if (number_of_dims == 2) { - /*2D case*/ - /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ - - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - - np::ndarray npU = np::zeros(shape, dtype); - np::ndarray npU_old = np::zeros(shape, dtype); - np::ndarray npD1 = np::zeros(shape, dtype); - np::ndarray npD2 = np::zeros(shape, dtype); - - - U = reinterpret_cast<float *>(npU.get_data()); - U_old = reinterpret_cast<float *>(npU_old.get_data()); - D1 = reinterpret_cast<float *>(npD1.get_data()); - D2 = reinterpret_cast<float *>(npD2.get_data()); - - /*Copy U0 to U*/ - copyIm(U0, U, dimX, dimY, dimZ); - - count = 1; - re_old = 0.0f; - - for (ll = 0; ll < iter; ll++) { - - copyIm(U, U_old, dimX, dimY, dimZ); - - /*estimate inner derrivatives */ - der2D(U, D1, D2, dimX, dimY, dimZ); - /* calculate div^2 and update */ - div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j], 2); - re1 += pow(U_old[j], 2); - } - re = sqrt(re) / sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - - } /*end of iterations*/ - //printf("HO iterations stopped at iteration: %i\n", ll); - - result.append<np::ndarray>(npU); - } - else if (number_of_dims == 3) { - /*3D case*/ - dimZ = dim_array[2]; - /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - if (switcher != 0) { - Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); - }*/ - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - - np::ndarray npU = np::zeros(shape, dtype); - np::ndarray npU_old = np::zeros(shape, dtype); - np::ndarray npD1 = np::zeros(shape, dtype); - np::ndarray npD2 = np::zeros(shape, dtype); - np::ndarray npD3 = np::zeros(shape, dtype); - np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>()); - Map = reinterpret_cast<unsigned short *>(npMap.get_data()); - if (switcher != 0) { - //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); - - Map = reinterpret_cast<unsigned short *>(npMap.get_data()); - } - - U = reinterpret_cast<float *>(npU.get_data()); - U_old = reinterpret_cast<float *>(npU_old.get_data()); - D1 = reinterpret_cast<float *>(npD1.get_data()); - D2 = reinterpret_cast<float *>(npD2.get_data()); - D3 = reinterpret_cast<float *>(npD2.get_data()); - - /*Copy U0 to U*/ - copyIm(U0, U, dimX, dimY, dimZ); - - count = 1; - re_old = 0.0f; - - - if (switcher == 1) { - /* apply restrictive smoothing */ - calcMap(U, Map, dimX, dimY, dimZ); - /*clear outliers */ - cleanMap(Map, dimX, dimY, dimZ); - } - for (ll = 0; ll < iter; ll++) { - - copyIm(U, U_old, dimX, dimY, dimZ); - - /*estimate inner derrivatives */ - der3D(U, D1, D2, D3, dimX, dimY, dimZ); - /* calculate div^2 and update */ - div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for (j = 0; j<dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j], 2); - re1 += pow(U_old[j], 2); - } - re = sqrt(re) / sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - - } /*end of iterations*/ - //printf("HO iterations stopped at iteration: %i\n", ll); - result.append<np::ndarray>(npU); - if (switcher != 0) result.append<np::ndarray>(npMap); - - } - return result; -} - - -bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) { - // the result is in the following list - bp::list result; - - int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop; - //const int *dims; - float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda; - - numdims = input.get_nd(); - int dims[3]; - - dims[0] = input.shape(0); - dims[1] = input.shape(1); - if (numdims == 2) { - dims[2] = -1; - } - else { - dims[2] = input.shape(2); - } - /*numdims = mxGetNumberOfDimensions(prhs[0]); - dims = mxGetDimensions(prhs[0]);*/ - - N = dims[0]; - M = dims[1]; - Z = dims[2]; - - //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); } - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } - - //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); - - ///*Handling inputs*/ - //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */ - A = reinterpret_cast<float *>(input.get_data()); - //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */ - //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */ - //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ - //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */ - - //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); - //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0"); - - lambda = (float)d_lambda; - h = (float)d_h; - SearchW = SearchW_real + 2 * SimilW; - - /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ - /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */ - - - padXY = SearchW + 2 * SimilW; /* padding sizes */ - newsizeX = N + 2 * (padXY); /* the X size of the padded array */ - newsizeY = M + 2 * (padXY); /* the Y size of the padded array */ - newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */ - int N_dims[] = { newsizeX, newsizeY, newsizeZ }; - /******************************2D case ****************************/ - if (numdims == 2) { - ///*Handling output*/ - //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); - ///*allocating memory for the padded arrays */ - //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); - //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); - ///**************************************************************************/ - - bp::tuple shape = bp::make_tuple(N, M); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npB = np::zeros(shape, dtype); - - shape = bp::make_tuple(newsizeX, newsizeY); - np::ndarray npAp = np::zeros(shape, dtype); - np::ndarray npBp = np::zeros(shape, dtype); - B = reinterpret_cast<float *>(npB.get_data()); - Ap = reinterpret_cast<float *>(npAp.get_data()); - Bp = reinterpret_cast<float *>(npBp.get_data()); - - /*Perform padding of image A to the size of [newsizeX * newsizeY] */ - switchpad_crop = 0; /*padding*/ - pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); - - /* Do PB regularization with the padded array */ - PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda); - - switchpad_crop = 1; /*cropping*/ - pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); - - result.append<np::ndarray>(npB); - } - else - { - /******************************3D case ****************************/ - ///*Handling output*/ - //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); - ///*allocating memory for the padded arrays */ - //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); - //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); - /**************************************************************************/ - bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]); - bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npB = np::zeros(shape, dtype); - np::ndarray npAp = np::zeros(shape_AB, dtype); - np::ndarray npBp = np::zeros(shape_AB, dtype); - B = reinterpret_cast<float *>(npB.get_data()); - Ap = reinterpret_cast<float *>(npAp.get_data()); - Bp = reinterpret_cast<float *>(npBp.get_data()); - /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ - switchpad_crop = 0; /*padding*/ - pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); - - /* Do PB regularization with the padded array */ - PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda); - - switchpad_crop = 1; /*cropping*/ - pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); - - result.append<np::ndarray>(npB); - } /*end else ndims*/ - - return result; -} - -bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) { - // the result is in the following list - bp::list result; - int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll; - //const int *dim_array; - float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; - - //number_of_dims = mxGetNumberOfDimensions(prhs[0]); - //dim_array = mxGetDimensions(prhs[0]); - number_of_dims = input.get_nd(); - int dim_array[3]; - - dim_array[0] = input.shape(0); - dim_array[1] = input.shape(1); - if (number_of_dims == 2) { - dim_array[2] = -1; - } - else { - dim_array[2] = input.shape(2); - } - /*Handling Matlab input data*/ - //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ - //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } - - A = reinterpret_cast<float *>(input.get_data()); - - //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ - //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/ - //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/ - //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/ - //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); - lambda = (float)d_lambda; - alpha1 = (float)d_alpha1; - alpha0 = (float)d_alpha0; - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; - - if (number_of_dims == 2) { - /*2D case*/ - dimZ = 1; - bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); - np::dtype dtype = np::dtype::get_builtin<float>(); - - np::ndarray npU = np::zeros(shape, dtype); - np::ndarray npP1 = np::zeros(shape, dtype); - np::ndarray npP2 = np::zeros(shape, dtype); - np::ndarray npQ1 = np::zeros(shape, dtype); - np::ndarray npQ2 = np::zeros(shape, dtype); - np::ndarray npQ3 = np::zeros(shape, dtype); - np::ndarray npV1 = np::zeros(shape, dtype); - np::ndarray npV1_old = np::zeros(shape, dtype); - np::ndarray npV2 = np::zeros(shape, dtype); - np::ndarray npV2_old = np::zeros(shape, dtype); - np::ndarray npU_old = np::zeros(shape, dtype); - - U = reinterpret_cast<float *>(npU.get_data()); - U_old = reinterpret_cast<float *>(npU_old.get_data()); - P1 = reinterpret_cast<float *>(npP1.get_data()); - P2 = reinterpret_cast<float *>(npP2.get_data()); - Q1 = reinterpret_cast<float *>(npQ1.get_data()); - Q2 = reinterpret_cast<float *>(npQ2.get_data()); - Q3 = reinterpret_cast<float *>(npQ3.get_data()); - V1 = reinterpret_cast<float *>(npV1.get_data()); - V1_old = reinterpret_cast<float *>(npV1_old.get_data()); - V2 = reinterpret_cast<float *>(npV2.get_data()); - V2_old = reinterpret_cast<float *>(npV2_old.get_data()); - //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - /*dual variables*/ - /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ - /*printf("%i \n", i);*/ - L2 = 12.0; /*Lipshitz constant*/ - tau = 1.0 / pow(L2, 0.5); - sigma = 1.0 / pow(L2, 0.5); - - /*Copy A to U*/ - copyIm(A, U, dimX, dimY, dimZ); - /* Here primal-dual iterations begin for 2D */ - for (ll = 0; ll < iter; ll++) { - - /* Calculate Dual Variable P */ - DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); - - /*Projection onto convex set for P*/ - ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); - - /* Calculate Dual Variable Q */ - DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); - - /*Projection onto convex set for Q*/ - ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); - - /*saving U into U_old*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); - - /*get updated solution U*/ - newU(U, U_old, dimX, dimY, dimZ); - - /*saving V into V_old*/ - copyIm(V1, V1_old, dimX, dimY, dimZ); - copyIm(V2, V2_old, dimX, dimY, dimZ); - - /* upd V*/ - UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); - - /*get new V*/ - newU(V1, V1_old, dimX, dimY, dimZ); - newU(V2, V2_old, dimX, dimY, dimZ); - } /*end of iterations*/ - - result.append<np::ndarray>(npU); - } - - - - - return result; -} - -BOOST_PYTHON_MODULE(cpu_regularizers) -{ - np::initialize(); - - //To specify that this module is a package - bp::object package = bp::scope(); - package.attr("__path__") = "cpu_regularizers"; - - np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); - np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); - - def("SplitBregman_TV", SplitBregman_TV); - def("FGP_TV", FGP_TV); - def("LLT_model", LLT_model); - def("PatchBased_Regul", PatchBased_Regul); - def("TGV_PD", TGV_PD); -} diff --git a/src/Python/setup-fista.py.in b/src/Python/setup-fista.py.in deleted file mode 100644 index c5c9f4d..0000000 --- a/src/Python/setup-fista.py.in +++ /dev/null @@ -1,27 +0,0 @@ -from distutils.core import setup -#from setuptools import setup, find_packages -import os - -cil_version=os.environ['CIL_VERSION'] -if cil_version == '': - print("Please set the environmental variable CIL_VERSION") - sys.exit(1) - -setup( - name="ccpi-fista", - version=cil_version, - packages=['ccpi','ccpi.reconstruction'], - install_requires=['numpy'], - - zip_safe = False, - - # metadata for upload to PyPI - author="Edoardo Pasca", - author_email="edo.paskino@gmail.com", - description='CCPi Core Imaging Library - FISTA Reconstructor module', - license="Apache v2.0", - keywords="tomography interative reconstruction", - url="http://www.ccpi.ac.uk", # project home page, if any - - # could also include long_description, download_url, classifiers, etc. -) diff --git a/src/Python/setup.py b/src/Python/setup.py deleted file mode 100644 index 154f979..0000000 --- a/src/Python/setup.py +++ /dev/null @@ -1,64 +0,0 @@ -#!/usr/bin/env python - -import setuptools -from distutils.core import setup -from distutils.extension import Extension -from Cython.Distutils import build_ext - -import os -import sys -import numpy -import platform - -cil_version=os.environ['CIL_VERSION'] -if cil_version == '': - print("Please set the environmental variable CIL_VERSION") - sys.exit(1) - -library_include_path = "" -library_lib_path = "" -try: - library_include_path = os.environ['LIBRARY_INC'] - library_lib_path = os.environ['LIBRARY_LIB'] -except: - library_include_path = os.environ['PREFIX']+'/include' - pass - -extra_include_dirs = [numpy.get_include(), library_include_path] -extra_library_dirs = [library_include_path+"/../lib", "C:\\Apps\\Miniconda2\\envs\\cil27\\Library\\lib"] -extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] -extra_libraries = [] -if platform.system() == 'Windows': - extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] - extra_include_dirs += ["..\\..\\main_func\\regularizers_CPU\\","."] - if sys.version_info.major == 3 : - extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] - else: - extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] -else: - extra_include_dirs += ["../../main_func/regularizers_CPU","."] - if sys.version_info.major == 3: - extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] - else: - extra_libraries += ['boost_python', 'boost_numpy','gomp'] - -setup( - name='ccpi', - description='CCPi Core Imaging Library - FISTA Reconstruction Module', - version=cil_version, - cmdclass = {'build_ext': build_ext}, - ext_modules = [Extension("ccpi.imaging.cpu_regularizers", - sources=["fista_module.cpp", - "../../main_func/regularizers_CPU/FGP_TV_core.c", - "../../main_func/regularizers_CPU/SplitBregman_TV_core.c", - "../../main_func/regularizers_CPU/LLT_model_core.c", - "../../main_func/regularizers_CPU/PatchBased_Regul_core.c", - "../../main_func/regularizers_CPU/TGV_PD_core.c", - "../../main_func/regularizers_CPU/utils.c" - ], - include_dirs=extra_include_dirs, library_dirs=extra_library_dirs, extra_compile_args=extra_compile_args, libraries=extra_libraries ), - - ], - zip_safe = False, - packages = {'ccpi','ccpi.fistareconstruction'}, -) diff --git a/src/Python/setup.py.in b/src/Python/setup.py.in deleted file mode 100644 index 12e8af1..0000000 --- a/src/Python/setup.py.in +++ /dev/null @@ -1,69 +0,0 @@ -#!/usr/bin/env python - -import setuptools -from distutils.core import setup -from distutils.extension import Extension -from Cython.Distutils import build_ext - -import os -import sys -import numpy -import platform - -cil_version=@CIL_VERSION@ - -library_include_path = "" -library_lib_path = "" -try: - library_include_path = os.environ['LIBRARY_INC'] - library_lib_path = os.environ['LIBRARY_LIB'] -except: - library_include_path = os.environ['PREFIX']+'/include' - pass - -extra_include_dirs = [numpy.get_include(), library_include_path] -extra_library_dirs = [os.path.join(library_include_path, "..", "lib")] -extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] -extra_libraries = [] -extra_include_dirs += [os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_GPU") , - "@CMAKE_CURRENT_SOURCE_DIR@"] - -if platform.system() == 'Windows': - extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] - - if sys.version_info.major == 3 : - extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] - else: - extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] -else: - if sys.version_info.major == 3: - extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] - else: - extra_libraries += ['boost_python', 'boost_numpy','gomp'] - -setup( - name='ccpi', - description='CCPi Core Imaging Library - Image Regularizers', - version=cil_version, - cmdclass = {'build_ext': build_ext}, - ext_modules = [Extension("ccpi.imaging.cpu_regularizers", - sources=[os.path.join("@CMAKE_CURRENT_SOURCE_DIR@" , "fista_module.cpp" ), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "FGP_TV_core.c"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "SplitBregman_TV_core.c"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "LLT_model_core.c"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "PatchBased_Regul_core.c"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "TGV_PD_core.c"), - os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "utils.c") - ], - include_dirs=extra_include_dirs, - library_dirs=extra_library_dirs, - extra_compile_args=extra_compile_args, - libraries=extra_libraries ), - - ], - zip_safe = False, - packages = {'ccpi','ccpi.imaging'}, -) - - diff --git a/src/Python/setup_test.py b/src/Python/setup_test.py deleted file mode 100644 index 7c86175..0000000 --- a/src/Python/setup_test.py +++ /dev/null @@ -1,58 +0,0 @@ -#!/usr/bin/env python - -import setuptools -from distutils.core import setup -from distutils.extension import Extension -from Cython.Distutils import build_ext - -import os -import sys -import numpy -import platform - -cil_version=os.environ['CIL_VERSION'] -if cil_version == '': - print("Please set the environmental variable CIL_VERSION") - sys.exit(1) - -library_include_path = "" -library_lib_path = "" -try: - library_include_path = os.environ['LIBRARY_INC'] - library_lib_path = os.environ['LIBRARY_LIB'] -except: - library_include_path = os.environ['PREFIX']+'/include' - pass - -extra_include_dirs = [numpy.get_include(), library_include_path] -extra_library_dirs = [library_include_path+"/../lib", "C:\\Apps\\Miniconda2\\envs\\cil27\\Library\\lib"] -extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] -extra_libraries = [] -if platform.system() == 'Windows': - extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB'] - #extra_include_dirs += ["..\\ContourTree\\", "..\\win32\\" , "..\\Core\\","."] - if sys.version_info.major == 3 : - extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] - else: - extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] -else: - #extra_include_dirs += ["../ContourTree/", "../Core/","."] - if sys.version_info.major == 3: - extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] - else: - extra_libraries += ['boost_python', 'boost_numpy','gomp'] - -setup( - name='ccpi', - description='CCPi Core Imaging Library - FISTA Reconstruction Module', - version=cil_version, - cmdclass = {'build_ext': build_ext}, - ext_modules = [Extension("prova", - sources=[ "Matlab2Python_utils.cpp", - ], - include_dirs=extra_include_dirs, library_dirs=extra_library_dirs, extra_compile_args=extra_compile_args, libraries=extra_libraries ), - - ], - zip_safe = False, - packages = {'ccpi','ccpi.reconstruction'}, -) diff --git a/src/Python/test.py b/src/Python/test.py deleted file mode 100644 index db47380..0000000 --- a/src/Python/test.py +++ /dev/null @@ -1,42 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Thu Aug 3 14:08:09 2017 - -@author: ofn77899 -""" - -import prova -import numpy as np - -a = np.asarray([i for i in range(1*2*3)]) -a = a.reshape([1,2,3]) -print (a) -b = prova.mexFunction(a) -#print (b) -print (b[4].shape) -print (b[4]) -print (b[5]) - -def print_element(input): - print ("f: {0}".format(input)) - -prova.doSomething(a, print_element, None) - -c = [] -def append_to_list(input, shouldPrint=False): - c.append(input) - if shouldPrint: - print ("{0} appended to list {1}".format(input, c)) - -def element_wise_algebra(input, shouldPrint=True): - ret = input - 7 - if shouldPrint: - print ("element_wise {0}".format(ret)) - return ret - -prova.doSomething(a, append_to_list, None) -#print ("this is c: {0}".format(c)) - -b = prova.doSomething(a, None, element_wise_algebra) -#print (a) -print (b[5]) diff --git a/src/Python/test/astra_test.py b/src/Python/test/astra_test.py deleted file mode 100644 index 42c375a..0000000 --- a/src/Python/test/astra_test.py +++ /dev/null @@ -1,85 +0,0 @@ -import astra -import numpy -import filefun - - -# read in the same data as the DemoRD2 -angles = filefun.dlmread("DemoRD2/angles.csv") -darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",") -flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",") - -if True: - Sino3D = numpy.load("DemoRD2/Sino3D.npy") -else: - sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",") - a = map (lambda x:x, numpy.shape(sino)) - a.append(20) - - Sino3D = numpy.zeros(tuple(a), dtype="float") - - for i in range(1,numpy.shape(Sino3D)[2]+1): - print("Read file DemoRD2/sino_%02d.csv" % i) - sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",") - Sino3D.T[i-1] = sino.T - -Weights3D = numpy.asarray(Sino3D, dtype="float") - -##angles_rad = angles*(pi/180); % conversion to radians -##size_det = size(data_raw3D,1); % detectors dim -##angSize = size(data_raw3D, 2); % angles dim -##slices_tot = size(data_raw3D, 3); % no of slices -##recon_size = 950; % reconstruction size - - -angles_rad = angles * numpy.pi /180. -size_det, angSize, slices_tot = numpy.shape(Sino3D) -size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)] -recon_size = 950 -Z_slices = 3; -det_row_count = Z_slices; - -#proj_geom = astra_create_proj_geom('parallel3d', 1, 1, -# det_row_count, size_det, angles_rad); - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX -proj_geom = astra.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - size_det, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices); - -sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float") - -#weights = ones(size(sino)); -weights = numpy.ones(numpy.shape(sino)) - -##################################################################### -## PowerMethod for Lipschitz constant - -N = vol_geom['GridColCount'] -x1 = numpy.random.rand(1,N,N) -#sqweight = sqrt(weights(:,:,1)); -sqweight = numpy.sqrt(weights.T[0]).T -##proj_geomT = proj_geom; -proj_geomT = proj_geom.copy() -##proj_geomT.DetectorRowCount = 1; -proj_geomT['DetectorRowCount'] = 1 -##vol_geomT = vol_geom; -vol_geomT = vol_geom.copy() -##vol_geomT.GridSliceCount = 1; -vol_geomT['GridSliceCount'] = 1 - -##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - -#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT); -sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT); - -##y = sqweight.*y; -##astra_mex_data3d('delete', sino_id); - - diff --git a/src/Python/test/create_phantom_projections.py b/src/Python/test/create_phantom_projections.py deleted file mode 100644 index 20a9278..0000000 --- a/src/Python/test/create_phantom_projections.py +++ /dev/null @@ -1,49 +0,0 @@ -from ccpi.reconstruction.AstraDevice import AstraDevice -from ccpi.reconstruction.DeviceModel import DeviceModel -import h5py -import numpy -import matplotlib.pyplot as plt - -nx = h5py.File('phant3D_256.h5', "r") -phantom = numpy.asarray(nx.get('/dataset1')) -pX,pY,pZ = numpy.shape(phantom) - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nxa = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nxa['/'].keys()] -print (entries) - -angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32") - - -device = AstraDevice( - DeviceModel.DeviceType.PARALLEL3D.value, - [ pX , pY , 1., 1., angles_rad], - [ pX, pY, pZ ] ) - - -proj = device.doForwardProject(phantom) -stack = [proj[:,i,:] for i in range(len(angles_rad))] -stack = numpy.asarray(stack) - - -fig = plt.figure() -a=fig.add_subplot(1,2,1) -a.set_title('proj') -imgplot = plt.imshow(proj[:,100,:]) -a=fig.add_subplot(1,2,2) -a.set_title('stack') -imgplot = plt.imshow(stack[100]) -plt.show() - -pf = h5py.File("phantom3D256_projections.h5" , "w") -pf.create_dataset("/projections", data=stack) -pf.create_dataset("/sinogram", data=proj) -pf.create_dataset("/angles", data=angles_rad) -pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ])) -pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ])) -pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.])) -pf.flush() -pf.close() diff --git a/src/Python/test/readhd5.py b/src/Python/test/readhd5.py deleted file mode 100644 index eff6c43..0000000 --- a/src/Python/test/readhd5.py +++ /dev/null @@ -1,42 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -""" - -import h5py -import numpy - -def getEntry(nx, location): - for item in nx[location].keys(): - print (item) - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -Sino3D = numpy.asarray(nx.get('/Sino3D')) -Weights3D = numpy.asarray(nx.get('/Weights3D')) -angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles_rad')) -recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] -size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] - -slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] - -#from ccpi.viewer.CILViewer2D import CILViewer2D -#v = CILViewer2D() -#v.setInputAsNumpy(Weights3D) -#v.startRenderLoop() - -import matplotlib.pyplot as plt -fig = plt.figure() - -a=fig.add_subplot(1,1,1) -a.set_title('noise') -imgplot = plt.imshow(Weights3D[0].T) -plt.show() diff --git a/src/Python/test/simple_astra_test.py b/src/Python/test/simple_astra_test.py deleted file mode 100644 index 905eeea..0000000 --- a/src/Python/test/simple_astra_test.py +++ /dev/null @@ -1,25 +0,0 @@ -import astra -import numpy - -detectorSpacingX = 1.0 -detectorSpacingY = 1.0 -det_row_count = 128 -det_col_count = 128 - -angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -image_size_x = 64 -image_size_y = 64 -image_size_z = 32 - -vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z) - -x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x) -sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom) diff --git a/src/Python/test/test_reconstructor-os.py b/src/Python/test/test_reconstructor-os.py deleted file mode 100644 index 21b7ecd..0000000 --- a/src/Python/test/test_reconstructor-os.py +++ /dev/null @@ -1,403 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -Based on DemoRD2.m -""" - -import h5py -import numpy - -from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor -import astra -import matplotlib.pyplot as plt -from ccpi.imaging.Regularizer import Regularizer -from ccpi.reconstruction.AstraDevice import AstraDevice -from ccpi.reconstruction.DeviceModel import DeviceModel - -def RMSE(signal1, signal2): - '''RMSE Root Mean Squared Error''' - if numpy.shape(signal1) == numpy.shape(signal2): - err = (signal1 - signal2) - err = numpy.sum( err * err )/numpy.size(signal1); # MSE - err = sqrt(err); # RMSE - return err - else: - raise Exception('Input signals must have the same shape') - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") -Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") -angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") -recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] -size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] -slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] - -Z_slices = 20 -det_row_count = Z_slices -# next definition is just for consistency of naming -det_col_count = size_det - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX - - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -image_size_x = recon_size -image_size_y = recon_size -image_size_z = Z_slices -vol_geom = astra.creators.create_vol_geom( image_size_x, - image_size_y, - image_size_z) - -## First pass the arguments to the FISTAReconstructor and test the -## Lipschitz constant -astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [proj_geom['DetectorRowCount'] , - proj_geom['DetectorColCount'] , - proj_geom['DetectorSpacingX'] , - proj_geom['DetectorSpacingY'] , - proj_geom['ProjectionAngles'] - ], - [ - vol_geom['GridColCount'], - vol_geom['GridRowCount'], - vol_geom['GridSliceCount'] ] ) -fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D, - device=astradevice) - -print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) -fistaRecon.setParameter(number_of_iterations = 2) -fistaRecon.setParameter(Lipschitz_constant = 767893952.0) -fistaRecon.setParameter(ring_alpha = 21) -fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) -fistaRecon.setParameter(ring_lambda_R_L1 = 0) -subsets = 8 -fistaRecon.setParameter(subsets=subsets) - - -#reg = Regularizer(Regularizer.Algorithm.FGP_TV) -#reg.setParameter(regularization_parameter=0.005, -# number_of_iterations=50) -reg = Regularizer(Regularizer.Algorithm.FGP_TV) -reg.setParameter(regularization_parameter=5e6, - tolerance_constant=0.0001, - number_of_iterations=50) - -fistaRecon.setParameter(regularizer=reg) -lc = fistaRecon.getParameter('Lipschitz_constant') -reg.setParameter(regularization_parameter=5e6/lc) - -## Ordered subset -if True: - subsets = 8 - fistaRecon.setParameter(subsets=subsets) - fistaRecon.createOrderedSubsets() -else: - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - #binEdges = numpy.linspace(angles.min(), - # angles.max(), - # subsets + 1) - binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) - # get rearranged subset indices - IndicesReorg = numpy.zeros((numpy.shape(angles))) - counterM = 0 - for ii in range(binsDiscr.max()): - counter = 0 - for jj in range(subsets): - curr_index = ii + jj + counter - #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) - if binsDiscr[jj] > ii: - if (counterM < numpy.size(IndicesReorg)): - IndicesReorg[counterM] = curr_index - counterM = counterM + 1 - - counter = counter + binsDiscr[jj] - 1 - - -if False: - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - print ("prepare for iteration") - fistaRecon.prepareForIteration() - - - - print("initializing ...") - if False: - # if X doesn't exist - #N = params.vol_geom.GridColCount - N = vol_geom['GridColCount'] - print ("N " + str(N)) - X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) - else: - #X = fistaRecon.initialize() - X = numpy.load("X.npy") - - print (numpy.shape(X)) - X_t = X.copy() - print ("initialized") - proj_geom , vol_geom, sino , \ - SlicesZ, weights , alpha_ring = fistaRecon.getParameter( - ['projector_geometry' , 'output_geometry', - 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha']) - lambdaR_L1 , alpha_ring , weights , L_const= \ - fistaRecon.getParameter(['ring_lambda_R_L1', - 'ring_alpha' , 'weights', - 'Lipschitz_constant']) - - #fistaRecon.setParameter(number_of_iterations = 3) - iterFISTA = fistaRecon.getParameter('number_of_iterations') - # errors vector (if the ground truth is given) - Resid_error = numpy.zeros((iterFISTA)); - # objective function values vector - objective = numpy.zeros((iterFISTA)); - - - t = 1 - - - ## additional for - proj_geomSUB = proj_geom.copy() - fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram'])) - residual2 = fistaRecon.residual2 - sino_updt_FULL = fistaRecon.residual.copy() - r_x = fistaRecon.r.copy() - - print ("starting iterations") -## % Outer FISTA iterations loop - for i in range(fistaRecon.getParameter('number_of_iterations')): -## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required -## % one solution is to work with a full sinogram at times -## if ((i >= 3) && (lambdaR_L1 > 0)) -## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); -## astra_mex_data3d('delete', sino_id2); -## end - # With OS approach it becomes trickier to correlate independent subsets, - # hence additional work is required one solution is to work with a full - # sinogram at times - - r_old = fistaRecon.r.copy() - t_old = t - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(fistaRecon.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 - if (i > 1 and lambdaR_L1 > 0) : - for kkk in range(anglesNumb): - - residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt_FULL[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - - vec = fistaRecon.residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:] # 1 or 0? - r_x = fistaRecon.r_x - # update ring variable - fistaRecon.r = (r_x - (1./L_const) * vec).copy() - - # subset loop - counterInd = 1 - geometry_type = fistaRecon.getParameter('projector_geometry')['type'] - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - -## if geometry_type == 'parallel' or \ -## geometry_type == 'fanflat' or \ -## geometry_type == 'fanflat_vec' : -## -## for kkk in range(SlicesZ): -## sino_id, sinoT[kkk] = \ -## astra.creators.create_sino3d_gpu( -## X_t[kkk:kkk+1], proj_geomSUB, vol_geom) -## sino_updt_Sub[kkk] = sinoT.T.copy() -## -## else: -## sino_id, sino_updt_Sub = \ -## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom) -## -## astra.matlab.data3d('delete', sino_id) - - for ss in range(fistaRecon.getParameter('subsets')): - print ("Subset {0}".format(ss)) - X_old = X.copy() - t_old = t - - # the number of projections per subset - numProjSub = fistaRecon.getParameter('os_bins')[ss] - CurrSubIndices = fistaRecon.getParameter('os_indices')\ - [counterInd:counterInd+numProjSub] - #print ("Len CurrSubIndices {0}".format(numProjSub)) - mask = numpy.zeros(numpy.shape(angles), dtype=bool) - cc = 0 - for j in range(len(CurrSubIndices)): - mask[int(CurrSubIndices[j])] = True - proj_geomSUB['ProjectionAngles'] = angles[mask] - - shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) - shape[1] = numProjSub - sino_updt_Sub = numpy.zeros(shape) - - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - - for kkk in range(SlicesZ): - sino_id, sinoT = astra.creators.create_sino3d_gpu ( - X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) - sino_updt_Sub[kkk] = sinoT.T.copy() - - else: - # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8) - sino_id, sino_updt_Sub = \ - astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom) - - astra.matlab.data3d('delete', sino_id) - - - - - ## RING REMOVAL - residual = fistaRecon.residual - - - if lambdaR_L1 > 0 : - print ("ring removal") - residualSub = numpy.zeros(shape) - ## for a chosen subset - ## for kkk = 1:numProjSub - ## indC = CurrSubIndeces(kkk); - ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); - ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram - ## end - for kkk in range(numProjSub): - #print ("ring removal indC ... {0}".format(kkk)) - indC = int(CurrSubIndices[kkk]) - residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ - (sino_updt_Sub[:,kkk,:].squeeze() - \ - sino[:,indC,:].squeeze() - alpha_ring * r_x) - # filling the full sinogram - sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() - - else: - #PWLS model - # I guess we need to use mask here instead - residualSub = weights[:,CurrSubIndices,:] * \ - ( sino_updt_Sub - sino[:,CurrSubIndices,:].squeeze() ) - objective[i] = 0.5 * numpy.linalg.norm(residualSub) - - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - # if geometry is 2D use slice-by-slice projection-backprojection - # routine - x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) - for kkk in range(SlicesZ): - - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residualSub[kkk:kkk+1], - proj_geomSUB, vol_geom) - - else: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residualSub, proj_geomSUB, vol_geom) - - astra.matlab.data3d('delete', x_id) - X = X_t - (1/L_const) * x_temp - - - - ## REGULARIZATION - ## SKIPPING FOR NOW - ## Should be simpli - # regularizer = fistaRecon.getParameter('regularizer') - # for slices: - # out = regularizer(input=X) - print ("regularizer") - reg = fistaRecon.getParameter('regularizer') - - X = reg(input=X, - output_all=False) - - - ## FINAL - print ("final") - lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') - if lambdaR_L1 > 0: - fistaRecon.r = numpy.max( - numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ - numpy.sign(fistaRecon.r) - # updating r - r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old) - - - if fistaRecon.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], objective[i])) - - numpy.save("X_out_os.npy", X) - -else: - astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [proj_geom['DetectorRowCount'] , - proj_geom['DetectorColCount'] , - proj_geom['DetectorSpacingX'] , - proj_geom['DetectorSpacingY'] , - proj_geom['ProjectionAngles'] - ], - [ - vol_geom['GridColCount'], - vol_geom['GridRowCount'], - vol_geom['GridSliceCount'] ] ) - regul = Regularizer(Regularizer.Algorithm.FGP_TV) - regul.setParameter(regularization_parameter=5e6, - number_of_iterations=50, - tolerance_constant=1e-4, - TV_penalty=Regularizer.TotalVariationPenalty.isotropic) - - fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D, - device=astradevice, - regularizer = regul, - subsets=8) - - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - fistaRecon.setParameter(number_of_iterations = 2) - fistaRecon.setParameter(Lipschitz_constant = 767893952.0) - fistaRecon.setParameter(ring_alpha = 21) - fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) - #fistaRecon.setParameter(subsets=8) - - lc = fistaRecon.getParameter('Lipschitz_constant') - fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc) - - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("X.npy")) diff --git a/src/Python/test/test_reconstructor-os_phantom.py b/src/Python/test/test_reconstructor-os_phantom.py deleted file mode 100644 index 01f1354..0000000 --- a/src/Python/test/test_reconstructor-os_phantom.py +++ /dev/null @@ -1,480 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -Based on DemoRD2.m -""" - -import h5py -import numpy - -from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor -import astra -import matplotlib.pyplot as plt -from ccpi.imaging.Regularizer import Regularizer -from ccpi.reconstruction.AstraDevice import AstraDevice -from ccpi.reconstruction.DeviceModel import DeviceModel - -#from ccpi.viewer.CILViewer2D import * - - -def RMSE(signal1, signal2): - '''RMSE Root Mean Squared Error''' - if numpy.shape(signal1) == numpy.shape(signal2): - err = (signal1 - signal2) - err = numpy.sum( err * err )/numpy.size(signal1); # MSE - err = sqrt(err); # RMSE - return err - else: - raise Exception('Input signals must have the same shape') - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -projections = numpy.asarray(nx.get('/projections'), dtype="float32") -#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") -#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32") -angSize = numpy.size(angles_rad) -image_size_x, image_size_y, image_size_z = \ - numpy.asarray(nx.get('/reconstruction_volume'), dtype=int) -det_col_count, det_row_count = \ - numpy.asarray(nx.get('/camera/size')) -#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] -detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int) - -Z_slices = 20 -#det_row_count = image_size_y -# next definition is just for consistency of naming -#det_col_count = image_size_x - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX - - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -##image_size_x = recon_size -##image_size_y = recon_size -##image_size_z = Z_slices -vol_geom = astra.creators.create_vol_geom( image_size_x, - image_size_y, - image_size_z) - -## First pass the arguments to the FISTAReconstructor and test the -## Lipschitz constant -astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [proj_geom['DetectorRowCount'] , - proj_geom['DetectorColCount'] , - proj_geom['DetectorSpacingX'] , - proj_geom['DetectorSpacingY'] , - proj_geom['ProjectionAngles'] - ], - [ - vol_geom['GridColCount'], - vol_geom['GridRowCount'], - vol_geom['GridSliceCount'] ] ) -## create the sinogram -Sino3D = numpy.transpose(projections, axes=[1,0,2]) - -fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - #weights=Weights3D, - device=astradevice) - -print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) -fistaRecon.setParameter(number_of_iterations = 4) -#fistaRecon.setParameter(Lipschitz_constant = 767893952.0) -fistaRecon.setParameter(ring_alpha = 21) -fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) -#fistaRecon.setParameter(ring_lambda_R_L1 = 0) -subsets = 8 -fistaRecon.setParameter(subsets=subsets) - - -#reg = Regularizer(Regularizer.Algorithm.FGP_TV) -#reg.setParameter(regularization_parameter=0.005, -# number_of_iterations=50) -reg = Regularizer(Regularizer.Algorithm.FGP_TV) -reg.setParameter(regularization_parameter=5e6, - tolerance_constant=0.0001, - number_of_iterations=50) - -#fistaRecon.setParameter(regularizer=reg) -#lc = fistaRecon.getParameter('Lipschitz_constant') -#reg.setParameter(regularization_parameter=5e6/lc) - -## Ordered subset -if True: - #subsets = 8 - fistaRecon.setParameter(subsets=subsets) - fistaRecon.createOrderedSubsets() -else: - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - #binEdges = numpy.linspace(angles.min(), - # angles.max(), - # subsets + 1) - binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) - # get rearranged subset indices - IndicesReorg = numpy.zeros((numpy.shape(angles))) - counterM = 0 - for ii in range(binsDiscr.max()): - counter = 0 - for jj in range(subsets): - curr_index = ii + jj + counter - #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) - if binsDiscr[jj] > ii: - if (counterM < numpy.size(IndicesReorg)): - IndicesReorg[counterM] = curr_index - counterM = counterM + 1 - - counter = counter + binsDiscr[jj] - 1 - - -if True: - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - print ("prepare for iteration") - fistaRecon.prepareForIteration() - - - - print("initializing ...") - if True: - # if X doesn't exist - #N = params.vol_geom.GridColCount - N = vol_geom['GridColCount'] - print ("N " + str(N)) - X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)), - dtype=numpy.float) * 0.001 - X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)), - dtype=numpy.float) - else: - #X = fistaRecon.initialize() - X = numpy.load("X.npy") - - print (numpy.shape(X)) - X_t = X.copy() - print ("initialized") - proj_geom , vol_geom, sino , \ - SlicesZ, weights , alpha_ring = fistaRecon.getParameter( - ['projector_geometry' , 'output_geometry', - 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha']) - lambdaR_L1 , alpha_ring , weights , L_const= \ - fistaRecon.getParameter(['ring_lambda_R_L1', - 'ring_alpha' , 'weights', - 'Lipschitz_constant']) - - #fistaRecon.setParameter(number_of_iterations = 3) - iterFISTA = fistaRecon.getParameter('number_of_iterations') - # errors vector (if the ground truth is given) - Resid_error = numpy.zeros((iterFISTA)); - # objective function values vector - objective = numpy.zeros((iterFISTA)); - - - t = 1 - - - ## additional for - proj_geomSUB = proj_geom.copy() - fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram'])) - residual2 = fistaRecon.residual2 - sino_updt_FULL = fistaRecon.residual.copy() - r_x = fistaRecon.r.copy() - - results = [] - print ("starting iterations") -## % Outer FISTA iterations loop - for i in range(fistaRecon.getParameter('number_of_iterations')): -## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required -## % one solution is to work with a full sinogram at times -## if ((i >= 3) && (lambdaR_L1 > 0)) -## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); -## astra_mex_data3d('delete', sino_id2); -## end - # With OS approach it becomes trickier to correlate independent subsets, - # hence additional work is required one solution is to work with a full - # sinogram at times - - - #t_old = t - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(fistaRecon.getParameter('input_sinogram')) - ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 - r_old = fistaRecon.r.copy() - - if (i > 1 and lambdaR_L1 > 0) : - for kkk in range(anglesNumb): - - residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt_FULL[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - #r_old = fistaRecon.r.copy() - vec = fistaRecon.residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:] # 1 or 0? - r_x = fistaRecon.r_x - # update ring variable - fistaRecon.r = (r_x - (1./L_const) * vec) - - # subset loop - counterInd = 1 - geometry_type = fistaRecon.getParameter('projector_geometry')['type'] - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - -## if geometry_type == 'parallel' or \ -## geometry_type == 'fanflat' or \ -## geometry_type == 'fanflat_vec' : -## -## for kkk in range(SlicesZ): -## sino_id, sinoT[kkk] = \ -## astra.creators.create_sino3d_gpu( -## X_t[kkk:kkk+1], proj_geomSUB, vol_geom) -## sino_updt_Sub[kkk] = sinoT.T.copy() -## -## else: -## sino_id, sino_updt_Sub = \ -## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom) -## -## astra.matlab.data3d('delete', sino_id) - - for ss in range(fistaRecon.getParameter('subsets')): - print ("Subset {0}".format(ss)) - X_old = X.copy() - t_old = t - print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t)) - - # the number of projections per subset - numProjSub = fistaRecon.getParameter('os_bins')[ss] - CurrSubIndices = fistaRecon.getParameter('os_indices')\ - [counterInd:counterInd+numProjSub] - shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) - shape[1] = numProjSub - sino_updt_Sub = numpy.zeros(shape) - - #print ("Len CurrSubIndices {0}".format(numProjSub)) - mask = numpy.zeros(numpy.shape(angles), dtype=bool) - cc = 0 - for j in range(len(CurrSubIndices)): - mask[int(CurrSubIndices[j])] = True - - ## this is a reduced device - rdev = fistaRecon.getParameter('device_model')\ - .createReducedDevice(proj_par={'angles' : angles[mask]}, - vol_par={}) - proj_geomSUB['ProjectionAngles'] = angles[mask] - - - - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - - for kkk in range(SlicesZ): - sino_id, sinoT = astra.creators.create_sino3d_gpu ( - X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) - sino_updt_Sub[kkk] = sinoT.T.copy() - astra.matlab.data3d('delete', sino_id) - else: - # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8) - sino_id, sino_updt_Sub = \ - astra.creators.create_sino3d_gpu (X_t, - proj_geomSUB, - vol_geom) - - astra.matlab.data3d('delete', sino_id) - - - - - ## RING REMOVAL - residual = fistaRecon.residual - - - if lambdaR_L1 > 0 : - print ("ring removal") - residualSub = numpy.zeros(shape) - ## for a chosen subset - ## for kkk = 1:numProjSub - ## indC = CurrSubIndeces(kkk); - ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); - ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram - ## end - for kkk in range(numProjSub): - #print ("ring removal indC ... {0}".format(kkk)) - indC = int(CurrSubIndices[kkk]) - residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ - (sino_updt_Sub[:,kkk,:].squeeze() - \ - sino[:,indC,:].squeeze() - alpha_ring * r_x) - # filling the full sinogram - sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() - - else: - #PWLS model - # I guess we need to use mask here instead - residualSub = weights[:,CurrSubIndices,:] * \ - ( sino_updt_Sub - \ - sino[:,CurrSubIndices,:].squeeze() ) - # it seems that in the original code the following like is not - # calculated in the case of ring removal - objective[i] = 0.5 * numpy.linalg.norm(residualSub) - - #backprojection - if geometry_type == 'parallel' or \ - geometry_type == 'fanflat' or \ - geometry_type == 'fanflat_vec' : - # if geometry is 2D use slice-by-slice projection-backprojection - # routine - x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) - for kkk in range(SlicesZ): - - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residualSub[kkk:kkk+1], - proj_geomSUB, vol_geom) - astra.matlab.data3d('delete', x_id) - - else: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residualSub, proj_geomSUB, vol_geom) - - astra.matlab.data3d('delete', x_id) - - X = X_t - (1/L_const) * x_temp - - - - ## REGULARIZATION - ## SKIPPING FOR NOW - ## Should be simpli - # regularizer = fistaRecon.getParameter('regularizer') - # for slices: - # out = regularizer(input=X) - print ("regularizer") - reg = fistaRecon.getParameter('regularizer') - - if reg is not None: - X = reg(input=X, - output_all=False) - - t = (1 + numpy.sqrt(1 + 4 * t **2))/2 - X_t = X + (((t_old -1)/t) * (X-X_old)) - counterInd = counterInd + numProjSub - 1 - if i == 1: - r_old = fistaRecon.r.copy() - - ## FINAL - print ("final") - lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') - if lambdaR_L1 > 0: - fistaRecon.r = numpy.max( - numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ - numpy.sign(fistaRecon.r) - # updating r - r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old) - - - if fistaRecon.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], objective[i])) - - results.append(X[10]) - numpy.save("X_out_os.npy", X) - -else: - - - - astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [proj_geom['DetectorRowCount'] , - proj_geom['DetectorColCount'] , - proj_geom['DetectorSpacingX'] , - proj_geom['DetectorSpacingY'] , - proj_geom['ProjectionAngles'] - ], - [ - vol_geom['GridColCount'], - vol_geom['GridRowCount'], - vol_geom['GridSliceCount'] ] ) - regul = Regularizer(Regularizer.Algorithm.FGP_TV) - regul.setParameter(regularization_parameter=5e6, - number_of_iterations=50, - tolerance_constant=1e-4, - TV_penalty=Regularizer.TotalVariationPenalty.isotropic) - - fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D, - device=astradevice, - #regularizer = regul, - subsets=8) - - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - fistaRecon.setParameter(number_of_iterations = 1) - fistaRecon.setParameter(Lipschitz_constant = 767893952.0) - fistaRecon.setParameter(ring_alpha = 21) - fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) - #fistaRecon.setParameter(subsets=8) - - #lc = fistaRecon.getParameter('Lipschitz_constant') - #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc) - - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("X.npy")) - - -# plot -fig = plt.figure() -cols = 3 - -## add the difference -rd = [] -for i in range(1,len(results)): - rd.append(results[i-1]) - rd.append(results[i]) - rd.append(results[i] - results[i-1]) - -rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \ - (len (rd)) -for i in range(len (results)): - a=fig.add_subplot(rows,cols,i+1) - imgplot = plt.imshow(results[i], vmin=0, vmax=1) - a.text(0.05, 0.95, "iteration {0}".format(i), - verticalalignment='top') -## i = i + 1 -## a=fig.add_subplot(rows,cols,i+1) -## imgplot = plt.imshow(results[i], vmin=0, vmax=10) -## a.text(0.05, 0.95, "iteration {0}".format(i), -## verticalalignment='top') - -## a=fig.add_subplot(rows,cols,i+2) -## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10) -## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1), -## verticalalignment='top') - - - -plt.show() diff --git a/src/Python/test/test_reconstructor.py b/src/Python/test/test_reconstructor.py deleted file mode 100644 index 40065e7..0000000 --- a/src/Python/test/test_reconstructor.py +++ /dev/null @@ -1,359 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -Based on DemoRD2.m -""" - -import h5py -import numpy - -from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor -import astra -import matplotlib.pyplot as plt -from ccpi.imaging.Regularizer import Regularizer -from ccpi.reconstruction.AstraDevice import AstraDevice -from ccpi.reconstruction.DeviceModel import DeviceModel - -def RMSE(signal1, signal2): - '''RMSE Root Mean Squared Error''' - if numpy.shape(signal1) == numpy.shape(signal2): - err = (signal1 - signal2) - err = numpy.sum( err * err )/numpy.size(signal1); # MSE - err = sqrt(err); # RMSE - return err - else: - raise Exception('Input signals must have the same shape') - -def createAstraDevice(projector_geometry, output_geometry): - '''TODO remove''' - - device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [projector_geometry['DetectorRowCount'] , - projector_geometry['DetectorColCount'] , - projector_geometry['DetectorSpacingX'] , - projector_geometry['DetectorSpacingY'] , - projector_geometry['ProjectionAngles'] - ], - [ - output_geometry['GridColCount'], - output_geometry['GridRowCount'], - output_geometry['GridSliceCount'] ] ) - return device - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") -Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") -angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") -recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] -size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] -slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] - -Z_slices = 20 -det_row_count = Z_slices -# next definition is just for consistency of naming -det_col_count = size_det - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX - - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -image_size_x = recon_size -image_size_y = recon_size -image_size_z = Z_slices -vol_geom = astra.creators.create_vol_geom( image_size_x, - image_size_y, - image_size_z) - -## First pass the arguments to the FISTAReconstructor and test the -## Lipschitz constant - -##fistaRecon = FISTAReconstructor(proj_geom, -## vol_geom, -## Sino3D , -## weights=Weights3D) -## -##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) -##fistaRecon.setParameter(number_of_iterations = 12) -##fistaRecon.setParameter(Lipschitz_constant = 767893952.0) -##fistaRecon.setParameter(ring_alpha = 21) -##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) -## -##reg = Regularizer(Regularizer.Algorithm.LLT_model) -##reg.setParameter(regularization_parameter=25, -## time_step=0.0003, -## tolerance_constant=0.0001, -## number_of_iterations=300) -##fistaRecon.setParameter(regularizer=reg) - -## Ordered subset -if False: - subsets = 16 - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - #binEdges = numpy.linspace(angles.min(), - # angles.max(), - # subsets + 1) - binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) - # get rearranged subset indices - IndicesReorg = numpy.zeros((numpy.shape(angles))) - counterM = 0 - for ii in range(binsDiscr.max()): - counter = 0 - for jj in range(subsets): - curr_index = ii + jj + counter - #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) - if binsDiscr[jj] > ii: - if (counterM < numpy.size(IndicesReorg)): - IndicesReorg[counterM] = curr_index - counterM = counterM + 1 - - counter = counter + binsDiscr[jj] - 1 - - -if False: - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - print ("prepare for iteration") - fistaRecon.prepareForIteration() - - - - print("initializing ...") - if False: - # if X doesn't exist - #N = params.vol_geom.GridColCount - N = vol_geom['GridColCount'] - print ("N " + str(N)) - X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) - else: - #X = fistaRecon.initialize() - X = numpy.load("X.npy") - - print (numpy.shape(X)) - X_t = X.copy() - print ("initialized") - proj_geom , vol_geom, sino , \ - SlicesZ = fistaRecon.getParameter(['projector_geometry' , - 'output_geometry', - 'input_sinogram', - 'SlicesZ']) - - #fistaRecon.setParameter(number_of_iterations = 3) - iterFISTA = fistaRecon.getParameter('number_of_iterations') - # errors vector (if the ground truth is given) - Resid_error = numpy.zeros((iterFISTA)); - # objective function values vector - objective = numpy.zeros((iterFISTA)); - - - t = 1 - - - print ("starting iterations") -## % Outer FISTA iterations loop - for i in range(fistaRecon.getParameter('number_of_iterations')): - X_old = X.copy() - t_old = t - r_old = fistaRecon.r.copy() - if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : - # if the geometry is parallel use slice-by-slice - # projection-backprojection routine - #sino_updt = zeros(size(sino),'single'); - proj_geomT = proj_geom.copy() - proj_geomT['DetectorRowCount'] = 1 - vol_geomT = vol_geom.copy() - vol_geomT['GridSliceCount'] = 1; - sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) - for kkk in range(SlicesZ): - sino_id, sino_updt[kkk] = \ - astra.creators.create_sino3d_gpu( - X_t[kkk:kkk+1], proj_geom, vol_geom) - astra.matlab.data3d('delete', sino_id) - else: - # for divergent 3D geometry (watch the GPU memory overflow in - # ASTRA versions < 1.8) - #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - sino_id, sino_updt = astra.creators.create_sino3d_gpu( - X_t, proj_geom, vol_geom) - - ## RING REMOVAL - residual = fistaRecon.residual - lambdaR_L1 , alpha_ring , weights , L_const= \ - fistaRecon.getParameter(['ring_lambda_R_L1', - 'ring_alpha' , 'weights', - 'Lipschitz_constant']) - r_x = fistaRecon.r_x - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(fistaRecon.getParameter('input_sinogram')) - if lambdaR_L1 > 0 : - print ("ring removal") - for kkk in range(anglesNumb): - - residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - vec = residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:].squeeze() - fistaRecon.r = (r_x - (1./L_const) * vec).copy() - objective[i] = (0.5 * (residual ** 2).sum()) -## % the ring removal part (Group-Huber fidelity) -## for kkk = 1:anglesNumb -## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* -## (squeeze(sino_updt(:,kkk,:)) - -## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); -## end -## vec = sum(residual,2); -## if (SlicesZ > 1) -## vec = squeeze(vec(:,1,:)); -## end -## r = r_x - (1./L_const).*vec; -## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - - - - # Projection/Backprojection Routine - if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': - x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) - print ("Projection/Backprojection Routine") - for kkk in range(SlicesZ): - - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residual[kkk:kkk+1], - proj_geomT, vol_geomT) - astra.matlab.data3d('delete', x_id) - else: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residual, proj_geom, vol_geom) - - X = X_t - (1/L_const) * x_temp - astra.matlab.data3d('delete', sino_id) - astra.matlab.data3d('delete', x_id) - - - ## REGULARIZATION - ## SKIPPING FOR NOW - ## Should be simpli - # regularizer = fistaRecon.getParameter('regularizer') - # for slices: - # out = regularizer(input=X) - print ("skipping regularizer") - - - ## FINAL - print ("final") - lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') - if lambdaR_L1 > 0: - fistaRecon.r = numpy.max( - numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ - numpy.sign(fistaRecon.r) - t = (1 + numpy.sqrt(1 + 4 * t**2))/2 - X_t = X + (((t_old -1)/t) * (X - X_old)) - - if lambdaR_L1 > 0: - fistaRecon.r_x = fistaRecon.r + \ - (((t_old-1)/t) * (fistaRecon.r - r_old)) - - if fistaRecon.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], objective[i])) - -## if (lambdaR_L1 > 0) -## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector -## end -## -## t = (1 + sqrt(1 + 4*t^2))/2; % updating t -## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X -## -## if (lambdaR_L1 > 0) -## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r -## end -## -## if (show == 1) -## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); -## if (lambdaR_L1 > 0) -## figure(11); plot(r); title('Rings offset vector') -## end -## pause(0.01); -## end -## if (strcmp(X_ideal, 'none' ) == 0) -## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); -## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); -## else -## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); -## end -else: - - # create a device for forward/backprojection - #astradevice = createAstraDevice(proj_geom, vol_geom) - - astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, - [proj_geom['DetectorRowCount'] , - proj_geom['DetectorColCount'] , - proj_geom['DetectorSpacingX'] , - proj_geom['DetectorSpacingY'] , - proj_geom['ProjectionAngles'] - ], - [ - vol_geom['GridColCount'], - vol_geom['GridRowCount'], - vol_geom['GridSliceCount'] ] ) - - regul = Regularizer(Regularizer.Algorithm.FGP_TV) - regul.setParameter(regularization_parameter=5e6, - number_of_iterations=50, - tolerance_constant=1e-4, - TV_penalty=Regularizer.TotalVariationPenalty.isotropic) - - fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - device = astradevice, - weights=Weights3D, - regularizer = regul - ) - - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - fistaRecon.setParameter(number_of_iterations = 18) - fistaRecon.setParameter(Lipschitz_constant = 767893952.0) - fistaRecon.setParameter(ring_alpha = 21) - fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) - - - - fistaRecon.prepareForIteration() - X = numpy.load("X.npy") - - - X = fistaRecon.iterate(X) - #numpy.save("X_out.npy", X) diff --git a/src/Python/test/test_regularizers.py b/src/Python/test/test_regularizers.py deleted file mode 100644 index 27e4ed3..0000000 --- a/src/Python/test/test_regularizers.py +++ /dev/null @@ -1,412 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Fri Aug 4 11:10:05 2017 - -@author: ofn77899 -""" - -#from ccpi.viewer.CILViewer2D import Converter -#import vtk - -import matplotlib.pyplot as plt -import numpy as np -import os -from enum import Enum -import timeit -#from PIL import Image -#from Regularizer import Regularizer -from ccpi.imaging.Regularizer import Regularizer - -############################################################################### -#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 -#NRMSE a normalization of the root of the mean squared error -#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum -# intensity from the two images being compared, and respectively the same for -# minval. RMSE is given by the square root of MSE: -# sqrt[(sum(A - B) ** 2) / |A|], -# where |A| means the number of elements in A. By doing this, the maximum value -# given by RMSE is maxval. - -def nrmse(im1, im2): - a, b = im1.shape - rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) - max_val = max(np.max(im1), np.max(im2)) - min_val = min(np.min(im1), np.min(im2)) - return 1 - (rmse / (max_val - min_val)) -############################################################################### - -############################################################################### -# -# 2D Regularizers -# -############################################################################### -#Example: -# figure; -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - - -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" -filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" -#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' - -#reader = vtk.vtkTIFFReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -Im = plt.imread(filename) -#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 -#img.show() -Im = np.asarray(Im, dtype='float32') - - - - -#imgplot = plt.imshow(Im) -perc = 0.05 -u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -# map the u0 u0->u0>0 -f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = f(u0).astype('float32') - -## plot -fig = plt.figure() -#a=fig.add_subplot(3,3,1) -#a.set_title('Original') -#imgplot = plt.imshow(Im) - -a=fig.add_subplot(2,3,1) -a.set_title('noise') -imgplot = plt.imshow(u0,cmap="gray") - -reg_output = [] -############################################################################## -# Call regularizer - -####################### SplitBregman_TV ##################################### -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - -use_object = True -if use_object: - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - print (reg.pars) - reg.setParameter(input=u0) - reg.setParameter(regularization_parameter=10.) - # or - # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - #TV_Penalty=Regularizer.TotalVariationPenalty.l1) - plotme = reg() [0] - pars = reg.pars - textstr = reg.printParametersToString() - - #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - # TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -else: - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) - pars = out2[2] - reg_output.append(out2) - plotme = reg_output[-1][0] - textstr = out2[-1] - -a=fig.add_subplot(2,3,2) - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme,cmap="gray") - -###################### FGP_TV ######################################### -# u = FGP_TV(single(u0), 0.05, 100, 1e-04); -out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, - number_of_iterations=50) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,3) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0]) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - -###################### LLT_model ######################################### -# * u0 = Im + .03*randn(size(Im)); % adding noise -# [Den] = LLT_model(single(u0), 10, 0.1, 1); -#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -#input, regularization_parameter , time_step, number_of_iterations, -# tolerance_constant, restrictive_Z_smoothing=0 -out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, - time_step=0.0003, - tolerance_constant=0.0001, - number_of_iterations=300) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,4) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -# ###################### PatchBased_Regul ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); - -out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, - searching_window_ratio=3, - similarity_window_ratio=1, - PB_filtering_parameter=0.08) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,5) - - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -# ###################### TGV_PD ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, - first_order_term=1.3, - second_order_term=1, - number_of_iterations=550) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,6) - - -textstr = out2[-1] - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -plt.show() - -################################################################################ -## -## 3D Regularizers -## -################################################################################ -##Example: -## figure; -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" -# -#reader = vtk.vtkMetaImageReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -##vtk returns 3D images, let's take just the one slice there is as 2D -#Im = Converter.vtk2numpy(reader.GetOutput()) -#Im = Im.astype('float32') -##imgplot = plt.imshow(Im) -#perc = 0.05 -#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -## map the u0 u0->u0>0 -#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -#u0 = f(u0).astype('float32') -#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), -# reader.GetOutput().GetOrigin()) -#converter.Update() -#writer = vtk.vtkMetaImageWriter() -#writer.SetInputData(converter.GetOutput()) -#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") -##writer.Write() -# -# -### plot -#fig3D = plt.figure() -##a=fig.add_subplot(3,3,1) -##a.set_title('Original') -##imgplot = plt.imshow(Im) -#sliceNo = 32 -# -#a=fig3D.add_subplot(2,3,1) -#a.set_title('noise') -#imgplot = plt.imshow(u0.T[sliceNo]) -# -#reg_output3d = [] -# -############################################################################### -## Call regularizer -# -######################## SplitBregman_TV ##################################### -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) -# -##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, -## #tolerance_constant=1e-4, -## TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -# -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### FGP_TV ######################################### -## u = FGP_TV(single(u0), 0.05, 100, 1e-04); -#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, -# number_of_iterations=200) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### LLT_model ######################################### -## * u0 = Im + .03*randn(size(Im)); % adding noise -## [Den] = LLT_model(single(u0), 10, 0.1, 1); -##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -##input, regularization_parameter , time_step, number_of_iterations, -## tolerance_constant, restrictive_Z_smoothing=0 -#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, -# time_step=0.0003, -# tolerance_constant=0.0001, -# number_of_iterations=300) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### PatchBased_Regul ######################################### -## Quick 2D denoising example in Matlab: -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -# -#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, -# searching_window_ratio=3, -# similarity_window_ratio=1, -# PB_filtering_parameter=0.08) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# - -###################### TGV_PD ######################################### -# Quick 2D denoising example in Matlab: -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, -# first_order_term=1.3, -# second_order_term=1, -# number_of_iterations=550) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/src/Python/test/test_regularizers_3d.py b/src/Python/test/test_regularizers_3d.py deleted file mode 100644 index 2d11a7e..0000000 --- a/src/Python/test/test_regularizers_3d.py +++ /dev/null @@ -1,425 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Fri Aug 4 11:10:05 2017 - -@author: ofn77899 -""" - -#from ccpi.viewer.CILViewer2D import Converter -#import vtk - -import matplotlib.pyplot as plt -import numpy as np -import os -from enum import Enum -import timeit -#from PIL import Image -#from Regularizer import Regularizer -from ccpi.imaging.Regularizer import Regularizer - -############################################################################### -#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 -#NRMSE a normalization of the root of the mean squared error -#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum -# intensity from the two images being compared, and respectively the same for -# minval. RMSE is given by the square root of MSE: -# sqrt[(sum(A - B) ** 2) / |A|], -# where |A| means the number of elements in A. By doing this, the maximum value -# given by RMSE is maxval. - -def nrmse(im1, im2): - a, b = im1.shape - rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) - max_val = max(np.max(im1), np.max(im2)) - min_val = min(np.min(im1), np.min(im2)) - return 1 - (rmse / (max_val - min_val)) -############################################################################### - -############################################################################### -# -# 2D Regularizers -# -############################################################################### -#Example: -# figure; -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - - -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" -filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" -#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' - -#reader = vtk.vtkTIFFReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -Im = plt.imread(filename) -#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 -#img.show() -Im = np.asarray(Im, dtype='float32') - -# create a 3D image by stacking N of this images - - -#imgplot = plt.imshow(Im) -perc = 0.05 -u_n = Im + (perc* np.random.normal(size=np.shape(Im))) -y,z = np.shape(u_n) -u_n = np.reshape(u_n , (1,y,z)) - -u0 = u_n.copy() -for i in range (19): - u_n = Im + (perc* np.random.normal(size=np.shape(Im))) - u_n = np.reshape(u_n , (1,y,z)) - - u0 = np.vstack ( (u0, u_n) ) - -# map the u0 u0->u0>0 -f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = f(u0).astype('float32') - -print ("Passed image shape {0}".format(np.shape(u0))) - -## plot -fig = plt.figure() -#a=fig.add_subplot(3,3,1) -#a.set_title('Original') -#imgplot = plt.imshow(Im) -sliceno = 10 - -a=fig.add_subplot(2,3,1) -a.set_title('noise') -imgplot = plt.imshow(u0[sliceno],cmap="gray") - -reg_output = [] -############################################################################## -# Call regularizer - -####################### SplitBregman_TV ##################################### -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - -use_object = True -if use_object: - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - print (reg.pars) - reg.setParameter(input=u0) - reg.setParameter(regularization_parameter=10.) - # or - # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - #TV_Penalty=Regularizer.TotalVariationPenalty.l1) - plotme = reg() [0] - pars = reg.pars - textstr = reg.printParametersToString() - - #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - # TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -else: - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) - pars = out2[2] - reg_output.append(out2) - plotme = reg_output[-1][0] - textstr = out2[-1] - -a=fig.add_subplot(2,3,2) - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme[sliceno],cmap="gray") - -###################### FGP_TV ######################################### -# u = FGP_TV(single(u0), 0.05, 100, 1e-04); -out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, - number_of_iterations=50) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,3) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0][sliceno]) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") - -###################### LLT_model ######################################### -# * u0 = Im + .03*randn(size(Im)); % adding noise -# [Den] = LLT_model(single(u0), 10, 0.1, 1); -#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -#input, regularization_parameter , time_step, number_of_iterations, -# tolerance_constant, restrictive_Z_smoothing=0 -out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, - time_step=0.0003, - tolerance_constant=0.0001, - number_of_iterations=300) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,4) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") - - -# ###################### PatchBased_Regul ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); - -out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, - searching_window_ratio=3, - similarity_window_ratio=1, - PB_filtering_parameter=0.08) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,5) - - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") - - -# ###################### TGV_PD ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, - first_order_term=1.3, - second_order_term=1, - number_of_iterations=550) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,6) - - -textstr = out2[-1] - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") - - -plt.show() - -################################################################################ -## -## 3D Regularizers -## -################################################################################ -##Example: -## figure; -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" -# -#reader = vtk.vtkMetaImageReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -##vtk returns 3D images, let's take just the one slice there is as 2D -#Im = Converter.vtk2numpy(reader.GetOutput()) -#Im = Im.astype('float32') -##imgplot = plt.imshow(Im) -#perc = 0.05 -#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -## map the u0 u0->u0>0 -#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -#u0 = f(u0).astype('float32') -#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), -# reader.GetOutput().GetOrigin()) -#converter.Update() -#writer = vtk.vtkMetaImageWriter() -#writer.SetInputData(converter.GetOutput()) -#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") -##writer.Write() -# -# -### plot -#fig3D = plt.figure() -##a=fig.add_subplot(3,3,1) -##a.set_title('Original') -##imgplot = plt.imshow(Im) -#sliceNo = 32 -# -#a=fig3D.add_subplot(2,3,1) -#a.set_title('noise') -#imgplot = plt.imshow(u0.T[sliceNo]) -# -#reg_output3d = [] -# -############################################################################### -## Call regularizer -# -######################## SplitBregman_TV ##################################### -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) -# -##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, -## #tolerance_constant=1e-4, -## TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -# -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### FGP_TV ######################################### -## u = FGP_TV(single(u0), 0.05, 100, 1e-04); -#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, -# number_of_iterations=200) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### LLT_model ######################################### -## * u0 = Im + .03*randn(size(Im)); % adding noise -## [Den] = LLT_model(single(u0), 10, 0.1, 1); -##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -##input, regularization_parameter , time_step, number_of_iterations, -## tolerance_constant, restrictive_Z_smoothing=0 -#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, -# time_step=0.0003, -# tolerance_constant=0.0001, -# number_of_iterations=300) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### PatchBased_Regul ######################################### -## Quick 2D denoising example in Matlab: -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -# -#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, -# searching_window_ratio=3, -# similarity_window_ratio=1, -# PB_filtering_parameter=0.08) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# - -###################### TGV_PD ######################################### -# Quick 2D denoising example in Matlab: -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, -# first_order_term=1.3, -# second_order_term=1, -# number_of_iterations=550) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/src/Python/test_reconstructor.py b/src/Python/test_reconstructor.py deleted file mode 100644 index 07668ba..0000000 --- a/src/Python/test_reconstructor.py +++ /dev/null @@ -1,301 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Aug 23 16:34:49 2017 - -@author: ofn77899 -Based on DemoRD2.m -""" - -import h5py -import numpy - -from ccpi.fista.FISTAReconstructor import FISTAReconstructor -import astra -import matplotlib.pyplot as plt - -def RMSE(signal1, signal2): - '''RMSE Root Mean Squared Error''' - if numpy.shape(signal1) == numpy.shape(signal2): - err = (signal1 - signal2) - err = numpy.sum( err * err )/numpy.size(signal1); # MSE - err = sqrt(err); # RMSE - return err - else: - raise Exception('Input signals must have the same shape') - -filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' -nx = h5py.File(filename, "r") -#getEntry(nx, '/') -# I have exported the entries as children of / -entries = [entry for entry in nx['/'].keys()] -print (entries) - -Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") -Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") -angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] -angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") -recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] -size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] -slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] - -Z_slices = 20 -det_row_count = Z_slices -# next definition is just for consistency of naming -det_col_count = size_det - -detectorSpacingX = 1.0 -detectorSpacingY = detectorSpacingX - - -proj_geom = astra.creators.create_proj_geom('parallel3d', - detectorSpacingX, - detectorSpacingY, - det_row_count, - det_col_count, - angles_rad) - -#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); -image_size_x = recon_size -image_size_y = recon_size -image_size_z = Z_slices -vol_geom = astra.creators.create_vol_geom( image_size_x, - image_size_y, - image_size_z) - -## First pass the arguments to the FISTAReconstructor and test the -## Lipschitz constant - -fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D) - -print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) -fistaRecon.setParameter(number_of_iterations = 12) -fistaRecon.setParameter(Lipschitz_constant = 767893952.0) -fistaRecon.setParameter(ring_alpha = 21) -fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) - -## Ordered subset -if False: - subsets = 16 - angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] - #binEdges = numpy.linspace(angles.min(), - # angles.max(), - # subsets + 1) - binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) - # get rearranged subset indices - IndicesReorg = numpy.zeros((numpy.shape(angles))) - counterM = 0 - for ii in range(binsDiscr.max()): - counter = 0 - for jj in range(subsets): - curr_index = ii + jj + counter - #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) - if binsDiscr[jj] > ii: - if (counterM < numpy.size(IndicesReorg)): - IndicesReorg[counterM] = curr_index - counterM = counterM + 1 - - counter = counter + binsDiscr[jj] - 1 - - -if False: - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - print ("prepare for iteration") - fistaRecon.prepareForIteration() - - - - print("initializing ...") - if False: - # if X doesn't exist - #N = params.vol_geom.GridColCount - N = vol_geom['GridColCount'] - print ("N " + str(N)) - X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) - else: - #X = fistaRecon.initialize() - X = numpy.load("X.npy") - - print (numpy.shape(X)) - X_t = X.copy() - print ("initialized") - proj_geom , vol_geom, sino , \ - SlicesZ = fistaRecon.getParameter(['projector_geometry' , - 'output_geometry', - 'input_sinogram', - 'SlicesZ']) - - #fistaRecon.setParameter(number_of_iterations = 3) - iterFISTA = fistaRecon.getParameter('number_of_iterations') - # errors vector (if the ground truth is given) - Resid_error = numpy.zeros((iterFISTA)); - # objective function values vector - objective = numpy.zeros((iterFISTA)); - - - t = 1 - - - print ("starting iterations") -## % Outer FISTA iterations loop - for i in range(fistaRecon.getParameter('number_of_iterations')): - X_old = X.copy() - t_old = t - r_old = fistaRecon.r.copy() - if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : - # if the geometry is parallel use slice-by-slice - # projection-backprojection routine - #sino_updt = zeros(size(sino),'single'); - proj_geomT = proj_geom.copy() - proj_geomT['DetectorRowCount'] = 1 - vol_geomT = vol_geom.copy() - vol_geomT['GridSliceCount'] = 1; - sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) - for kkk in range(SlicesZ): - sino_id, sino_updt[kkk] = \ - astra.creators.create_sino3d_gpu( - X_t[kkk:kkk+1], proj_geom, vol_geom) - astra.matlab.data3d('delete', sino_id) - else: - # for divergent 3D geometry (watch the GPU memory overflow in - # ASTRA versions < 1.8) - #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - sino_id, sino_updt = astra.creators.create_sino3d_gpu( - X_t, proj_geom, vol_geom) - - ## RING REMOVAL - residual = fistaRecon.residual - lambdaR_L1 , alpha_ring , weights , L_const= \ - fistaRecon.getParameter(['ring_lambda_R_L1', - 'ring_alpha' , 'weights', - 'Lipschitz_constant']) - r_x = fistaRecon.r_x - SlicesZ, anglesNumb, Detectors = \ - numpy.shape(fistaRecon.getParameter('input_sinogram')) - if lambdaR_L1 > 0 : - print ("ring removal") - for kkk in range(anglesNumb): - - residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ - ((sino_updt[:,kkk,:]).squeeze() - \ - (sino[:,kkk,:]).squeeze() -\ - (alpha_ring * r_x) - ) - vec = residual.sum(axis = 1) - #if SlicesZ > 1: - # vec = vec[:,1,:].squeeze() - fistaRecon.r = (r_x - (1./L_const) * vec).copy() - objective[i] = (0.5 * (residual ** 2).sum()) -## % the ring removal part (Group-Huber fidelity) -## for kkk = 1:anglesNumb -## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* -## (squeeze(sino_updt(:,kkk,:)) - -## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); -## end -## vec = sum(residual,2); -## if (SlicesZ > 1) -## vec = squeeze(vec(:,1,:)); -## end -## r = r_x - (1./L_const).*vec; -## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - - - - # Projection/Backprojection Routine - if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ - fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': - x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) - print ("Projection/Backprojection Routine") - for kkk in range(SlicesZ): - - x_id, x_temp[kkk] = \ - astra.creators.create_backprojection3d_gpu( - residual[kkk:kkk+1], - proj_geomT, vol_geomT) - astra.matlab.data3d('delete', x_id) - else: - x_id, x_temp = \ - astra.creators.create_backprojection3d_gpu( - residual, proj_geom, vol_geom) - - X = X_t - (1/L_const) * x_temp - astra.matlab.data3d('delete', sino_id) - astra.matlab.data3d('delete', x_id) - - - ## REGULARIZATION - ## SKIPPING FOR NOW - ## Should be simpli - # regularizer = fistaRecon.getParameter('regularizer') - # for slices: - # out = regularizer(input=X) - print ("skipping regularizer") - - - ## FINAL - print ("final") - lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') - if lambdaR_L1 > 0: - fistaRecon.r = numpy.max( - numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ - numpy.sign(fistaRecon.r) - t = (1 + numpy.sqrt(1 + 4 * t**2))/2 - X_t = X + (((t_old -1)/t) * (X - X_old)) - - if lambdaR_L1 > 0: - fistaRecon.r_x = fistaRecon.r + \ - (((t_old-1)/t) * (fistaRecon.r - r_old)) - - if fistaRecon.getParameter('region_of_interest') is None: - string = 'Iteration Number {0} | Objective {1} \n' - print (string.format( i, objective[i])) - else: - ROI , X_ideal = fistaRecon.getParameter('region_of_interest', - 'ideal_image') - - Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) - string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' - print (string.format(i,Resid_error[i], objective[i])) - -## if (lambdaR_L1 > 0) -## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector -## end -## -## t = (1 + sqrt(1 + 4*t^2))/2; % updating t -## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X -## -## if (lambdaR_L1 > 0) -## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r -## end -## -## if (show == 1) -## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); -## if (lambdaR_L1 > 0) -## figure(11); plot(r); title('Rings offset vector') -## end -## pause(0.01); -## end -## if (strcmp(X_ideal, 'none' ) == 0) -## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); -## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); -## else -## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); -## end -else: - fistaRecon = FISTAReconstructor(proj_geom, - vol_geom, - Sino3D , - weights=Weights3D) - - print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) - fistaRecon.setParameter(number_of_iterations = 12) - fistaRecon.setParameter(Lipschitz_constant = 767893952.0) - fistaRecon.setParameter(ring_alpha = 21) - fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) - fistaRecon.prepareForIteration() - X = fistaRecon.iterate(numpy.load("X.npy")) diff --git a/src/Python/test_regularizers.py b/src/Python/test_regularizers.py deleted file mode 100644 index e76262c..0000000 --- a/src/Python/test_regularizers.py +++ /dev/null @@ -1,412 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Fri Aug 4 11:10:05 2017 - -@author: ofn77899 -""" - -#from ccpi.viewer.CILViewer2D import Converter -#import vtk - -import matplotlib.pyplot as plt -import numpy as np -import os -from enum import Enum -import timeit -#from PIL import Image -#from Regularizer import Regularizer -from ccpi.imaging.Regularizer import Regularizer - -############################################################################### -#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 -#NRMSE a normalization of the root of the mean squared error -#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum -# intensity from the two images being compared, and respectively the same for -# minval. RMSE is given by the square root of MSE: -# sqrt[(sum(A - B) ** 2) / |A|], -# where |A| means the number of elements in A. By doing this, the maximum value -# given by RMSE is maxval. - -def nrmse(im1, im2): - a, b = im1.shape - rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) - max_val = max(np.max(im1), np.max(im2)) - min_val = min(np.min(im1), np.min(im2)) - return 1 - (rmse / (max_val - min_val)) -############################################################################### - -############################################################################### -# -# 2D Regularizers -# -############################################################################### -#Example: -# figure; -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - - -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" -filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" -#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' - -#reader = vtk.vtkTIFFReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -Im = plt.imread(filename) -#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 -#img.show() -Im = np.asarray(Im, dtype='float32') - - - - -#imgplot = plt.imshow(Im) -perc = 0.05 -u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -# map the u0 u0->u0>0 -f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = f(u0).astype('float32') - -## plot -fig = plt.figure() -#a=fig.add_subplot(3,3,1) -#a.set_title('Original') -#imgplot = plt.imshow(Im) - -a=fig.add_subplot(2,3,1) -a.set_title('noise') -imgplot = plt.imshow(u0,cmap="gray") - -reg_output = [] -############################################################################## -# Call regularizer - -####################### SplitBregman_TV ##################################### -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - -use_object = True -if use_object: - reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - print (reg.pars) - reg.setParameter(input=u0) - reg.setParameter(regularization_parameter=10.) - # or - # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - #TV_Penalty=Regularizer.TotalVariationPenalty.l1) - plotme = reg() [0] - pars = reg.pars - textstr = reg.printParametersToString() - - #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, - #tolerance_constant=1e-4, - # TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -else: - out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) - pars = out2[2] - reg_output.append(out2) - plotme = reg_output[-1][0] - textstr = out2[-1] - -a=fig.add_subplot(2,3,2) - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme,cmap="gray") - -###################### FGP_TV ######################################### -# u = FGP_TV(single(u0), 0.05, 100, 1e-04); -out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, - number_of_iterations=200) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,3) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0]) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - -###################### LLT_model ######################################### -# * u0 = Im + .03*randn(size(Im)); % adding noise -# [Den] = LLT_model(single(u0), 10, 0.1, 1); -#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -#input, regularization_parameter , time_step, number_of_iterations, -# tolerance_constant, restrictive_Z_smoothing=0 -out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, - time_step=0.0003, - tolerance_constant=0.0001, - number_of_iterations=300) -pars = out2[-2] - -reg_output.append(out2) - -a=fig.add_subplot(2,3,4) - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -# ###################### PatchBased_Regul ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); - -out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, - searching_window_ratio=3, - similarity_window_ratio=1, - PB_filtering_parameter=0.08) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,5) - - -textstr = out2[-1] - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -# ###################### TGV_PD ######################################### -# # Quick 2D denoising example in Matlab: -# # Im = double(imread('lena_gray_256.tif'))/255; % loading image -# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, - first_order_term=1.3, - second_order_term=1, - number_of_iterations=550) -pars = out2[-2] -reg_output.append(out2) - -a=fig.add_subplot(2,3,6) - - -textstr = out2[-1] - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") - - -plt.show() - -################################################################################ -## -## 3D Regularizers -## -################################################################################ -##Example: -## figure; -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" -# -#reader = vtk.vtkMetaImageReader() -#reader.SetFileName(os.path.normpath(filename)) -#reader.Update() -##vtk returns 3D images, let's take just the one slice there is as 2D -#Im = Converter.vtk2numpy(reader.GetOutput()) -#Im = Im.astype('float32') -##imgplot = plt.imshow(Im) -#perc = 0.05 -#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -## map the u0 u0->u0>0 -#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -#u0 = f(u0).astype('float32') -#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), -# reader.GetOutput().GetOrigin()) -#converter.Update() -#writer = vtk.vtkMetaImageWriter() -#writer.SetInputData(converter.GetOutput()) -#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") -##writer.Write() -# -# -### plot -#fig3D = plt.figure() -##a=fig.add_subplot(3,3,1) -##a.set_title('Original') -##imgplot = plt.imshow(Im) -#sliceNo = 32 -# -#a=fig3D.add_subplot(2,3,1) -#a.set_title('noise') -#imgplot = plt.imshow(u0.T[sliceNo]) -# -#reg_output3d = [] -# -############################################################################### -## Call regularizer -# -######################## SplitBregman_TV ##################################### -## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -# -##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) -# -##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, -## #tolerance_constant=1e-4, -## TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -# tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) -# -# -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### FGP_TV ######################################### -## u = FGP_TV(single(u0), 0.05, 100, 1e-04); -#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, -# number_of_iterations=200) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### LLT_model ######################################### -## * u0 = Im + .03*randn(size(Im)); % adding noise -## [Den] = LLT_model(single(u0), 10, 0.1, 1); -##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -##input, regularization_parameter , time_step, number_of_iterations, -## tolerance_constant, restrictive_Z_smoothing=0 -#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, -# time_step=0.0003, -# tolerance_constant=0.0001, -# number_of_iterations=300) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# -####################### PatchBased_Regul ######################################### -## Quick 2D denoising example in Matlab: -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -# -#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, -# searching_window_ratio=3, -# similarity_window_ratio=1, -# PB_filtering_parameter=0.08) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -# - -###################### TGV_PD ######################################### -# Quick 2D denoising example in Matlab: -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); - - -#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, -# first_order_term=1.3, -# second_order_term=1, -# number_of_iterations=550) -#pars = out2[-2] -#reg_output3d.append(out2) -# -#a=fig3D.add_subplot(2,3,2) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) |