summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/gpu_regularizers.pyx97
1 files changed, 56 insertions, 41 deletions
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx
index e99bfa7..cb94e86 100644
--- a/Wrappers/Python/src/gpu_regularizers.pyx
+++ b/Wrappers/Python/src/gpu_regularizers.pyx
@@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-Author: Edoardo Pasca
+Author: Edoardo Pasca, Daniil Kazantsev
"""
import cython
@@ -25,14 +25,16 @@ cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec,
int N, int M, int Z, int dimension,
int SearchW, int SimilW,
int SearchW_real, float denh2, float lambdaf);
-cdef extern void TV_ROF_GPU(float* Input, float* Output, int N, int M, int Z, int iter, float tau, float lambdaf);
-cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
+#cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+# correct the function
+cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern float pad_crop(float *A, float *Ap,
int OldSizeX, int OldSizeY, int OldSizeZ,
int NewSizeX, int NewSizeY, int NewSizeZ,
int padXY, int switchpad_crop);
-
+#Diffusion 4th order regularizer
def Diff4thHajiaboli(inputData,
edge_preserv_parameter,
iterations,
@@ -50,7 +52,7 @@ def Diff4thHajiaboli(inputData,
iterations,
time_marching_parameter,
regularization_parameter)
-
+# patch-based nonlocal regularization
def NML(inputData,
SearchW_real,
SimilW,
@@ -68,23 +70,37 @@ def NML(inputData,
SimilW,
h,
lambdaf)
-
-def GPU_ROF_TV(inputData,
+# Total-variation Rudin-Osher-Fatemi (ROF)
+def TV_ROF_GPU(inputData,
+ regularization_parameter,
iterations,
- time_marching_parameter,
- regularization_parameter):
+ time_marching_parameter):
if inputData.ndim == 2:
return ROFTV2D(inputData,
- iterations,
- time_marching_parameter,
- regularization_parameter)
+ regularization_parameter,
+ iterations,
+ time_marching_parameter)
elif inputData.ndim == 3:
return ROFTV3D(inputData,
+ regularization_parameter
iterations,
- time_marching_parameter,
- regularization_parameter)
-
-
+ time_marching_parameter)
+# Total-variation Fast-Gradient-Projection (FGP)
+def TV_FGP_GPU(inputData,
+ regularization_parameter,
+ iterations,
+ time_marching_parameter):
+ if inputData.ndim == 2:
+ return FGPTV2D(inputData,
+ regularization_parameter,
+ iterations,
+ time_marching_parameter)
+ elif inputData.ndim == 3:
+ return FGPTV3D(inputData,
+ regularization_parameter
+ iterations,
+ time_marching_parameter)
+#****************************************************************#
def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float edge_preserv_parameter,
int iterations,
@@ -333,52 +349,51 @@ def NML3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
return B
def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularization_parameter,
int iterations,
- float time_marching_parameter,
- float regularization_parameter):
+ float time_marching_parameter):
cdef long dims[2]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
- &inputData[0,0], &B[0,0],
- dims[0], dims[1], 1,
+ TV_ROF_GPU_main(
+ &inputData[0,0], &outputData[0,0],
+ regularization_parameter,
iterations ,
time_marching_parameter,
- regularization_parameter);
+ dims[0], dims[1], 1);
- return B
+ return outputData
def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularization_parameter,
int iterations,
- float time_marching_parameter,
- float regularization_parameter):
+ float time_marching_parameter):
cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
- &inputData[0,0,0], &B[0,0,0],
- dims[0], dims[1], dims[2],
+ TV_ROF_GPU_main(
+ &inputData[0,0,0], &outputData[0,0,0],
+ regularization_parameter,
iterations ,
time_marching_parameter,
- regularization_parameter);
+ dims[0], dims[1], dims[2]);
- return B
-
+ return outputData
-def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularization_parameter,
int iterations,
float tolerance_param,
@@ -390,12 +405,12 @@ def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
# Running CUDA code here
TV_FGP_GPU(
- &inputData[0,0], &B[0,0],
+ &inputData[0,0], &outputData[0,0],
regularization_parameter,
iterations,
tolerance_param,
@@ -404,9 +419,9 @@ def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
printM,
dims[0], dims[1], 1);
- return B
+ return outputData
-def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
float regularization_parameter,
int iterations,
float tolerance_param,
@@ -419,12 +434,12 @@ def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Running CUDA code here
TV_FGP_GPU(
- &inputData[0,0,0], &B[0,0,0],
+ &inputData[0,0,0], &outputData[0,0,0],
regularization_parameter ,
iterations,
tolerance_param,
@@ -433,7 +448,7 @@ def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[0], dims[1], dims[2]);
- return B
+ return outputData