diff options
Diffstat (limited to 'Wrappers/Python/conda-recipe')
| -rw-r--r-- | Wrappers/Python/conda-recipe/run_test.py.in | 148 | ||||
| -rw-r--r-- | Wrappers/Python/conda-recipe/testLena.npy | bin | 0 -> 1048656 bytes | 
2 files changed, 148 insertions, 0 deletions
diff --git a/Wrappers/Python/conda-recipe/run_test.py.in b/Wrappers/Python/conda-recipe/run_test.py.in new file mode 100644 index 0000000..9a6f4de --- /dev/null +++ b/Wrappers/Python/conda-recipe/run_test.py.in @@ -0,0 +1,148 @@ +import unittest +import numpy as np +from ccpi.filters.regularisers import ROF_TV, FGP_TV + +def rmse(im1, im2): +    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size)) +    return rmse + +class TestRegularisers(unittest.TestCase): +     +    def setUp(self): +        pass + +    def test_cpu_regularisers(self): +        #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") +         +        Im = np.load('testLena.npy'); +        """ +        # read noiseless image +        Im = plt.imread(filename) +        Im = np.asarray(Im, dtype='float32') + +        Im = Im/255 +        """ +        tolerance = 1e-05 +        rms_rof_exp = 0.006812507 #expected value for ROF model +        rms_fgp_exp = 0.019152347 #expected value for FGP model +         +        # set parameters for ROF-TV +        pars_rof_tv = {'algorithm': ROF_TV, \ +                            'input' : Im,\ +                            'regularisation_parameter':0.04,\ +                            'number_of_iterations': 50,\ +                            'time_marching_parameter': 0.0025 +                            } +        # set parameters for FGP-TV +        pars_fgp_tv = {'algorithm' : FGP_TV, \ +                            'input' : Im,\ +                            'regularisation_parameter':0.04, \ +                            'number_of_iterations' :50 ,\ +                            'tolerance_constant':1e-08,\ +                            'methodTV': 0 ,\ +                            'nonneg': 0 ,\ +                            'printingOut': 0  +                            } +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        print ("_________testing ROF-TV (2D, CPU)__________") +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        res = True +        rof_cpu = ROF_TV(pars_rof_tv['input'], +             pars_rof_tv['regularisation_parameter'], +             pars_rof_tv['number_of_iterations'], +             pars_rof_tv['time_marching_parameter'],'cpu') +        rms_rof = rmse(Im, rof_cpu) +        # now compare obtained rms with the expected value +        self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance) +        """ +        if abs(rms_rof-self.rms_rof_exp) > self.tolerance: +            raise TypeError('ROF-TV (2D, CPU) test FAILED') +        else: +            print ("test PASSED") +        """ +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        print ("_________testing FGP-TV (2D, CPU)__________") +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        fgp_cpu = FGP_TV(pars_fgp_tv['input'],  +              pars_fgp_tv['regularisation_parameter'], +              pars_fgp_tv['number_of_iterations'], +              pars_fgp_tv['tolerance_constant'],  +              pars_fgp_tv['methodTV'], +              pars_fgp_tv['nonneg'], +              pars_fgp_tv['printingOut'],'cpu')   +        rms_fgp = rmse(Im, fgp_cpu) +        # now compare obtained rms with the expected value +        self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance) +        """ +        if abs(rms_fgp-self.rms_fgp_exp) > self.tolerance: +            raise TypeError('FGP-TV (2D, CPU) test FAILED') +        else: +            print ("test PASSED") +        """ +        self.assertTrue(res) +    def test_gpu_regularisers(self): +        #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") +         +        Im = np.load('testLena.npy'); + +        #Im = Im/255 +        tolerance = 1e-05 +        rms_rof_exp = 0.006812507 #expected value for ROF model +        rms_fgp_exp = 0.019152347 #expected value for FGP model +         +        # set parameters for ROF-TV +        pars_rof_tv = {'algorithm': ROF_TV, \ +                            'input' : Im,\ +                            'regularisation_parameter':0.04,\ +                            'number_of_iterations': 50,\ +                            'time_marching_parameter': 0.0025 +                            } +        # set parameters for FGP-TV +        pars_fgp_tv = {'algorithm' : FGP_TV, \ +                            'input' : Im,\ +                            'regularisation_parameter':0.04, \ +                            'number_of_iterations' :50 ,\ +                            'tolerance_constant':1e-08,\ +                            'methodTV': 0 ,\ +                            'nonneg': 0 ,\ +                            'printingOut': 0  +                            } +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        print ("_________testing ROF-TV (2D, GPU)__________") +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        res = True +        rof_gpu = ROF_TV(pars_rof_tv['input'], +             pars_rof_tv['regularisation_parameter'], +             pars_rof_tv['number_of_iterations'], +             pars_rof_tv['time_marching_parameter'],'gpu') +        rms_rof = rmse(Im, rof_gpu) +        # now compare obtained rms with the expected value +        self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance) +        """ +        if abs(rms_rof-self.rms_rof_exp) > self.tolerance: +            raise TypeError('ROF-TV (2D, GPU) test FAILED') +        else: +            print ("test PASSED") +        """ +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        print ("_________testing FGP-TV (2D, GPU)__________") +        print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +        fgp_gpu = FGP_TV(pars_fgp_tv['input'],  +              pars_fgp_tv['regularisation_parameter'], +              pars_fgp_tv['number_of_iterations'], +              pars_fgp_tv['tolerance_constant'],  +              pars_fgp_tv['methodTV'], +              pars_fgp_tv['nonneg'], +              pars_fgp_tv['printingOut'],'gpu')   +        rms_fgp = rmse(Im, fgp_gpu) +        # now compare obtained rms with the expected value +        self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance) +        """ +        if abs(rms_fgp-self.rms_fgp_exp) > self.tolerance: +            raise TypeError('FGP-TV (2D, GPU) test FAILED') +        else: +            print ("test PASSED") +        """ +        self.assertTrue(res) +if __name__ == '__main__': +    unittest.main() diff --git a/Wrappers/Python/conda-recipe/testLena.npy b/Wrappers/Python/conda-recipe/testLena.npy Binary files differnew file mode 100644 index 0000000..14bc0e3 --- /dev/null +++ b/Wrappers/Python/conda-recipe/testLena.npy  | 
