summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Matlab')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m42
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m5
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m9
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m6
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c78
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp78
6 files changed, 210 insertions, 8 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 8289f41..3f0ca54 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -1,9 +1,11 @@
% Image (2D) denoising demo using CCPi-RGL
clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-addpath(Path1);
-addpath(Path2);
+fsep = '/';
+
+Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i);
+Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i);
+Path3 = sprintf(['..' fsep 'supp'], 1i);
+addpath(Path1); addpath(Path2); addpath(Path3);
Im = double(imread('lena_gray_512.tif'))/255; % loading image
u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
@@ -16,6 +18,8 @@ tau_rof = 0.0025; % time-marching constant
iter_rof = 750; % number of ROF iterations
tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
+rmseROF = (RMSE(u_rof(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
%%
% fprintf('Denoise using the ROF-TV model (GPU) \n');
@@ -29,6 +33,8 @@ iter_fgp = 1000; % number of FGP iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
+rmseFGP = (RMSE(u_fgp(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
%%
@@ -43,6 +49,8 @@ iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
+rmseSB = (RMSE(u_sb(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
%%
% fprintf('Denoise using the SB-TV model (GPU) \n');
@@ -51,12 +59,34 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
%%
+fprintf('Denoise using the TGV model (CPU) \n');
+lambda_TGV = 0.04; % regularisation parameter
+alpha1 = 1; % parameter to control the first-order term
+alpha0 = 0.7; % parameter to control the second-order term
+iter_TGV = 500; % number of Primal-Dual iterations for TGV
+tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+rmseTGV = (RMSE(u_tgv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
+figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
+%%
+% fprintf('Denoise using the TGV model (GPU) \n');
+% lambda_TGV = 0.04; % regularisation parameter
+% alpha1 = 1; % parameter to control the first-order term
+% alpha0 = 0.7; % parameter to control the second-order term
+% iter_TGV = 500; % number of Primal-Dual iterations for TGV
+% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
+% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
+%%
fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 800; % number of diffusion iterations
lambda_regDiff = 0.025; % regularisation for the diffusivity
sigmaPar = 0.015; % edge-preserving parameter
tau_param = 0.025; % time-marching constant
tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+rmseDiffus = (RMSE(u_diff(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
%%
% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
@@ -73,6 +103,8 @@ lambda_regDiff = 3.5; % regularisation for the diffusivity
sigmaPar = 0.02; % edge-preserving parameter
tau_param = 0.0015; % time-marching constant
tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
%%
% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
@@ -95,6 +127,8 @@ iter_fgp = 1000; % number of FGP iterations
epsil_tol = 1.0e-06; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
%%
% fprintf('Denoise using the FGP-dTV model (GPU) \n');
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
index 82b681a..8acc1b7 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
@@ -36,6 +36,9 @@ movefile('NonlDiff.mex*',Pathmove);
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('Diffusion_4thO.mex*',Pathmove);
+mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile('TGV.mex*',Pathmove);
+
mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('TV_energy.mex*',Pathmove);
@@ -46,7 +49,7 @@ movefile('NonlDiff_Inp.mex*',Pathmove);
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
fprintf('%s \n', 'Regularisers successfully compiled!');
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
index 629a346..ea1ad7d 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
@@ -44,6 +44,9 @@ movefile('NonlDiff.mex*',Pathmove);
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('Diffusion_4thO.mex*',Pathmove);
+mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
+movefile('TGV.mex*',Pathmove);
+
mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('TV_energy.mex*',Pathmove);
@@ -54,7 +57,7 @@ movefile('NonlDiff_Inp.mex*',Pathmove);
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
fprintf('%s \n', 'Regularisers successfully compiled!');
%%
@@ -82,13 +85,15 @@ fprintf('%s \n', 'Regularisers successfully compiled!');
% movefile('NonlDiff.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Diffusion_4thO.c Diffus4th_order_core.c utils.c
% movefile('Diffusion_4thO.mex*',Pathmove);
+% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c
+% movefile('TGV.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c
% movefile('TV_energy.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c
% movefile('NonlDiff_Inp.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c
% movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-% delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+% delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
% delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
% fprintf('%s \n', 'Regularisers successfully compiled!');
%%
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
index a4a636e..003c6ec 100644
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -37,6 +37,10 @@ movefile('FGP_TV_GPU.mex*',Pathmove);
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o
movefile('SB_TV_GPU.mex*',Pathmove);
+!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o
+movefile('TGV_GPU.mex*',Pathmove);
+
!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o
movefile('FGP_dTV_GPU.mex*',Pathmove);
@@ -49,7 +53,7 @@ movefile('NonlDiff_GPU.mex*',Pathmove);
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o
movefile('Diffusion_4thO_GPU.mex*',Pathmove);
-delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* CCPiDefines.h
+delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* CCPiDefines.h
fprintf('%s \n', 'All successfully compiled!');
pathA2 = sprintf(['..' fsep '..' fsep], 1i);
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
new file mode 100644
index 0000000..9516869
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
@@ -0,0 +1,78 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "TGV_core.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image (2D) (required)
+ * 2. lambda - regularisation parameter (required)
+ * 3. parameter to control the first-order term (alpha1) (default - 1)
+ * 4. parameter to control the second-order term (alpha0) (default - 0.5)
+ * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
+ * 6. Lipshitz constant (default is 12)
+ *
+ * Output:
+ * Filtered/regulariaed image
+ *
+ * References:
+ * [1] K. Bredies "Total Generalized Variation"
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
+ alpha1 = 1.0f; /* parameter to control the first-order term */
+ alpha0 = 0.5f; /* parameter to control the second-order term */
+ iter = 300; /* Iterations number */
+ L2 = 12.0f; /* Lipshitz constant */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
+ if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
+ if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ /* running the function */
+ TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
+ }
+ if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
+}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
new file mode 100644
index 0000000..5a0df5b
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
@@ -0,0 +1,78 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "TGV_GPU_core.h"
+
+/* CUDA implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image (2D) (required)
+ * 2. lambda - regularisation parameter (required)
+ * 3. parameter to control the first-order term (alpha1) (default - 1)
+ * 4. parameter to control the second-order term (alpha0) (default - 0.5)
+ * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
+ * 6. Lipshitz constant (default is 12)
+ *
+ * Output:
+ * Filtered/regulariaed image
+ *
+ * References:
+ * [1] K. Bredies "Total Generalized Variation"
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
+ alpha1 = 1.0f; /* parameter to control the first-order term */
+ alpha0 = 0.5f; /* parameter to control the second-order term */
+ iter = 300; /* Iterations number */
+ L2 = 12.0f; /* Lipshitz constant */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
+ if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
+ if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ /* running the function */
+ TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
+ }
+ if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
+}