summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m38
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m~31
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex.m (renamed from Wrappers/Matlab/mex_compile/compile_mex.m)14
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m30
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c96
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c169
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c140
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c73
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c179
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c144
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp125
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp95
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp171
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp73
14 files changed, 343 insertions, 1035 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
new file mode 100644
index 0000000..7258e5e
--- /dev/null
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -0,0 +1,38 @@
+% Image (2D) denoising demo using CCPi-RGL
+
+addpath('../mex_compile/installed');
+addpath('../../../data/');
+
+Im = double(imread('lena_gray_256.tif'))/255; % loading image
+u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+figure; imshow(u0, [0 1]); title('Noisy image');
+
+%%
+fprintf('Denoise using ROF-TV model (CPU) \n');
+lambda_rof = 0.03; % regularization parameter
+tau_rof = 0.0025; % time-marching constant
+iter_rof = 2000; % number of ROF iterations
+tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc;
+figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
+%%
+% fprintf('Denoise using ROF-TV model (GPU) \n');
+% lambda_rof = 0.03; % regularization parameter
+% tau_rof = 0.0025; % time-marching constant
+% iter_rof = 2000; % number of ROF iterations
+% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc;
+% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
+%%
+fprintf('Denoise using FGP-TV model (CPU) \n');
+lambda_fgp = 0.03; % regularization parameter
+iter_fgp = 1000; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
+figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
+%%
+% fprintf('Denoise using FGP-TV model (GPU) \n');
+% lambda_fgp = 0.03; % regularization parameter
+% iter_fgp = 1000; % number of FGP iterations
+% epsil_tol = 1.0e-05; % tolerance
+% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
+% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
+%% \ No newline at end of file
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m~ b/Wrappers/Matlab/demos/demoMatlab_denoise.m~
new file mode 100644
index 0000000..3f4403e
--- /dev/null
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m~
@@ -0,0 +1,31 @@
+% Image (2D) denoising demo using CCPi-RGL
+
+addpath('../mex_compile/installed');
+addpath('../../../data/');
+
+Im = double(imread('lena_gray_256.tif'))/255; % loading image
+u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+figure; imshow(u0, [0 1]); title('Noisy image');
+
+%%
+fprintf('Denoise using ROF-TV model (CPU) \n');
+lambda_rof = 0.02; % regularization parameter
+tau_rof = 0.0025; % time-marching constant
+iter_rof = 2000; % number of ROF iterations
+tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc;
+figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
+%%
+% fprintf('Denoise using ROF-TV model (GPU) \n');
+% lambda_rof = 0.02; % regularization parameter
+% tau_rof = 0.0025; % time-marching constant
+% iter_rof = 2000; % number of ROF iterations
+% tic; u_rof = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc;
+% figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (GPU)');
+%%
+fprintf('Denoise using FGP-TV model (CPU) \n');
+lambda_fgp = 0.02; % regularization parameter
+iter_fgp = 2000; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
+figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
+%% \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/compile_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
index d45ac04..fcee53a 100644
--- a/Wrappers/Matlab/mex_compile/compile_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
@@ -1,19 +1,19 @@
-% compile mex's in Matlab once
+% execute this mex file in Matlab once
copyfile ../../../Core/regularizers_CPU/ regularizers_CPU/
-copyfile ../../../Core/regularizers_GPU/ regularizers_GPU/
copyfile ../../../Core/CCPiDefines.h regularizers_CPU/
cd regularizers_CPU/
-% compile C regularizers
-
+fprintf('%s \n', 'Compiling CPU regularizers...');
mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile ROF_TV.mex* ../installed/
+
mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile FGP_TV.mex* ../installed/
-delete ROF_TV_core.c ROF_TV_core.h FGP_TV_core.c FGP_TV_core.h utils.c utils.h CCPiDefines.h
+delete ROF_TV_core* FGP_TV_core* utils.c utils.h CCPiDefines.h
-% compile CUDA-based regularizers
-%cd regularizers_GPU/
+fprintf('%s \n', 'All successfully compiled!');
cd ../../
cd demos
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
new file mode 100644
index 0000000..df29a3e
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -0,0 +1,30 @@
+% execute this mex file in Matlab once
+
+%>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<<
+% In order to compile CUDA modules one needs to have nvcc-compiler
+% installed (see CUDA SDK)
+% check it under MATLAB with !nvcc --version
+% In the code bellow we provide a full path to nvcc compiler
+% ! paths to matlab and CUDA sdk can be different, modify accordingly !
+
+% tested on Ubuntu 16.04/MATLAB 2016b
+
+copyfile ../../../Core/regularizers_GPU/ regularizers_GPU/
+copyfile ../../../Core/CCPiDefines.h regularizers_GPU/
+
+cd regularizers_GPU/
+
+fprintf('%s \n', 'Compiling GPU regularizers (CUDA)...');
+!/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o
+movefile ROF_TV_GPU.mex* ../installed/
+
+!/usr/local/cuda/bin/nvcc -O0 -c TV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o
+movefile FGP_TV_GPU.mex* ../installed/
+
+delete TV_ROF_GPU_core* TV_FGP_GPU_core* CCPiDefines.h
+fprintf('%s \n', 'All successfully compiled!');
+
+cd ../../
+cd demos
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
index 7cc861a..ba06cc7 100644
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
@@ -1,21 +1,21 @@
/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
#include "matrix.h"
#include "mex.h"
#include "FGP_TV_core.h"
@@ -23,28 +23,19 @@ limitations under the License.
/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
*
* Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon: tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ * 1. Noisy image/volume
+ * 2. lambdaPar - regularization parameter
+ * 3. Number of iterations
+ * 4. eplsilon: tolerance constant
+ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
+ * 6. nonneg: 'nonnegativity (0 is OFF by default)
+ * 7. print information: 0 (off) or 1 (on)
*
* Output:
* [1] Filtered/regularized image
- * [2] last function value
- *
- * Example of image denoising:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
*
- * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
* This function is based on the Matlab's code and paper by
* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- *
- * D. Kazantsev, 2016-17
- *
*/
@@ -53,42 +44,53 @@ void mexFunction(
int nrhs, const mxArray *prhs[])
{
- int number_of_dims, iter, dimX, dimY, dimZ, methTV;
+ int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
const int *dim_array;
- float *Input, *Output, lambda, epsil;
+ float *Input, *Output=NULL, lambda, epsil;
number_of_dims = mxGetNumberOfDimensions(prhs[0]);
dim_array = mxGetDimensions(prhs[0]);
/*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+ if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
iter = 300; /* default iterations number */
epsil = 0.0001; /* default tolerance constant */
methTV = 0; /* default isotropic TV penalty */
+ nonneg = 0; /* default nonnegativity switch, off - 0 */
+ printswitch = 0; /*default print is switched, off - 0 */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) {
char *penalty_type;
penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
mxFree(penalty_type);
}
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 6) || (nrhs == 7)) {
+ nonneg = (int) mxGetScalar(prhs[5]);
+ if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+ }
+ if (nrhs == 7) {
+ printswitch = (int) mxGetScalar(prhs[6]);
+ if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+ }
/*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
if (number_of_dims == 2) {
dimZ = 1; /*2D case*/
Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, 0, 0, dimX, dimY, dimZ);
- }
- if (number_of_dims == 3) {
- }
-}
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* running the function */
+ TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c
deleted file mode 100644
index 0b07b47..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c
+++ /dev/null
@@ -1,169 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "LLT_model_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambda - regularization parameter
-* 3. tau - time-step for explicit scheme
-* 4. iter - iterations number
-* 5. epsil - tolerance constant (to terminate earlier)
-* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* [Den] = LLT_model(single(u0), 10, 0.1, 1);
-*
-*
-* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
-*
-* 28.11.16/Harwell
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher;
- const int *dim_array;
- float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old;
- unsigned short *Map=NULL;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- tau = (float) mxGetScalar(prhs[2]); /* time-step */
- iter = (int) mxGetScalar(prhs[3]); /*iterations number*/
- epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
- switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
-
- if (number_of_dims == 2) {
- /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- else if (number_of_dims == 3) {
- /*3D case*/
- dimZ = dim_array[2];
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- if (switcher != 0) {
- Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
- }
- }
- else {mexErrMsgTxt("The input data should be 2D or 3D");}
-
- /*Copy U0 to U*/
- copyIm(U0, U, dimX, dimY, dimZ);
-
- count = 1;
- re_old = 0.0f;
- if (number_of_dims == 2) {
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der2D(U, D1, D2, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
- /*3D version*/
- if (number_of_dims == 3) {
-
- if (switcher == 1) {
- /* apply restrictive smoothing */
- calcMap(U, Map, dimX, dimY, dimZ);
- /*clear outliers */
- cleanMap(Map, dimX, dimY, dimZ);
- }
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der3D(U, D1, D2, D3, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
-}
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c
deleted file mode 100644
index 9c925df..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c
+++ /dev/null
@@ -1,140 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "PatchBased_Regul_core.h"
-
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
- *
- * Matlab + C/mex compilers needed
- * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
- *
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
- SearchW_real = 3; /*default value*/
- SimilW = 1; /*default value*/
- h = 0.1;
- lambda = 0.1;
-
- if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
-
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
- if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
-
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
index a800add..6b9e1ea 100644
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
@@ -20,20 +20,21 @@
#include "mex.h"
#include "ROF_TV_core.h"
-/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case)
- *
+/* ROF-TV denoising/regularization model [1] (2D/3D case)
+ * (MEX wrapper for MATLAB)
+ *
* Input Parameters:
* 1. Noisy image/volume [REQUIRED]
* 2. lambda - regularization parameter [REQUIRED]
- * 3. tau - marching step for explicit scheme, ~0.001 is recommended [REQUIRED]
- * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
+ * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
+ * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
*
* Output:
- * [1] Regularized image/volume
+ * [1] Regularized image/volume
*
* This function is based on the paper by
* [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- * compile: mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ *
* D. Kazantsev, 2016-18
*/
@@ -42,65 +43,31 @@ void mexFunction(
int nrhs, const mxArray *prhs[])
{
- int i, number_of_dims, iter_numb, dimX, dimY, dimZ;
+ int number_of_dims, iter_numb, dimX, dimY, dimZ;
const int *dim_array;
- float *A, *B, *D1, *D2, *D3, lambda, tau;
+ float *Input, *Output=NULL, lambda, tau;
dim_array = mxGetDimensions(prhs[0]);
number_of_dims = mxGetNumberOfDimensions(prhs[0]);
/*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]);
+ Input = (float *) mxGetData(prhs[0]);
lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- tau = (float) mxGetScalar(prhs[2]); /* marching step parameter */
- iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
+ iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */
+ tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */
if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant");
/*Handling Matlab output data*/
dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
/* output arrays*/
if (number_of_dims == 2) {
- dimZ = 0; /*2D case*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* copy into B */
- copyIm(A, B, dimX, dimY, 1);
-
- /* start TV iterations */
- for(i=0; i < iter_numb; i++) {
-
- /* calculate differences */
- D1_func(B, D1, dimX, dimY, dimZ);
- D2_func(B, D2, dimX, dimY, dimZ);
-
- /* calculate divergence and image update*/
- TV_main(D1, D2, D2, B, A, lambda, tau, dimX, dimY, dimZ);
- }
- }
-
- if (number_of_dims == 3) {
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* copy into B */
- copyIm(A, B, dimX, dimY, dimZ);
-
- /* start TV iterations */
- for(i=0; i < iter_numb; i++) {
-
- /* calculate differences */
- D1_func(B, D1, dimX, dimY, dimZ);
- D2_func(B, D2, dimX, dimY, dimZ);
- D3_func(B, D3, dimX, dimY, dimZ);
-
- /* calculate divergence and image update*/
- TV_main(D1, D2, D3, B, A, lambda, tau, dimX, dimY, dimZ);
- }
- }
+ dimZ = 1; /*2D case*/
+ /* output image/volume */
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-}
+ TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c
deleted file mode 100644
index 38f6a9d..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c
+++ /dev/null
@@ -1,179 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include <matrix.h>
-#include "SplitBregman_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon - tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
- * u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
- *
- * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
- * D. Kazantsev, 2016*
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
- float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 35; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- lambda = 2.0f*mu;
- count = 1;
- re_old = 0.0f;
- /*Handling Matlab output data*/
- dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
-
- if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
-
- updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*copyIm(U_old, U, dimX, dimY, dimZ); */
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
- if (number_of_dims == 3) {
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
-
- if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
- else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
-
- updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U[j] - U_old[j],2);
- re1 += pow(U[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break; }
- /*printf("%f %i %i \n", re, ll, count); */
- re_old = re;
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c
deleted file mode 100644
index c9cb440..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c
+++ /dev/null
@@ -1,144 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_PD_core.h"
-#include "mex.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D)
- * 2. lambda - regularization parameter
- * 3. parameter to control first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of CP iterations
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc;
- *
- * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * K. Bredies "Total Generalized Variation"
- *
- * 28.11.16/Harwell
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll;
- const int *dim_array;
- float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/
- alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/
- iter = (int) mxGetScalar(prhs[4]); /*iterations number*/
- if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
-
- if (number_of_dims == 2) {
- /*2D case*/
- dimZ = 1;
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /*dual variables*/
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
-
- /*printf("%i \n", i);*/
- L2 = 12.0f; /*Lipshitz constant*/
- tau = 1.0/pow(L2,0.5);
- sigma = 1.0/pow(L2,0.5);
-
- /*Copy A to U*/
- copyIm(A, U, dimX, dimY, dimZ);
-
- /* Here primal-dual iterations begin for 2D */
- for(ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for P*/
- ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
-
- /*get updated solution U*/
- newU(U, U_old, dimX, dimY, dimZ);
-
- /*saving V into V_old*/
- copyIm(V1, V1_old, dimX, dimY, dimZ);
- copyIm(V2, V2_old, dimX, dimY, dimZ);
-
- /* upd V*/
- UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
-
- /*get new V*/
- newU(V1, V1_old, dimX, dimY, dimZ);
- newU(V2, V2_old, dimX, dimY, dimZ);
- } /*end of iterations*/
- }
- else if (number_of_dims == 3) {
- mexErrMsgTxt("The input data should be a 2D array");
- /*3D case*/
- }
- else {mexErrMsgTxt("The input data should be a 2D array");}
-
-}
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
deleted file mode 100644
index 7fd6077..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
+++ /dev/null
@@ -1,125 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "Diff4th_GPU_kernel.h"
-
-/*
- * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
- *
- * Reference :
- * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
- *
- * Example
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
- * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
- * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
- *
- *
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
-
- void mexFunction(
-int nlhs, mxArray *plhs[],
-int nrhs, const mxArray *prhs[])
-where:
-prhs Array of pointers to the INPUT mxArrays
-nrhs int number of INPUT mxArrays
-
-nlhs Array of pointers to the OUTPUT mxArrays
-plhs int number of OUTPUT mxArrays
-
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int numdims, dimZ, size;
- float *A, *B, *A_L, *B_L;
- const int *dims;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
- float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
- int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
-
- if (numdims == 2) {
-
- int N, M, Z, i, j;
- Z = 0; // for the 2D case
- float tau = 0.01; // time step is sufficiently small for an explicit methods
-
- /*Input data*/
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
-
- /*Output data*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
- }}
-
- // Running CUDA code here
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
- }}
- }
- if (numdims == 3) {
- // 3D image denoising / regularization
- int N, M, Z, i, j, k;
- float tau = 0.0007; // Time Step is small for an explicit methods
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- Z = dims[2] + 2;
- int N_dims[] = {N, M, Z};
- A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
-
- /* output data */
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
- }}}}
-
- // Running CUDA kernel here for diffusivity
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
- }}}}
- }
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp
new file mode 100644
index 0000000..9ed9ae0
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp
@@ -0,0 +1,95 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "TV_FGP_GPU_core.h"
+
+/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambdaPar - regularization parameter
+ * 3. Number of iterations
+ * 4. eplsilon: tolerance constant
+ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
+ * 6. nonneg: 'nonnegativity (0 is OFF by default)
+ * 7. print information: 0 (off) or 1 (on)
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, epsil;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ iter = 300; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ methTV = 0; /* default isotropic TV penalty */
+ nonneg = 0; /* default nonnegativity switch, off - 0 */
+ printswitch = 0; /*default print is switched, off - 0 */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ if ((nrhs == 6) || (nrhs == 7)) {
+ nonneg = (int) mxGetScalar(prhs[5]);
+ if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+ }
+ if (nrhs == 7) {
+ printswitch = (int) mxGetScalar(prhs[6]);
+ if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+ }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* running the function */
+ TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp
deleted file mode 100644
index ff0cc90..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp
+++ /dev/null
@@ -1,171 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "NLM_GPU_kernel.h"
-
-/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters (mandatory):
- * 1. Image/volume (2D/3D)
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
- * 4. h - parameter for the PB penalty function
- * 5. lambda - regularization parameter
-
- * Output:
- * 1. regularized (denoised) Image/volume (N x N x N)
- *
- * In matlab check what kind of GPU you have with "gpuDevice" command,
- * then set your ComputeCapability, here I use -arch compute_35
- *
- * Quick 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
-
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
- *
- * D. Kazantsev
- * 2014-17
- * Harwell/Manchester UK
- */
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
- SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- lambda = (float) mxGetScalar(prhs[4]);
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }} /*main neighb loop */
-
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }}} /*main neighb loop */
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp
new file mode 100644
index 0000000..7bbe3af
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp
@@ -0,0 +1,73 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "TV_ROF_GPU_core.h"
+
+/* ROF-TV denoising/regularization model [1] (2D/3D case)
+ * (MEX wrapper for MATLAB)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
+ * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
+ *
+ * Output:
+ * [1] Regularized image/volume
+ *
+ * This function is based on the paper by
+ * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+ *
+ * D. Kazantsev, 2016-18
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter_numb, dimX, dimY, dimZ;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, tau;
+
+ dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ Input = (float *) mxGetData(prhs[0]);
+ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */
+ tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant");
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ /* output arrays*/
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ /* output image/volume */
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);
+} \ No newline at end of file