summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md36
1 files changed, 20 insertions, 16 deletions
diff --git a/Readme.md b/Readme.md
index 7a33fb3..4d8e7ca 100644
--- a/Readme.md
+++ b/Readme.md
@@ -24,11 +24,12 @@
1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*)
2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)
3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*)
-4. Total Generalised Variation (TGV) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *6*)
-5. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *8*)
-6. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU** (Ref. *9*)
-7. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*)
-8. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU** (Ref. *12*)
+4. Primal-Dual (PD) Total Variation **2D/3D CPU/GPU** (Ref. *13*)
+5. Total Generalised Variation (TGV) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *6,13*)
+6. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *8*)
+7. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU** (Ref. *9*)
+8. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*)
+9. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU** (Ref. *12*)
### Multi-channel (vectorial):
1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*)
@@ -145,29 +146,32 @@ addpath(/path/to/library);
```
### References to implemented methods:
-1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://www.sciencedirect.com/science/article/pii/016727899290242F)
+1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4)](https://www.sciencedirect.com/science/article/pii/016727899290242F)
-2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)
+2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11)](https://doi.org/10.1109/TIP.2009.2028250)
-3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)
+3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3)](https://doi.org/10.1137/15M1047325)
4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86) **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)
-5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)
+5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2)](https://doi.org/10.1137/080725891)
-6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), pp.492-526.](https://doi.org/10.1137/090769521)
+6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3)](https://doi.org/10.1137/090769521)
-7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)
+7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1)](https://doi.org/10.1137/15M102873X)
-8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)
+8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3)](https://doi.org/10.1109/83.661192)
-9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.](https://doi.org/10.1007/s11263-010-0330-1)
+9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2)](https://doi.org/10.1007/s11263-010-0330-1)
-10. [Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.](https://doi.org/10.1109/TIP.2003.819229)
+10. [Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12)](https://doi.org/10.1109/TIP.2003.819229)
-11. [Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9), p.094004.](https://doi.org/10.1088/1361-6501/aa7fa8)
+11. [Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9)](https://doi.org/10.1088/1361-6501/aa7fa8)
+
+12. [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)
+
+13. [Chambolle, A. and Pock, T., 2010. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40(1)](https://doi.org/10.1007/s10851-010-0251-1)
-12. [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)
### References to software (please cite if used):
* [Kazantsev, D., Pasca, E., Turner, M.J. and Withers, P.J., 2019. CCPi-Regularisation toolkit for computed tomographic image reconstruction with proximal splitting algorithms. SoftwareX, 9, pp.317-323.](https://www.sciencedirect.com/science/article/pii/S2352711018301912)