diff options
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r-- | Wrappers/Python/src/gpu_regularizers.pyx | 97 |
1 files changed, 56 insertions, 41 deletions
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx index e99bfa7..cb94e86 100644 --- a/Wrappers/Python/src/gpu_regularizers.pyx +++ b/Wrappers/Python/src/gpu_regularizers.pyx @@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -Author: Edoardo Pasca +Author: Edoardo Pasca, Daniil Kazantsev """ import cython @@ -25,14 +25,16 @@ cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambdaf); -cdef extern void TV_ROF_GPU(float* Input, float* Output, int N, int M, int Z, int iter, float tau, float lambdaf); -cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); +cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); +#cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); +# correct the function +cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); cdef extern float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); - +#Diffusion 4th order regularizer def Diff4thHajiaboli(inputData, edge_preserv_parameter, iterations, @@ -50,7 +52,7 @@ def Diff4thHajiaboli(inputData, iterations, time_marching_parameter, regularization_parameter) - +# patch-based nonlocal regularization def NML(inputData, SearchW_real, SimilW, @@ -68,23 +70,37 @@ def NML(inputData, SimilW, h, lambdaf) - -def GPU_ROF_TV(inputData, +# Total-variation Rudin-Osher-Fatemi (ROF) +def TV_ROF_GPU(inputData, + regularization_parameter, iterations, - time_marching_parameter, - regularization_parameter): + time_marching_parameter): if inputData.ndim == 2: return ROFTV2D(inputData, - iterations, - time_marching_parameter, - regularization_parameter) + regularization_parameter, + iterations, + time_marching_parameter) elif inputData.ndim == 3: return ROFTV3D(inputData, + regularization_parameter iterations, - time_marching_parameter, - regularization_parameter) - - + time_marching_parameter) +# Total-variation Fast-Gradient-Projection (FGP) +def TV_FGP_GPU(inputData, + regularization_parameter, + iterations, + time_marching_parameter): + if inputData.ndim == 2: + return FGPTV2D(inputData, + regularization_parameter, + iterations, + time_marching_parameter) + elif inputData.ndim == 3: + return FGPTV3D(inputData, + regularization_parameter + iterations, + time_marching_parameter) +#****************************************************************# def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float edge_preserv_parameter, int iterations, @@ -333,52 +349,51 @@ def NML3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, return B def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + float regularization_parameter, int iterations, - float time_marching_parameter, - float regularization_parameter): + float time_marching_parameter): cdef long dims[2] dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') # Running CUDA code here - TV_ROF_GPU( - &inputData[0,0], &B[0,0], - dims[0], dims[1], 1, + TV_ROF_GPU_main( + &inputData[0,0], &outputData[0,0], + regularization_parameter, iterations , time_marching_parameter, - regularization_parameter); + dims[0], dims[1], 1); - return B + return outputData def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularization_parameter, int iterations, - float time_marching_parameter, - float regularization_parameter): + float time_marching_parameter): cdef long dims[3] dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] dims[2] = inputData.shape[2] - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0],dims[1],dims[2]], dtype='float32') # Running CUDA code here - TV_ROF_GPU( - &inputData[0,0,0], &B[0,0,0], - dims[0], dims[1], dims[2], + TV_ROF_GPU_main( + &inputData[0,0,0], &outputData[0,0,0], + regularization_parameter, iterations , time_marching_parameter, - regularization_parameter); + dims[0], dims[1], dims[2]); - return B - + return outputData -def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, +def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularization_parameter, int iterations, float tolerance_param, @@ -390,12 +405,12 @@ def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') # Running CUDA code here TV_FGP_GPU( - &inputData[0,0], &B[0,0], + &inputData[0,0], &outputData[0,0], regularization_parameter, iterations, tolerance_param, @@ -404,9 +419,9 @@ def TVFGP2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, printM, dims[0], dims[1], 1); - return B + return outputData -def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, +def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, float regularization_parameter, int iterations, float tolerance_param, @@ -419,12 +434,12 @@ def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, dims[1] = inputData.shape[1] dims[2] = inputData.shape[2] - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0],dims[1],dims[2]], dtype='float32') # Running CUDA code here TV_FGP_GPU( - &inputData[0,0,0], &B[0,0,0], + &inputData[0,0,0], &outputData[0,0,0], regularization_parameter , iterations, tolerance_param, @@ -433,7 +448,7 @@ def TVFGP3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, printM, dims[0], dims[1], dims[2]); - return B + return outputData |