summaryrefslogtreecommitdiffstats
path: root/demos
diff options
context:
space:
mode:
Diffstat (limited to 'demos')
-rw-r--r--demos/demo_cpu_regularisers.py89
-rw-r--r--demos/demo_cpu_regularisers3D.py69
-rw-r--r--demos/demo_gpu_regularisers.py84
-rw-r--r--demos/demo_gpu_regularisers3D.py61
4 files changed, 146 insertions, 157 deletions
diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py
index 4866811..f2d2f33 100644
--- a/demos/demo_cpu_regularisers.py
+++ b/demos/demo_cpu_regularisers.py
@@ -32,7 +32,7 @@ def printParametersToString(pars):
###############################################################################
#filename = os.path.join( "data" ,"lena_gray_512.tif")
-filename = "/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"
+filename = "/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"
# read image
Im = plt.imread(filename)
@@ -130,14 +130,14 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm' : FGP_TV, \
'input' : u0,\
'regularisation_parameter':0.02, \
- 'number_of_iterations' :200 ,\
+ 'number_of_iterations' :400 ,\
'tolerance_constant':1e-06,\
'methodTV': 0 ,\
'nonneg': 0}
print ("#############FGP TV CPU####################")
start_time = timeit.default_timer()
-fgp_cpu,info_vec_cpu = FGP_TV(pars['input'],
+(fgp_cpu,info_vec_cpu) = FGP_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
@@ -175,21 +175,18 @@ imgplot = plt.imshow(u0,cmap="gray")
# set parameters
pars = {'algorithm' : SB_TV, \
'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :250 ,\
'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
+ 'methodTV': 0}
print ("#############SB TV CPU####################")
start_time = timeit.default_timer()
-sb_cpu = SB_TV(pars['input'],
+(sb_cpu,info_vec_cpu) = SB_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
+ pars['methodTV'],'cpu')
Qtools = QualityTools(Im, sb_cpu)
pars['rmse'] = Qtools.rmse()
@@ -209,37 +206,35 @@ plt.title('{}'.format('CPU results'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
+print ("______________LLT- ROF (2D)________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the CPU')
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
imgplot = plt.imshow(u0,cmap="gray")
# set parameters
-pars = {'algorithm' : TGV, \
+pars = {'algorithm' : LLT_ROF, \
'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1350 ,\
- 'LipshitzConstant' :12 ,\
- }
+ 'regularisation_parameterROF':0.01, \
+ 'regularisation_parameterLLT':0.0085, \
+ 'number_of_iterations' :6000 ,\
+ 'time_marching_parameter' :0.001 ,\
+ 'tolerance_constant':1e-06}
-print ("#############TGV CPU####################")
+print ("#############LLT- ROF CPU####################")
start_time = timeit.default_timer()
-tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
+(lltrof_cpu,info_vec_cpu) = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-
-Qtools = QualityTools(Im, tgv_cpu)
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'cpu')
+
+Qtools = QualityTools(Im, lltrof_cpu)
pars['rmse'] = Qtools.rmse()
txtstr = printParametersToString(pars)
@@ -252,40 +247,42 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
# place a text box in upper left in axes coords
a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu, cmap="gray")
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
#%%
-
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
+print ("_____Total Generalised Variation (2D)______")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+plt.suptitle('Performance of TGV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
imgplot = plt.imshow(u0,cmap="gray")
# set parameters
-pars = {'algorithm' : LLT_ROF, \
+pars = {'algorithm' : TGV, \
'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1350 ,\
+ 'LipshitzConstant' :12 ,\
}
-print ("#############LLT- ROF CPU####################")
+print ("#############TGV CPU####################")
start_time = timeit.default_timer()
-lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
+tgv_cpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-Qtools = QualityTools(Im, lltrof_cpu)
+ pars['LipshitzConstant'],'cpu')
+
+
+Qtools = QualityTools(Im, tgv_cpu)
pars['rmse'] = Qtools.rmse()
txtstr = printParametersToString(pars)
@@ -298,7 +295,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
# place a text box in upper left in axes coords
a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+imgplot = plt.imshow(tgv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
#%%
diff --git a/demos/demo_cpu_regularisers3D.py b/demos/demo_cpu_regularisers3D.py
index fd6c545..0f9cd1a 100644
--- a/demos/demo_cpu_regularisers3D.py
+++ b/demos/demo_cpu_regularisers3D.py
@@ -29,8 +29,9 @@ def printParametersToString(pars):
txt += '\n'
return txt
###############################################################################
-#%%
-filename = os.path.join( "data" ,"lena_gray_512.tif")
+
+# filename = os.path.join( "data" ,"lena_gray_512.tif")
+filename = "/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"
# read image
Im = plt.imread(filename)
@@ -94,16 +95,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm': ROF_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
+ 'regularisation_parameter':0.02,\
+ 'number_of_iterations': 7000,\
+ 'time_marching_parameter': 0.0007,\
+ 'tolerance_constant':1e-06}
+
print ("#############ROF TV CPU####################")
start_time = timeit.default_timer()
-rof_cpu3D = ROF_TV(pars['input'],
+(rof_cpu3D, info_vec_cpu) = ROF_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'cpu')
Qtools = QualityTools(idealVol, rof_cpu3D)
pars['rmse'] = Qtools.rmse()
@@ -136,23 +139,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : FGP_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :1000 ,\
+ 'tolerance_constant':1e-06,\
'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
+ 'nonneg': 0}
+
+print ("#############FGP TV GPU####################")
start_time = timeit.default_timer()
-fgp_cpu3D = FGP_TV(pars['input'],
+(fgp_cpu3D, info_vec_cpu) = FGP_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
+ pars['nonneg'], 'cpu')
Qtools = QualityTools(idealVol, fgp_cpu3D)
pars['rmse'] = Qtools.rmse()
@@ -185,22 +185,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : SB_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :250 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0}
print ("#############SB TV CPU####################")
start_time = timeit.default_timer()
-sb_cpu3D = SB_TV(pars['input'],
+(sb_cpu3D, info_vec_cpu) = SB_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
+ pars['methodTV'],'cpu')
Qtools = QualityTools(idealVol, sb_cpu3D)
pars['rmse'] = Qtools.rmse()
@@ -234,19 +230,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : LLT_ROF, \
'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
+ 'regularisation_parameterROF':0.01, \
+ 'regularisation_parameterLLT':0.008, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.001 ,\
+ 'tolerance_constant':1e-06}
print ("#############LLT ROF CPU####################")
start_time = timeit.default_timer()
-lltrof_cpu3D = LLT_ROF(pars['input'],
+(lltrof_cpu3D,info_vec_cpu) = LLT_ROF(pars['input'],
pars['regularisation_parameterROF'],
pars['regularisation_parameterLLT'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'cpu')
Qtools = QualityTools(idealVol, lltrof_cpu3D)
diff --git a/demos/demo_gpu_regularisers.py b/demos/demo_gpu_regularisers.py
index 212ad5a..6aec283 100644
--- a/demos/demo_gpu_regularisers.py
+++ b/demos/demo_gpu_regularisers.py
@@ -84,7 +84,7 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm': ROF_TV, \
'input' : u0,\
'regularisation_parameter':0.02,\
- 'number_of_iterations': 5000,\
+ 'number_of_iterations': 6000,\
'time_marching_parameter': 0.001,\
'tolerance_constant':1e-06}
@@ -128,7 +128,7 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm' : FGP_TV, \
'input' : u0,\
'regularisation_parameter':0.02, \
- 'number_of_iterations' :300 ,\
+ 'number_of_iterations' :400 ,\
'tolerance_constant':1e-06,\
'methodTV': 0 ,\
'nonneg': 0}
@@ -171,21 +171,18 @@ imgplot = plt.imshow(u0,cmap="gray")
# set parameters
pars = {'algorithm' : SB_TV, \
'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :250 ,\
'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
+ 'methodTV': 0}
print ("##############SB TV GPU##################")
start_time = timeit.default_timer()
-sb_gpu = SB_TV(pars['input'],
+(sb_gpu, info_vec_gpu) = SB_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
+ pars['methodTV'], 'gpu')
Qtools = QualityTools(Im, sb_gpu)
pars['rmse'] = Qtools.rmse()
@@ -205,36 +202,35 @@ plt.title('{}'.format('GPU results'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
+print ("______________LLT- ROF (2D)________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the GPU')
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
imgplot = plt.imshow(u0,cmap="gray")
# set parameters
-pars = {'algorithm' : TGV, \
+pars = {'algorithm' : LLT_ROF, \
'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1250 ,\
- 'LipshitzConstant' :12 ,\
- }
+ 'regularisation_parameterROF':0.01, \
+ 'regularisation_parameterLLT':0.0085, \
+ 'number_of_iterations' : 6000 ,\
+ 'time_marching_parameter' :0.001 ,\
+ 'tolerance_constant':1e-06}
-print ("#############TGV CPU####################")
+print ("#############LLT- ROF GPU####################")
start_time = timeit.default_timer()
-tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
+(lltrof_gpu, info_vec_gpu) = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-Qtools = QualityTools(Im, tgv_gpu)
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'gpu')
+
+Qtools = QualityTools(Im, lltrof_gpu)
pars['rmse'] = Qtools.rmse()
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
@@ -246,40 +242,42 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
# place a text box in upper left in axes coords
a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu, cmap="gray")
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
+print ("_____Total Generalised Variation (2D)______")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+plt.suptitle('Performance of TGV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
imgplot = plt.imshow(u0,cmap="gray")
# set parameters
-pars = {'algorithm' : LLT_ROF, \
+pars = {'algorithm' : TGV, \
'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1250 ,\
+ 'LipshitzConstant' :12 ,\
}
-print ("#############LLT- ROF GPU####################")
+print ("#############TGV CPU####################")
start_time = timeit.default_timer()
-lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
+tgv_gpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-Qtools = QualityTools(Im, lltrof_gpu)
+ pars['LipshitzConstant'],'gpu')
+
+Qtools = QualityTools(Im, tgv_gpu)
pars['rmse'] = Qtools.rmse()
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
@@ -291,7 +289,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
# place a text box in upper left in axes coords
a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+imgplot = plt.imshow(tgv_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
#%%
diff --git a/demos/demo_gpu_regularisers3D.py b/demos/demo_gpu_regularisers3D.py
index be16921..1a13c86 100644
--- a/demos/demo_gpu_regularisers3D.py
+++ b/demos/demo_gpu_regularisers3D.py
@@ -101,16 +101,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm': ROF_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV GPU####################")
+ 'regularisation_parameter':0.02,\
+ 'number_of_iterations': 7000,\
+ 'time_marching_parameter': 0.0007,\
+ 'tolerance_constant':1e-06}
+
+print ("#############ROF TV CPU####################")
start_time = timeit.default_timer()
-rof_gpu3D = ROF_TV(pars['input'],
+(rof_gpu3D, info_vec_gpu) = ROF_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'gpu')
Qtools = QualityTools(idealVol, rof_gpu3D)
pars['rmse'] = Qtools.rmse()
@@ -141,23 +143,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : FGP_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :1000 ,\
+ 'tolerance_constant':1e-06,\
'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
+ 'nonneg': 0}
print ("#############FGP TV GPU####################")
start_time = timeit.default_timer()
-fgp_gpu3D = FGP_TV(pars['input'],
+(fgp_gpu3D, info_vec_gpu) = FGP_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
+ pars['nonneg'], 'gpu')
Qtools = QualityTools(idealVol, fgp_gpu3D)
pars['rmse'] = Qtools.rmse()
@@ -189,21 +188,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : SB_TV, \
'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :100 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 }
print ("#############SB TV GPU####################")
start_time = timeit.default_timer()
-sb_gpu3D = SB_TV(pars['input'],
+(sb_gpu3D, info_vec_gpu) = SB_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
+ pars['methodTV'],'gpu')
Qtools = QualityTools(idealVol, sb_gpu3D)
pars['rmse'] = Qtools.rmse()
@@ -235,19 +231,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
# set parameters
pars = {'algorithm' : LLT_ROF, \
'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
+ 'regularisation_parameterROF':0.01, \
+ 'regularisation_parameterLLT':0.008, \
+ 'number_of_iterations' : 500 ,\
+ 'time_marching_parameter' :0.001 ,\
+ 'tolerance_constant':1e-06}
print ("#############LLT ROF CPU####################")
start_time = timeit.default_timer()
-lltrof_gpu3D = LLT_ROF(pars['input'],
+(lltrof_gpu3D,info_vec_gpu) = LLT_ROF(pars['input'],
pars['regularisation_parameterROF'],
pars['regularisation_parameterLLT'],
pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'gpu')
Qtools = QualityTools(idealVol, lltrof_gpu3D)
pars['rmse'] = Qtools.rmse()