summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/conda-recipe/run_test.py2
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py4
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers3D.py54
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py4
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py4
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers3D.py51
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx35
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx39
8 files changed, 164 insertions, 29 deletions
diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py
index 37b9dcc..21f3216 100755
--- a/Wrappers/Python/conda-recipe/run_test.py
+++ b/Wrappers/Python/conda-recipe/run_test.py
@@ -303,7 +303,7 @@ class TestRegularisers(unittest.TestCase):
'input' : u0,\
'regularisation_parameter':0.04, \
'alpha1':1.0,\
- 'alpha0':0.7,\
+ 'alpha0':2.0,\
'number_of_iterations' :250 ,\
'LipshitzConstant' :12 ,\
}
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index 859b633..e6befa9 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -225,8 +225,8 @@ pars = {'algorithm' : TGV, \
'input' : u0,\
'regularisation_parameter':0.04, \
'alpha1':1.0,\
- 'alpha0':0.7,\
- 'number_of_iterations' :250 ,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1350 ,\
'LipshitzConstant' :12 ,\
}
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
index c42c37b..2d2fc22 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -68,7 +68,7 @@ Im2[:,0:M] = Im[:,0:M]
Im = Im2
del Im2
"""
-slices = 20
+slices = 15
noisyVol = np.zeros((slices,N,M),dtype='float32')
noisyRef = np.zeros((slices,N,M),dtype='float32')
@@ -96,7 +96,7 @@ pars = {'algorithm': ROF_TV, \
'input' : noisyVol,\
'regularisation_parameter':0.04,\
'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
+ 'time_marching_parameter': 0.0025
}
print ("#############ROF TV CPU####################")
start_time = timeit.default_timer()
@@ -264,6 +264,54 @@ plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________TGV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu3D = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+
+rms = rmse(idealVol, tgv_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using TGV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (3D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
index 275e844..230a761 100644
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
@@ -323,8 +323,8 @@ pars = {'algorithm' : TGV, \
'input' : u0,\
'regularisation_parameter':0.04, \
'alpha1':1.0,\
- 'alpha0':0.7,\
- 'number_of_iterations' :250 ,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :400 ,\
'LipshitzConstant' :12 ,\
}
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index 9115494..e1c6575 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -223,8 +223,8 @@ pars = {'algorithm' : TGV, \
'input' : u0,\
'regularisation_parameter':0.04, \
'alpha1':1.0,\
- 'alpha0':0.7,\
- 'number_of_iterations' :250 ,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1250 ,\
'LipshitzConstant' :12 ,\
}
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
index cda2847..b6058d2 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -67,7 +67,7 @@ Im = Im2
del Im2
"""
-#%%
+
slices = 20
filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
@@ -268,6 +268,53 @@ plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________TGV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :600 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV GPU####################")
+start_time = timeit.default_timer()
+tgv_gpu3D = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+
+rms = rmse(idealVol, tgv_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using TGV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 7d57ed1..11a0617 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -22,7 +22,7 @@ cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar,
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
@@ -202,12 +202,8 @@ def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip
return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,
iterations, LipshitzConst)
elif inputData.ndim == 3:
- shape = inputData.shape
- out = inputData.copy()
- for i in range(shape[0]):
- out[i,:,:] = TGV_2D(inputData[i,:,:], regularisation_parameter,
- alpha1, alpha0, iterations, LipshitzConst)
- return out
+ return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,
+ iterations, LipshitzConst)
def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularisation_parameter,
@@ -229,7 +225,30 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
alpha0,
iterationsNumb,
LipshitzConst,
- dims[1],dims[0])
+ dims[1],dims[0],1)
+ return outputData
+def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run TGV iterations for 3D data */
+ TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[2], dims[1], dims[0])
return outputData
#***************************************************************#
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index 47a6149..b52f669 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -23,7 +23,7 @@ CUDAErrorMessage = 'CUDA error'
cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
-cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
@@ -102,12 +102,7 @@ def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip
if inputData.ndim == 2:
return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
elif inputData.ndim == 3:
- shape = inputData.shape
- out = inputData.copy()
- for i in range(shape[0]):
- out[i,:,:] = TGV2D(inputData[i,:,:], regularisation_parameter,
- alpha1, alpha0, iterations, LipshitzConst)
- return out
+ return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
# Directional Total-variation Fast-Gradient-Projection (FGP)
def dTV_FGP_GPU(inputData,
refdata,
@@ -393,7 +388,6 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
raise ValueError(CUDAErrorMessage);
-
#***************************************************************#
#***************** Total Generalised Variation *****************#
#***************************************************************#
@@ -417,11 +411,38 @@ def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
alpha0,
iterationsNumb,
LipshitzConst,
- dims[1],dims[0])==0):
+ dims[1],dims[0], 1)==0):
return outputData
else:
raise ValueError(CUDAErrorMessage);
+def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ if (TGV_GPU_main(
+ &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[2], dims[1], dims[0])==0):
+ return outputData;
+ else:
+ raise ValueError(CUDAErrorMessage);
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#