summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/demo_cpu_inpainters.py2
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py40
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py18
3 files changed, 28 insertions, 32 deletions
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py
index 348d235..7f452c1 100644
--- a/Wrappers/Python/demos/demo_cpu_inpainters.py
+++ b/Wrappers/Python/demos/demo_cpu_inpainters.py
@@ -72,7 +72,7 @@ pars = {'algorithm' : NDF_INP, \
'maskData' : mask,\
'regularisation_parameter':5000,\
'edge_parameter':0,\
- 'number_of_iterations' :1000 ,\
+ 'number_of_iterations' :5000 ,\
'time_marching_parameter':0.000075,\
'penalty_type':0
}
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index f803870..986e3e9 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -44,29 +44,30 @@ u0 = Im + np.random.normal(loc = 0 ,
u_ref = Im + np.random.normal(loc = 0 ,
scale = 0.01 * Im ,
size = np.shape(Im))
-
+(N,M) = np.shape(u0)
# map the u0 u0->u0>0
# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
u0 = u0.astype('float32')
u_ref = u_ref.astype('float32')
# change dims to check that modules work with non-squared images
-(N,M) = np.shape(u0)
-u_ref2 = np.zeros([N,M-100],dtype='float32')
-u_ref2[:,0:M-100] = u_ref[:,0:M-100]
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
u_ref = u_ref2
del u_ref2
-u02 = np.zeros([N,M-100],dtype='float32')
-u02[:,0:M-100] = u0[:,0:M-100]
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
u0 = u02
del u02
-Im2 = np.zeros([N,M-100],dtype='float32')
-Im2[:,0:M-100] = Im[:,0:M-100]
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
Im = Im2
del Im2
-
+"""
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________ROF-TV (2D)_________________")
@@ -305,7 +306,6 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
-
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("__________Total nuclear Variation__________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -318,9 +318,8 @@ a.set_title('Noisy Image')
imgplot = plt.imshow(u0,cmap="gray")
channelsNo = 5
-N = 512
-noisyVol = np.zeros((channelsNo,N,N),dtype='float32')
-idealVol = np.zeros((channelsNo,N,N),dtype='float32')
+noisyVol = np.zeros((channelsNo,N,M),dtype='float32')
+idealVol = np.zeros((channelsNo,N,M),dtype='float32')
for i in range (channelsNo):
noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
@@ -361,25 +360,19 @@ plt.title('{}'.format('CPU results'))
# Uncomment to test 3D regularisation performance
#%%
"""
-N = 512
slices = 20
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
perc = 0.05
-noisyVol = np.zeros((slices,N,N),dtype='float32')
-noisyRef = np.zeros((slices,N,N),dtype='float32')
-idealVol = np.zeros((slices,N,N),dtype='float32')
+noisyVol = np.zeros((slices,N,M),dtype='float32')
+noisyRef = np.zeros((slices,N,M),dtype='float32')
+idealVol = np.zeros((slices,N,M),dtype='float32')
for i in range (slices):
noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
idealVol[i,:,:] = Im
+
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -420,6 +413,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
+
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index dfdceee..f3ed50c 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -44,26 +44,28 @@ u0 = Im + np.random.normal(loc = 0 ,
u_ref = Im + np.random.normal(loc = 0 ,
scale = 0.01 * Im ,
size = np.shape(Im))
+(N,M) = np.shape(u0)
# map the u0 u0->u0>0
# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
u0 = u0.astype('float32')
u_ref = u_ref.astype('float32')
-
-(N,M) = np.shape(u0)
-u_ref2 = np.zeros([N,M-100],dtype='float32')
-u_ref2[:,0:M-100] = u_ref[:,0:M-100]
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
u_ref = u_ref2
del u_ref2
-u02 = np.zeros([N,M-100],dtype='float32')
-u02[:,0:M-100] = u0[:,0:M-100]
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
u0 = u02
del u02
-Im2 = np.zeros([N,M-100],dtype='float32')
-Im2[:,0:M-100] = Im[:,0:M-100]
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
Im = Im2
del Im2
+"""
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________ROF-TV regulariser_____________")