summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/supp/__init__.py0
-rw-r--r--Wrappers/Python/ccpi/supp/qualitymetrics.py65
2 files changed, 65 insertions, 0 deletions
diff --git a/Wrappers/Python/ccpi/supp/__init__.py b/Wrappers/Python/ccpi/supp/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/Wrappers/Python/ccpi/supp/__init__.py
diff --git a/Wrappers/Python/ccpi/supp/qualitymetrics.py b/Wrappers/Python/ccpi/supp/qualitymetrics.py
new file mode 100644
index 0000000..f44d832
--- /dev/null
+++ b/Wrappers/Python/ccpi/supp/qualitymetrics.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python2
+# -*- coding: utf-8 -*-
+"""
+A class for some standard image quality metrics
+"""
+import numpy as np
+
+class QualityTools:
+ def __init__(self, im1, im2):
+ if im1.size != im2.size:
+ print ('Error: Sizes of images/volumes are different')
+ raise SystemExit
+ self.im1 = im1 # image or volume - 1
+ self.im2 = im2 # image or volume - 2
+ def nrmse(self):
+ """ Normalised Root Mean Square Error """
+ rmse = np.sqrt(np.sum((self.im2 - self.im1) ** 2) / float(self.im1.size))
+ max_val = max(np.max(self.im1), np.max(self.im2))
+ min_val = min(np.min(self.im1), np.min(self.im2))
+ return 1 - (rmse / (max_val - min_val))
+ def rmse(self):
+ """ Root Mean Square Error """
+ rmse = np.sqrt(np.sum((self.im1 - self.im2) ** 2) / float(self.im1.size))
+ return rmse
+ def ssim(self, window, k=(0.01, 0.03), l=255):
+ from scipy.signal import fftconvolve
+ """See https://ece.uwaterloo.ca/~z70wang/research/ssim/"""
+ # Check if the window is smaller than the images.
+ for a, b in zip(window.shape, self.im1.shape):
+ if a > b:
+ return None, None
+ # Values in k must be positive according to the base implementation.
+ for ki in k:
+ if ki < 0:
+ return None, None
+
+ c1 = (k[0] * l) ** 2
+ c2 = (k[1] * l) ** 2
+ window = window/np.sum(window)
+
+ mu1 = fftconvolve(self.im1, window, mode='valid')
+ mu2 = fftconvolve(self.im2, window, mode='valid')
+ mu1_sq = mu1 * mu1
+ mu2_sq = mu2 * mu2
+ mu1_mu2 = mu1 * mu2
+ sigma1_sq = fftconvolve(self.im1 * self.im1, window, mode='valid') - mu1_sq
+ sigma2_sq = fftconvolve(self.im2 * self.im2, window, mode='valid') - mu2_sq
+ sigma12 = fftconvolve(self.im1 * self.im2, window, mode='valid') - mu1_mu2
+
+ if c1 > 0 and c2 > 0:
+ num = (2 * mu1_mu2 + c1) * (2 * sigma12 + c2)
+ den = (mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2)
+ ssim_map = num / den
+ else:
+ num1 = 2 * mu1_mu2 + c1
+ num2 = 2 * sigma12 + c2
+ den1 = mu1_sq + mu2_sq + c1
+ den2 = sigma1_sq + sigma2_sq + c2
+ ssim_map = np.ones(np.shape(mu1))
+ index = (den1 * den2) > 0
+ ssim_map[index] = (num1[index] * num2[index]) / (den1[index] * den2[index])
+ index = (den1 != 0) & (den2 == 0)
+ ssim_map[index] = num1[index] / den1[index]
+ mssim = ssim_map.mean()
+ return mssim, ssim_map