summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Matlab')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m15
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m16
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c29
3 files changed, 37 insertions, 23 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index 5cc47b3..0c331a4 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -2,11 +2,13 @@
clear; close all
Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
+Path3 = sprintf(['..' filesep 'supp'], 1i);
addpath(Path1);
addpath(Path2);
+addpath(Path3);
N = 512;
-slices = 15;
+slices = 7;
vol3D = zeros(N,N,slices, 'single');
Ideal3D = zeros(N,N,slices, 'single');
Im = double(imread('lena_gray_512.tif'))/255; % loading image
@@ -131,7 +133,16 @@ figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CP
% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
%%
-
+fprintf('Denoise using the TGV model (CPU) \n');
+lambda_TGV = 0.03; % regularisation parameter
+alpha1 = 1.0; % parameter to control the first-order term
+alpha0 = 2.0; % parameter to control the second-order term
+iter_TGV = 500; % number of Primal-Dual iterations for TGV
+tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+rmseTGV = RMSE(Ideal3D(:),u_tgv(:));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
+figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)');
+%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 3506cca..14d3096 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -60,20 +60,20 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
%%
fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.04; % regularisation parameter
-alpha1 = 1; % parameter to control the first-order term
-alpha0 = 0.7; % parameter to control the second-order term
-iter_TGV = 500; % number of Primal-Dual iterations for TGV
+lambda_TGV = 0.045; % regularisation parameter
+alpha1 = 1.0; % parameter to control the first-order term
+alpha0 = 2.0; % parameter to control the second-order term
+iter_TGV = 2000; % number of Primal-Dual iterations for TGV
tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
rmseTGV = (RMSE(u_tgv(:),Im(:)));
fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
%%
% fprintf('Denoise using the TGV model (GPU) \n');
-% lambda_TGV = 0.04; % regularisation parameter
-% alpha1 = 1; % parameter to control the first-order term
-% alpha0 = 0.7; % parameter to control the second-order term
-% iter_TGV = 500; % number of Primal-Dual iterations for TGV
+% lambda_TGV = 0.045; % regularisation parameter
+% alpha1 = 1.0; % parameter to control the first-order term
+% alpha0 = 2.0; % parameter to control the second-order term
+% iter_TGV = 2000; % number of Primal-Dual iterations for TGV
% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
index 5459bf5..aa4eed4 100644
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
@@ -21,14 +21,14 @@ limitations under the License.
#include "TGV_core.h"
/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
+ * Total Generilized Variation (TGV)-L2 model [1] (2D/3D)
*
* Input Parameters:
- * 1. Noisy image (2D) (required)
- * 2. lambda - regularisation parameter (required)
- * 3. parameter to control the first-order term (alpha1) (default - 1)
- * 4. parameter to control the second-order term (alpha0) (default - 0.5)
- * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
+ * 1. Noisy image/volume (2D/3D)
+ * 2. lambda - regularisation parameter
+ * 3. parameter to control the first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of Chambolle-Pock (Primal-Dual) iterations
* 6. Lipshitz constant (default is 12)
*
* Output:
@@ -44,7 +44,7 @@ void mexFunction(
{
int number_of_dims, iter;
- mwSize dimX, dimY;
+ mwSize dimX, dimY, dimZ;
const mwSize *dim_array;
float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
@@ -55,7 +55,7 @@ void mexFunction(
/*Handling Matlab input data*/
if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
+ Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */
lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
alpha1 = 1.0f; /* parameter to control the first-order term */
alpha0 = 0.5f; /* parameter to control the second-order term */
@@ -69,12 +69,15 @@ void mexFunction(
if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
/*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
if (number_of_dims == 2) {
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- /* running the function */
- TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
+ dimZ = 1; /*2D case*/
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
}
- if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
+ if (number_of_dims == 3) {
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ /* running the function */
+ TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY, dimZ);
}