summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Core/regularizers_CPU/LLT_model_core.c318
-rw-r--r--Core/regularizers_CPU/LLT_model_core.h47
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul_core.c213
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul_core.h70
-rw-r--r--Core/regularizers_CPU/SplitBregman_TV_core.c259
-rw-r--r--Core/regularizers_CPU/SplitBregman_TV_core.h70
-rw-r--r--Core/regularizers_CPU/TGV_PD_core.c208
-rw-r--r--Core/regularizers_CPU/TGV_PD_core.h68
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu270
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h7
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu265
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h7
-rw-r--r--Core/test/test_regularizer.cpp3
-rw-r--r--Core/test/test_regularizer.h0
-rw-r--r--Wrappers/Matlab/FISTA_REC.m704
-rw-r--r--Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m67
-rw-r--r--Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m121
-rw-r--r--Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m186
-rw-r--r--Wrappers/Matlab/demos/exportDemoRD2Data.m35
-rw-r--r--Wrappers/Matlab/mex_compile/compile_mex.m6
-rw-r--r--Wrappers/Matlab/supp/sino_add_artifacts.m33
-rw-r--r--Wrappers/Matlab/supp/studentst.m47
-rw-r--r--Wrappers/Matlab/supp/zing_rings_add.m91
-rw-r--r--Wrappers/Python/ccpi/filters/Regularizer.py325
-rw-r--r--Wrappers/Python/ccpi/reconstruction/AstraDevice.py95
-rw-r--r--Wrappers/Python/ccpi/reconstruction/DeviceModel.py63
-rw-r--r--Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py882
-rw-r--r--Wrappers/Python/ccpi/reconstruction/Reconstructor.py598
-rw-r--r--Wrappers/Python/src/cpu_regularizers.cpp756
-rw-r--r--Wrappers/Python/test/astra_test.py85
-rw-r--r--Wrappers/Python/test/create_phantom_projections.py49
-rw-r--r--Wrappers/Python/test/metrics.py20
-rw-r--r--Wrappers/Python/test/readhd5.py42
-rw-r--r--Wrappers/Python/test/simple_astra_test.py25
-rw-r--r--Wrappers/Python/test/test_reconstructor-os_phantom.py480
-rw-r--r--Wrappers/Python/test/test_reconstructor.py359
-rw-r--r--data/DendrRawData.matbin15177638 -> 0 bytes
-rw-r--r--data/phantom_bone512.matbin408035 -> 0 bytes
-rw-r--r--data/sino_basalt.matbin1109887 -> 0 bytes
39 files changed, 21 insertions, 6853 deletions
diff --git a/Core/regularizers_CPU/LLT_model_core.c b/Core/regularizers_CPU/LLT_model_core.c
deleted file mode 100644
index 3a853d2..0000000
--- a/Core/regularizers_CPU/LLT_model_core.c
+++ /dev/null
@@ -1,318 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "LLT_model_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
-*
-* Input Parameters:
-* 1. U0 - origanal noise image/volume
-* 2. lambda - regularization parameter
-* 3. tau - time-step for explicit scheme
-* 4. iter - iterations number
-* 5. epsil - tolerance constant (to terminate earlier)
-* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* [Den] = LLT_model(single(u0), 10, 0.1, 1);
-*
-* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
-*
-* 28.11.16/Harwell
-*/
-
-
-float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float dxx, dyy, denom_xx, denom_yy;
-#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
- dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
-
- D1[i*dimY + j] = dxx / denom_xx;
- D2[i*dimY + j] = dyy / denom_yy;
- }
- }
- return 1;
-}
-float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float div, dxx, dyy;
-#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
- dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
-
- div = dxx + dyy;
-
- U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
- }
- }
- return *U0;
-}
-
-float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
-#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
- for (i = 0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for (j = 0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for (k = 0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
- dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
- dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
- denom_zz = fabs(dzz) + EPS;
-
- D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx;
- D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy;
- D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz;
-
- }
- }
- }
- return 1;
-}
-
-float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float div, dxx, dyy, dzz;
-#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
- for (i = 0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for (j = 0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for (k = 0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
- // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
- // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-
- dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
- dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
- dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
-
- if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
- div = dxx + dyy + dzz;
-
- // if (switcher == 1) {
- // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
- //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
- // div = dzz + dzz2;
- // }
-
- // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
- // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
- // div = dzz + dzz2;
-
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
- }
- }
- }
- return *U0;
-}
-
-// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
-// {
-// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
-// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
-// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
-// for(i=0; i<dimX; i++) {
-// /* symmetric boundary conditions (Neuman) */
-// i_p = i + 1; if (i_p == dimX) i_p = i - 1;
-// i_m = i - 1; if (i_m < 0) i_m = i + 1;
-// for(j=0; j<dimY; j++) {
-// j_p = j + 1; if (j_p == dimY) j_p = j - 1;
-// j_m = j - 1; if (j_m < 0) j_m = j + 1;
-// for(k=0; k<dimZ; k++) {
-// k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
-// k_m = k - 1; if (k_m < 0) k_m = k + 1;
-// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
-// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-//
-// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
-// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
-// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];
-//
-// denom_xx = fabs(dxx) + EPS;
-// denom_yy = fabs(dyy) + EPS;
-// denom_zz = fabs(dzz) + EPS;
-// denom_zz2 = fabs(dzz2) + EPS;
-//
-// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
-// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
-// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
-// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;
-// }}}
-// return 1;
-// }
-
-float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i1, j1, i2, j2, windowSize;
- float val1, val2, thresh_val, maxval;
- windowSize = 1;
- thresh_val = 0.0001; /*thresh_val = 0.0035;*/
-
- /* normalize volume first */
- maxval = 0.0f;
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
- }
- }
- }
-
- if (maxval != 0.0f) {
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval;
- }
- }
- }
- }
- else {
- printf("%s \n", "Maximum value is zero!");
- return 0;
- }
-
-#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
-
- Map[dimX*dimY*k + i*dimY + j] = 0;
- // Map2[dimX*dimY*k + i*dimY + j] = 0;
-
- val1 = 0.0f; val2 = 0.0f;
- for (i1 = -windowSize; i1 <= windowSize; i1++) {
- for (j1 = -windowSize; j1 <= windowSize; j1++) {
- i2 = i + i1;
- j2 = j + j1;
-
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (k == 0) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- else if (k == dimZ - 1) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- }
- // else if (k == 1) {
- // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
- // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- // }
- // else if (k == dimZ-2) {
- // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
- // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- // }
- else {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
- val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- }
- }
- }
-
- val1 = 0.111f*val1; val2 = 0.111f*val2;
- // val3 = 0.111f*val3; val4 = 0.111f*val4;
- if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
- // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;
- }
- }
- }
- return 1;
-}
-
-float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i1, j1, i2, j2, counter;
-#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
-
- counter = 0;
- for (i1 = -3; i1 <= 3; i1++) {
- for (j1 = -3; j1 <= 3; j1++) {
- i2 = i + i1;
- j2 = j + j1;
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
- }
- }
- }
- if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
- }
- }
- }
- return *Map;
-}
-
-
-/*********************3D *********************/ \ No newline at end of file
diff --git a/Core/regularizers_CPU/LLT_model_core.h b/Core/regularizers_CPU/LLT_model_core.h
deleted file mode 100644
index ee106db..0000000
--- a/Core/regularizers_CPU/LLT_model_core.h
+++ /dev/null
@@ -1,47 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-#define EPS 0.01
-
-/* 2D functions */
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
-
-CCPI_EXPORT float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned CCPI_EXPORT short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
-
-CCPI_EXPORT float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
-
-//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.c b/Core/regularizers_CPU/PatchBased_Regul_core.c
deleted file mode 100644
index d83cb76..0000000
--- a/Core/regularizers_CPU/PatchBased_Regul_core.c
+++ /dev/null
@@ -1,213 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "PatchBased_Regul_core.h"
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
-
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-/*2D version function */
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
-{
- int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
- Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
- count = count + 1;
- }} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
-
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
-
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
-
- i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
- count = count + 1;
- }}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}
-
- value += A[i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
- }} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
- }
- }} /*main loop*/
- return (*B);
- free(Eucl_Vec);
-}
-
-/*3D version*/
- float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
- {
- int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
- count = count + 1;
- }}} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
- /* take all elements around the pixel of interest */
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- for(k_m=-SearchW; k_m<=SearchW; k_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
-
- i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- for(k_p=-SimilW; k_p<=SimilW; k_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
- count = count + 1;
- }}}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}}
- value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
-
- }}} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
- }
- }}} /*main loop*/
- free(Eucl_Vec);
- return *B;
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-}
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.h b/Core/regularizers_CPU/PatchBased_Regul_core.h
deleted file mode 100644
index 6a13709..0000000
--- a/Core/regularizers_CPU/PatchBased_Regul_core.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#define _USE_MATH_DEFINES
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
-* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
-*
-* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
-* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
-*
-* Input Parameters (mandatory):
-* 1. Image (2D or 3D)
-* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
-* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
-* 4. h - parameter for the PB penalty function
-* 5. lambda - regularization parameter
-
-* Output:
-* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
-*
-* Quick 2D denoising example in Matlab:
-Im = double(imread('lena_gray_256.tif'))/255; % loading image
-u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-*
-* Please see more tests in a file:
-TestTemporalSmoothing.m
-
-*
-* Matlab + C/mex compilers needed
-* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
-*
-* D. Kazantsev *
-* 02/07/2014
-* Harwell, UK
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-CCPI_EXPORT float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-CCPI_EXPORT float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
-CCPI_EXPORT float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, CCPI_EXPORT int SearchW, int SimilW, float h, float lambda);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.c b/Core/regularizers_CPU/SplitBregman_TV_core.c
deleted file mode 100644
index 4109a4b..0000000
--- a/Core/regularizers_CPU/SplitBregman_TV_core.c
+++ /dev/null
@@ -1,259 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "SplitBregman_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularization parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-*
-* References:
-* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
-* D. Kazantsev, 2016*
-*/
-
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
-{
- float sum, normConst;
- int i,j,i1,i2,j1,j2;
- normConst = 1.0f/(mu + 4.0f*lambda);
-
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
- sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
- sum *= lambda;
- sum += mu*A[(i)*dimY + (j)];
- U[(i)*dimY + (j)] = normConst*sum;
- }}
- return *U;
-}
-
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, val22, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
-
- if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
- if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
-
- }}
- return 1;
-}
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- denom = sqrt(val1*val1 + val2*val2);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[(i)*dimY + (j)] = val11*(val1/denom);
- Dy[(i)*dimY + (j)] = val11*(val2/denom);
- }
- else {
- Dx[(i)*dimY + (j)] = 0;
- Dy[(i)*dimY + (j)] = 0;
- }
- }}
- return 1;
-}
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
-{
- int i,j,i1,j1;
-#pragma omp parallel for shared(U) private(i,j,i1,j1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
- By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
- }}
- return 1;
-}
-
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
-{
- float normConst, d_val, b_val, sum;
- int i,j,i1,i2,j1,j2,k,k1,k2;
- normConst = 1.0f/(mu + 6.0f*lambda);
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
- b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
- sum = d_val + b_val;
- sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
- sum *= lambda;
- sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
- U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
- }}}
- return *U;
-}
-
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val22, val3, val33, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
- val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
-
- if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
- if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
- if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
-
- }}}
- return 1;
-}
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val3, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- denom = sqrt(val1*val1 + val2*val2 + val3*val3);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- Dz[index] = val11*(val3/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- Dz[index] = 0;
- }
- }}}
- return 1;
-}
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
-{
- int i,j,k,i1,j1,k1;
-#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
- By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
- Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
-
- }}}
- return 1;
-}
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.h b/Core/regularizers_CPU/SplitBregman_TV_core.h
deleted file mode 100644
index b6d914e..0000000
--- a/Core/regularizers_CPU/SplitBregman_TV_core.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularization parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-*
-* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References:
-* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
-* D. Kazantsev, 2016*
-*/
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-CCPI_EXPORT float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
-CCPI_EXPORT float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-CCPI_EXPORT float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-CCPI_EXPORT float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
-
-CCPI_EXPORT float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
-CCPI_EXPORT float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-CCPI_EXPORT float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-CCPI_EXPORT float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
-
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD_core.c b/Core/regularizers_CPU/TGV_PD_core.c
deleted file mode 100644
index 4139d10..0000000
--- a/Core/regularizers_CPU/TGV_PD_core.c
+++ /dev/null
@@ -1,208 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_PD_core.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D)
- * 2. lambda - regularization parameter
- * 3. parameter to control first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of CP iterations
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
- *
- * References:
- * K. Bredies "Total Generalized Variation"
- *
- * 28.11.16/Harwell
- */
-
-
-
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
-#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- }}
- return 1;
-}
-/*Projection onto convex set for P*/
-float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha1;
- if (grad_magn > 1.0) {
- P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
- P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/*Calculating dual variable Q (using forward differences)*/
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
- float q1, q2, q11, q22;
-#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1)
- { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- else {
- q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- if (j == dimY-1) {
- q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
- }
- else {
- q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
- }
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22));
- }}
- return 1;
-}
-
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0) {
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/* Divergence and projection for P*/
-float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i,j;
- float P_v1, P_v2, div;
-#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (i == 0) P_v1 = (P1[i*dimY + (j)]);
- else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
- if (j == 0) P_v2 = (P2[i*dimY + (j)]);
- else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
- div = P_v1 + P_v2;
- U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
- }}
- return *U;
-}
-/*get updated solution U*/
-float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
-{
- int i;
-#pragma omp parallel for shared(U,U_old) private(i)
- for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
- return *U;
-}
-
-/*get update for V*/
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
-{
- int i,j;
- float q1, q11, q2, q22, div1, div2;
-#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == 0) {
- q1 = (Q1[i*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)]);
- }
- else {
- q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
- }
- if (j == 0) {
- q2 = (Q2[i*dimY + (j)]);
- q22 = (Q3[i*dimY + (j)]);
- }
- else {
- q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
- q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
- }
- div1 = q1 + q22;
- div2 = q2 + q11;
- V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
- V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
- }}
- return 1;
-}
-/*********************3D *********************/
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j,k;
-#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- }}}
- return 1;
-} \ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD_core.h b/Core/regularizers_CPU/TGV_PD_core.h
deleted file mode 100644
index 88fbcc1..0000000
--- a/Core/regularizers_CPU/TGV_PD_core.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-#include "CCPiDefines.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
-* Total Generilized Variation (TGV)-L2 model (2D case only)
-*
-* Input Parameters:
-* 1. Noisy image/volume (2D)
-* 2. lambda - regularization parameter
-* 3. parameter to control first-order term (alpha1)
-* 4. parameter to control the second-order term (alpha0)
-* 5. Number of CP iterations
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
-*
-* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References:
-* K. Bredies "Total Generalized Variation"
-*
-* 28.11.16/Harwell
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-/* 2D functions */
-CCPI_EXPORT float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
-CCPI_EXPORT float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
-CCPI_EXPORT float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
-CCPI_EXPORT float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
-CCPI_EXPORT float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
-CCPI_EXPORT float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
-CCPI_EXPORT float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
-//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
deleted file mode 100644
index 6cfba3a..0000000
--- a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
+++ /dev/null
@@ -1,270 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "Diff4th_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-#define sizeT (sizeX*sizeY*sizeZ)
-#define epsilon 0.00000001
-
-/////////////////////////////////////////////////
-// 2D Image denosing - Second Step (The second derrivative)
-__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0;
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc));
-}
-
-// 2D Image denosing - The First Step
-__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2, V_norm, V_orth, c, c_sq;
-
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
- int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index;
- int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index;
- int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index;
- int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- xy_2 = 2.0f*gradX*gradY*gradXY;
- sq_sum = gradX_sq + gradY_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum; }
-
- c = 1.0f/(1.0f + sq_sum/sigma);
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/////////////////////////////////////////////////
-// 3D data parocerssing
-__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0, gradZZc = 0;
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- gradZZc = B[indexU] + B[indexD] - 2*B[index] ;
-
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc));
-}
-
-__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq;
-
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- B[index] = 0;
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex; if (A[indexNW] == 0) indexNW = index;
- int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex; if (A[indexNE] == 0) indexNE = index;
- int indexWS = (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index;
- int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex; if (A[indexES] == 0) indexES = index;
-
- int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index;
- int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index;
- int indexDW = (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index;
- int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index;
-
- int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1); if (A[indexUN] == 0) indexUN = index;
- int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1); if (A[indexUS] == 0) indexUS = index;
- int indexDN = (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index;
- int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1); if (A[indexDS] == 0) indexDS = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradZ = 0.5f*(A[indexU]-A[indexD]);
- gradZ_sq = gradZ*gradZ;
- gradZZ = A[indexU] + A[indexD] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]);
- gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]);
-
- xy_2 = 2.0f*gradX*gradY*gradXY;
- xyz_1 = 2.0f*gradX*gradZ*gradXZ;
- xyz_2 = 2.0f*gradY*gradZ*gradYZ;
-
- sq_sum = gradX_sq + gradY_sq + gradZ_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum; }
-
- c = 1;
- if ((1.0f + sq_sum/sigma) != 0.0f) {c = 1.0f/(1.0f + sq_sum/sigma);}
-
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/******************************************************/
-/********* HOST FUNCTION*************/
-extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
- int BLKXSIZE, BLKYSIZE,BLKZSIZE;
- float *Ad, *Bd, *Cd;
- sigma = sigma*sigma;
-
- if (Z == 0){
- // 4th order diffusion for 2D case
- BLKXSIZE = 8;
- BLKYSIZE = 16;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-
- if (Z != 0){
- // 4th order diffusion for 3D case
- BLKXSIZE = 8;
- BLKYSIZE = 8;
- BLKZSIZE = 8;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-}
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
deleted file mode 100644
index fefef8d..0000000
--- a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
+++ /dev/null
@@ -1,7 +0,0 @@
-#ifndef __DIFF_HO_H_
-#define __DIFF_HO_H_
-#include "CCPiDefines.h"
-
-extern "C" CCPI_EXPORT void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda);
-
-#endif
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
deleted file mode 100644
index 0f18b41..0000000
--- a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
+++ /dev/null
@@ -1,265 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "NLM_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-extern __shared__ float sharedmem[];
-
-// run PB den kernel here
-__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda, dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize)
-{
-
- int i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count;
- float value, Weight_norm, normsum, Weight;
-
- int bidx = blockIdx.x;
- int bidy = blockIdx.y%griddim.y;
- int bidz = (int)((blockIdx.y)/griddim.y);
-
- // global index for block endpoint
- int beidx = __mul24(bidx,blockDim.x);
- int beidy = __mul24(bidy,blockDim.y);
- int beidz = __mul24(bidz,blockDim.z);
-
- int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) +
- __mul24(threadIdx.y,blockDim.x) + threadIdx.x;
-
- #ifdef __DEVICE_EMULATION__
- printf("tid : %d", tid);
- #endif
-
- // update shared memory
- int nthreads = blockDim.x*blockDim.y*blockDim.z;
- int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z;
- for(int i=0; i<nUpdatePerThread; i++)
- {
- int sid = tid + i*nthreads; // index in shared memory
- if (sid < sharedMemSize)
- {
- // global x/y/z index in volume
- int gidx, gidy, gidz;
- int sidx, sidy, sidz, tid;
-
- sidz = sid / (sharedmemdim.x*sharedmemdim.y);
- tid = sid - sidz*(sharedmemdim.x*sharedmemdim.y);
- sidy = tid / (sharedmemdim.x);
- sidx = tid - sidy*(sharedmemdim.x);
-
- gidx = (int)sidx - (int)kerneldim.x + (int)beidx;
- gidy = (int)sidy - (int)kerneldim.y + (int)beidy;
- gidz = (int)sidz - (int)kerneldim.z + (int)beidz;
-
- // Neumann boundary condition
- int cx = (int) min(max(0,gidx),imagedim.x-1);
- int cy = (int) min(max(0,gidy),imagedim.y-1);
- int cz = (int) min(max(0,gidz),imagedim.z-1);
-
- int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx;
-
- sharedmem[sid] = Ad[gid];
- }
- }
- __syncthreads();
-
- // global index of the current voxel in the input volume
- int idx = beidx + threadIdx.x;
- int idy = beidy + threadIdx.y;
- int idz = beidz + threadIdx.z;
-
- if (Z == 1) {
- /* 2D case */
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY))
- {
- int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[j1*sharedmemdim.x+i1]*Weight;
- }}
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /*boundary conditions end*/
- }
- else {
- /*3D case*/
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY) &&
- idz >= padXY && idz < (imagedim.z - padXY) )
- {
- int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */
- int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight;
- }}} /* BIG search window loop end*/
-
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /* boundary conditions end */
- }
-}
-
-/////////////////////////////////////////////////
-// HOST FUNCTION
-extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
-// cudaDeviceReset();
-
- int padXY, SearchW_full, SimilW_full, blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth;
- float *Ad, *Bd, *Eucl_Vec_d;
-
- if (dimension == 2) {
- blockWidth = 16;
- blockHeight = 16;
- blockDepth = 1;
- Z = 1;
- kernel_depth = 0;
- }
- else {
- blockWidth = 8;
- blockHeight = 8;
- blockDepth = 8;
- kernel_depth = SearchW;
- }
-
- // compute how many blocks are needed
- nBlockX = ceil((float)N / (float)blockWidth);
- nBlockY = ceil((float)M / (float)blockHeight);
- nBlockZ = ceil((float)Z / (float)blockDepth);
-
- dim3 dimGrid(nBlockX,nBlockY*nBlockZ);
- dim3 dimBlock(blockWidth, blockHeight, blockDepth);
- dim3 imagedim(N,M,Z);
- dim3 griddim(nBlockX,nBlockY,nBlockZ);
-
- dim3 kerneldim(SearchW,SearchW,kernel_depth);
- dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth);
- int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z;
- int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth));
- float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1);
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) );
- /*allocate space for vectors on device*/
- if (dimension == 2) {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
- else {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
-
- /* copy data from the host to device */
- checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) );
-
- // Run CUDA kernel here
- NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize);
-
- checkCudaErrors( cudaPeekAtLastError() );
-// gpuErrchk( cudaDeviceSynchronize() );
-
- checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
- cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
deleted file mode 100644
index 3c2bbc5..0000000
--- a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
+++ /dev/null
@@ -1,7 +0,0 @@
-#ifndef __NLMREG_KERNELS_H_
-#define __NLMREG_KERNELS_H_
-#include "CCPiDefines.h"
-
-extern "C" CCPI_EXPORT void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda);
-extern "C" CCPI_EXPORT float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-#endif
diff --git a/Core/test/test_regularizer.cpp b/Core/test/test_regularizer.cpp
deleted file mode 100644
index 6a9225c..0000000
--- a/Core/test/test_regularizer.cpp
+++ /dev/null
@@ -1,3 +0,0 @@
-unsigned char *rawData = (unsigned char *)malloc(sizeof(unsigned char) * sampleSize * nVertices);
-
-long nSamplesRead = fread(rawData, sizeof(unsigned char), nVertices, inFile); // read in the block of data \ No newline at end of file
diff --git a/Core/test/test_regularizer.h b/Core/test/test_regularizer.h
deleted file mode 100644
index e69de29..0000000
--- a/Core/test/test_regularizer.h
+++ /dev/null
diff --git a/Wrappers/Matlab/FISTA_REC.m b/Wrappers/Matlab/FISTA_REC.m
deleted file mode 100644
index d717a03..0000000
--- a/Wrappers/Matlab/FISTA_REC.m
+++ /dev/null
@@ -1,704 +0,0 @@
-function [X, output] = FISTA_REC(params)
-
-% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>>
-% This code solves regularised PWLS problem using FISTA approach.
-% The code contains multiple regularisation penalties as well as it can be
-% accelerated by using ordered-subset version. Various projection
-% geometries supported.
-
-% DISCLAIMER
-% It is recommended to use ASTRA version 1.8 or later in order to avoid
-% crashing due to GPU memory overflow for big datasets
-
-% ___Input___:
-% params.[] file:
-%----------------General Parameters------------------------
-% - .proj_geom (geometry of the projector) [required]
-% - .vol_geom (geometry of the reconstructed object) [required]
-% - .sino (2D or 3D sinogram) [required]
-% - .iterFISTA (iterations for the main loop, default 40)
-% - .L_const (Lipschitz constant, default Power method) )
-% - .X_ideal (ideal image, if given)
-% - .weights (statisitcal weights for the PWLS model, size of the sinogram)
-% - .fidelity (use 'studentt' fidelity)
-% - .ROI (Region-of-interest, only if X_ideal is given)
-% - .initialize (a 'warm start' using SIRT method from ASTRA)
-%----------------Regularization choices------------------------
-% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
-% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
-% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
-% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
-% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter)
-% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 4.3 .Regul_PB_h (PB penalty function threshold)
-% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter)
-% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 5.3 .Regul_PB_h (PB penalty function threshold)
-% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter)
-% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter)
-% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
-% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
-% - .Regul_Iterations (iterations for the selected penalty, default 25)
-% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
-%----------------Ring removal------------------------
-% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
-% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
-%----------------Visualization parameters------------------------
-% - .show (visualize reconstruction 1/0, (0 default))
-% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
-% - .slice (for 3D volumes - slice number to imshow)
-% ___Output___:
-% 1. X - reconstructed image/volume
-% 2. output - a structure with
-% - .Resid_error - residual error (if X_ideal is given)
-% - .objective: value of the objective function
-% - .L_const: Lipshitz constant to avoid recalculations
-
-% References:
-% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
-% Problems" by A. Beck and M Teboulle
-% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
-% 3. "A novel tomographic reconstruction method based on the robust
-% Student's t function for suppressing data outliers" D. Kazantsev et.al.
-% D. Kazantsev, 2016-17
-
-% Dealing with input parameters
-if (isfield(params,'proj_geom') == 0)
- error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
-else
- proj_geom = params.proj_geom;
-end
-if (isfield(params,'vol_geom') == 0)
- error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
-else
- vol_geom = params.vol_geom;
-end
-N = params.vol_geom.GridColCount;
-if (isfield(params,'sino'))
- sino = params.sino;
- [Detectors, anglesNumb, SlicesZ] = size(sino);
- fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
-else
- error('%s \n', 'Please provide a sinogram');
-end
-if (isfield(params,'iterFISTA'))
- iterFISTA = params.iterFISTA;
-else
- iterFISTA = 40;
-end
-if (isfield(params,'weights'))
- weights = params.weights;
-else
- weights = ones(size(sino));
-end
-if (isfield(params,'fidelity'))
- studentt = 0;
- if (strcmp(params.fidelity,'studentt') == 1)
- studentt = 1;
- end
-else
- studentt = 0;
-end
-if (isfield(params,'L_const'))
- L_const = params.L_const;
-else
- % using Power method (PM) to establish L constant
- fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...');
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % for 2D geometry we can do just one selected slice
- niter = 15; % number of iteration for the PM
- x1 = rand(N,N,1);
- sqweight = sqrt(weights(:,:,1));
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- for i = 1:niter
- [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1./s;
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- end
- elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec'))
- % 3D geometry
- niter = 8; % number of iteration for PM
- x1 = rand(N,N,SlicesZ);
- sqweight = sqrt(weights);
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
-
- for i = 1:niter
- [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1/s;
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
- astra_mex_data3d('delete', id);
- end
- clear x1
- else
- error('%s \n', 'No suitable geometry has been found!');
- end
- L_const = s;
-end
-if (isfield(params,'X_ideal'))
- X_ideal = params.X_ideal;
-else
- X_ideal = 'none';
-end
-if (isfield(params,'ROI'))
- ROI = params.ROI;
-else
- ROI = find(X_ideal>=0.0);
-end
-if (isfield(params,'Regul_Lambda_FGPTV'))
- lambdaFGP_TV = params.Regul_Lambda_FGPTV;
-else
- lambdaFGP_TV = 0;
-end
-if (isfield(params,'Regul_Lambda_SBTV'))
- lambdaSB_TV = params.Regul_Lambda_SBTV;
-else
- lambdaSB_TV = 0;
-end
-if (isfield(params,'Regul_tol'))
- tol = params.Regul_tol;
-else
- tol = 1.0e-05;
-end
-if (isfield(params,'Regul_Iterations'))
- IterationsRegul = params.Regul_Iterations;
-else
- IterationsRegul = 45;
-end
-if (isfield(params,'Regul_LambdaLLT'))
- lambdaHO = params.Regul_LambdaLLT;
-else
- lambdaHO = 0;
-end
-if (isfield(params,'Regul_iterHO'))
- iterHO = params.Regul_iterHO;
-else
- iterHO = 50;
-end
-if (isfield(params,'Regul_tauLLT'))
- tauHO = params.Regul_tauLLT;
-else
- tauHO = 0.0001;
-end
-if (isfield(params,'Regul_LambdaPatchBased_CPU'))
- lambdaPB = params.Regul_LambdaPatchBased_CPU;
-else
- lambdaPB = 0;
-end
-if (isfield(params,'Regul_LambdaPatchBased_GPU'))
- lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU;
-else
- lambdaPB_GPU = 0;
-end
-if (isfield(params,'Regul_PB_SearchW'))
- SearchW = params.Regul_PB_SearchW;
-else
- SearchW = 3; % default
-end
-if (isfield(params,'Regul_PB_SimilW'))
- SimilW = params.Regul_PB_SimilW;
-else
- SimilW = 1; % default
-end
-if (isfield(params,'Regul_PB_h'))
- h_PB = params.Regul_PB_h;
-else
- h_PB = 0.1; % default
-end
-if (isfield(params,'Regul_LambdaDiffHO'))
- LambdaDiff_HO = params.Regul_LambdaDiffHO;
-else
- LambdaDiff_HO = 0;
-end
-if (isfield(params,'Regul_DiffHO_EdgePar'))
- LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar;
-else
- LambdaDiff_HO_EdgePar = 0.01;
-end
-if (isfield(params,'Regul_LambdaTGV'))
- LambdaTGV = params.Regul_LambdaTGV;
-else
- LambdaTGV = 0;
-end
-if (isfield(params,'Ring_LambdaR_L1'))
- lambdaR_L1 = params.Ring_LambdaR_L1;
-else
- lambdaR_L1 = 0;
-end
-if (isfield(params,'Ring_Alpha'))
- alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
-else
- alpha_ring = 1;
-end
-if (isfield(params,'Regul_Dimension'))
- Dimension = params.Regul_Dimension;
- if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
- Dimension = '3D';
- end
-else
- Dimension = '3D';
-end
-if (isfield(params,'show'))
- show = params.show;
-else
- show = 0;
-end
-if (isfield(params,'maxvalplot'))
- maxvalplot = params.maxvalplot;
-else
- maxvalplot = 1;
-end
-if (isfield(params,'slice'))
- slice = params.slice;
-else
- slice = 1;
-end
-if (isfield(params,'initialize'))
- X = params.initialize;
- if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ))
- error('%s \n', 'The initialized volume has different dimensions!');
- end
-else
- X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
-end
-if (isfield(params,'subsets'))
- % Ordered Subsets reorganisation of data and angles
- subsets = params.subsets; % subsets number
- angles = proj_geom.ProjectionAngles;
- binEdges = linspace(min(angles),max(angles),subsets+1);
-
- % assign values to bins
- [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]);
-
- % get rearranged subset indices
- IndicesReorg = zeros(length(angles),1);
- counterM = 0;
- for ii = 1:max(binsDiscr(:))
- counter = 0;
- for jj = 1:subsets
- curr_index = ii+jj-1 + counter;
- if (binsDiscr(jj) >= ii)
- counterM = counterM + 1;
- IndicesReorg(counterM) = curr_index;
- end
- counter = (counter + binsDiscr(jj)) - 1;
- end
- end
-else
- subsets = 0; % Classical FISTA
-end
-
-%----------------Reconstruction part------------------------
-Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given)
-objective = zeros(iterFISTA,1); % objective function values vector
-
-
-if (subsets == 0)
- % Classical FISTA
- t = 1;
- X_t = X;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual = zeros(size(sino),'single');
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- X_old = X;
- t_old = t;
- r_old = r;
-
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- sino_updt = zeros(size(sino),'single');
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom);
- sino_updt(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % the ring removal part (Group-Huber fidelity)
- for kkk = 1:anglesNumb
- residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
- vec = sum(residual,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec;
- objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
- elseif (studentt > 0)
- % artifacts removal with Students t penalty
- residual = weights.*(sino_updt - sino);
- for kkk = 1:SlicesZ
- res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
- end
- objective(i) = ff; % for the objective function output
- else
- % no ring removal (LS model)
- residual = weights.*(sino_updt - sino);
- objective(i) = 0.5*norm(residual(:)); % for the objective function output
- end
-
- % if the geometry is 2D use slice-by-slice projection-backprojection routine
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
- astra_mex_data3d('delete', id);
- end
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ);
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- X = 0.5.*(X + X2); % averaged combination of two solutions
-
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be very slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.8; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-
- if (lambdaR_L1 > 0)
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-else
- % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version)
- t = 1;
- X_t = X;
- proj_geomSUB = proj_geom;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual2 = zeros(size(sino),'single');
- sino_updt_FULL = zeros(size(sino),'single');
-
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- if ((i > 1) && (lambdaR_L1 > 0))
- % in order to make Group-Huber fidelity work with ordered subsets
- % we still need to work with full sinogram
-
- % the offset variable must be calculated for the whole
- % updated sinogram - sino_updt_FULL
- for kkk = 1:anglesNumb
- residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
-
- r_old = r;
- vec = sum(residual2,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec; % update ring variable
- end
-
- % subsets loop
- counterInd = 1;
- for ss = 1:subsets
- X_old = X;
- t_old = t;
-
- numProjSub = binsDiscr(ss); % the number of projections per subset
- sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single');
- CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset
- proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces);
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom);
- sino_updt_Sub(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % Group-Huber fidelity (ring removal)
- residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset
- for kkk = 1:numProjSub
- indC = CurrSubIndeces(kkk);
- residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
- sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
- end
-
- elseif (studentt > 0)
- % student t data fidelity
-
- % artifacts removal with Students t penalty
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
-
- for kkk = 1:SlicesZ
- res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub);
- end
- objective(i) = ff; % for the objective function output
- else
- % PWLS model
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
- objective(i) = 0.5*norm(residualSub(:)); % for the objective function output
- end
-
- % perform backprojection of a subset
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', id);
- end
-
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- objective(i) = objective(i) + f_val;
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- X = 0.5.*(X + X2); % the averaged combination of two solutions
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.5; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
- counterInd = counterInd + numProjSub;
- end
-
- if (i == 1)
- r_old = r;
- end
-
- % working with a 'ring vector'
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
-
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-end
-
-output.Resid_error = Resid_error;
-output.objective = objective;
-output.L_const = L_const;
-
-end
diff --git a/Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m b/Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m
deleted file mode 100644
index a8f2c92..0000000
--- a/Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m
+++ /dev/null
@@ -1,67 +0,0 @@
-% A demo script to reconstruct 3D synthetic data using FISTA method for
-% CONE BEAM geometry
-% requirements: ASTRA-toolbox and TomoPhantom toolbox
-
-close all;clc;clear all;
-% adding paths
-addpath('../data/');
-addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/');
-addpath('../supp/');
-
-%%
-% build 3D phantom using TomoPhantom
-modelNo = 3; % see Phantom3DLibrary.dat file in TomoPhantom
-N = 256; % x-y-z size (cubic image)
-angles = 0:1.5:360; % angles vector in degrees
-angles_rad = angles*(pi/180); % conversion to radians
-det_size = round(sqrt(2)*N); % detector size
-
-%---------TomoPhantom routines---------%
-pathTP = '/home/algol/Documents/MATLAB/TomoPhantom/functions/models/Phantom3DLibrary.dat'; % path to TomoPhantom parameters file
-TomoPhantom = buildPhantom3D(modelNo,N,pathTP); % generate 3D phantom
-%--------------------------------------%
-%%
-% using ASTRA-toolbox to set the projection geometry (cone beam)
-% eg: astra.create_proj_geom('cone', 1.0 (resol), 1.0 (resol), detectorRowCount, detectorColCount, angles, originToSource, originToDetector)
-vol_geom = astra_create_vol_geom(N,N,N);
-proj_geom = astra_create_proj_geom('cone', 1.0, 1.0, N, det_size, angles_rad, 2000, 2160);
-%%
-% do forward projection using ASTRA
-% inverse crime data generation
-[sino_id, SinoCone3D] = astra_create_sino3d_cuda(TomoPhantom, proj_geom, vol_geom);
-astra_mex_data3d('delete', sino_id);
-%%
-fprintf('%s\n', 'Reconstructing with CGLS using ASTRA-toolbox ...');
-vol_id = astra_mex_data3d('create', '-vol', vol_geom, 0);
-proj_id = astra_mex_data3d('create', '-proj3d', proj_geom, SinoCone3D);
-cfg = astra_struct('CGLS3D_CUDA');
-cfg.ProjectionDataId = proj_id;
-cfg.ReconstructionDataId = vol_id;
-cfg.option.MinConstraint = 0;
-alg_id = astra_mex_algorithm('create', cfg);
-astra_mex_algorithm('iterate', alg_id, 15);
-reconASTRA_3D = astra_mex_data3d('get', vol_id);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = single(SinoCone3D); % sinogram
-params.iterFISTA = 30; %max number of outer iterations
-params.X_ideal = TomoPhantom; % ideal phantom
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = round(N/2); params.maxvalplot = 1;
-tic; [X_FISTA, output] = FISTA_REC(params); toc;
-
-error_FISTA = output.Resid_error; obj_FISTA = output.objective;
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction is:', min(error_FISTA(:)));
-
-Resid3D = (TomoPhantom - X_FISTA).^2;
-figure(2);
-subplot(1,2,1); imshow(X_FISTA(:,:,params.slice),[0 params.maxvalplot]); title('FISTA-LS reconstruction'); colorbar;
-subplot(1,2,2); imshow(Resid3D(:,:,params.slice),[0 0.1]); title('residual'); colorbar;
-figure(3);
-subplot(1,2,1); plot(error_FISTA); title('RMSE plot'); colorbar;
-subplot(1,2,2); plot(obj_FISTA); title('Objective plot'); colorbar;
-%% \ No newline at end of file
diff --git a/Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m b/Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m
deleted file mode 100644
index 4219bd1..0000000
--- a/Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m
+++ /dev/null
@@ -1,121 +0,0 @@
-% A demo script to reconstruct 3D synthetic data using FISTA method for
-% PARALLEL BEAM geometry
-% requirements: ASTRA-toolbox and TomoPhantom toolbox
-
-close all;clc;clear;
-% adding paths
-addpath('../data/');
-addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/');
-addpath('../supp/');
-
-%%
-% Main reconstruction/data generation parameters
-modelNo = 2; % see Phantom3DLibrary.dat file in TomoPhantom
-N = 256; % x-y-z size (cubic image)
-angles = 1:0.5:180; % angles vector in degrees
-angles_rad = angles*(pi/180); % conversion to radians
-det_size = round(sqrt(2)*N); % detector size
-
-%---------TomoPhantom routines---------%
-pathTP = '/home/algol/Documents/MATLAB/TomoPhantom/functions/models/Phantom3DLibrary.dat'; % path to TomoPhantom parameters file
-TomoPhantom = buildPhantom3D(modelNo,N,pathTP); % generate 3D phantom
-sino_tomophan3D = buildSino3D(modelNo, N, det_size, single(angles),pathTP); % generate ideal data
-%--------------------------------------%
-% Adding noise and distortions if required
-sino_tomophan3D = sino_add_artifacts(sino_tomophan3D,'rings');
-% adding Poisson noise
-dose = 3e9; % photon flux (controls noise level)
-multifactor = max(sino_tomophan3D(:));
-dataExp = dose.*exp(-sino_tomophan3D/multifactor); % noiseless raw data
-dataRaw = astra_add_noise_to_sino(dataExp, dose); % pre-log noisy raw data (weights)
-sino3D_log = log(dose./max(dataRaw,1))*multifactor; %log corrected data -> sinogram
-clear dataExp sino_tomophan3D
-%
-%%
-%-------------Astra toolbox------------%
-% one can generate data using ASTRA toolbox
-proj_geom = astra_create_proj_geom('parallel', 1, det_size, angles_rad);
-vol_geom = astra_create_vol_geom(N,N);
-sino_ASTRA3D = zeros(det_size, length(angles), N, 'single');
-for i = 1:N
-[sino_id, sinoT] = astra_create_sino_cuda(TomoPhantom(:,:,i), proj_geom, vol_geom);
-sino_ASTRA3D(:,:,i) = sinoT';
-astra_mex_data2d('delete', sino_id);
-end
-%--------------------------------------%
-%%
-% using ASTRA-toolbox to set the projection geometry (parallel beam)
-proj_geom = astra_create_proj_geom('parallel', 1, det_size, angles_rad);
-vol_geom = astra_create_vol_geom(N,N);
-%%
-fprintf('%s\n', 'Reconstructing with FBP using ASTRA-toolbox ...');
-reconASTRA_3D = zeros(size(TomoPhantom),'single');
-for k = 1:N
-vol_id = astra_mex_data2d('create', '-vol', vol_geom, 0);
-proj_id = astra_mex_data2d('create', '-sino', proj_geom, sino3D_log(:,:,k)');
-cfg = astra_struct('FBP_CUDA');
-cfg.ProjectionDataId = proj_id;
-cfg.ReconstructionDataId = vol_id;
-cfg.option.MinConstraint = 0;
-alg_id = astra_mex_algorithm('create', cfg);
-astra_mex_algorithm('iterate', alg_id, 1);
-rec = astra_mex_data2d('get', vol_id);
-reconASTRA_3D(:,:,k) = single(rec);
-end
-figure; imshow(reconASTRA_3D(:,:,128), [0 1.3]);
-%%
-%%
-fprintf('%s\n', 'Reconstruction using OS-FISTA-PWLS without regularization...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = single(sino3D_log); % sinogram
-params.iterFISTA = 15; %max number of outer iterations
-params.X_ideal = TomoPhantom; % ideal phantom
-params.weights = dataRaw./max(dataRaw(:)); % statistical weight for PWLS
-params.subsets = 12; % the number of subsets
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = 128; params.maxvalplot = 1.3;
-tic; [X_FISTA, output] = FISTA_REC(params); toc;
-
-error_FISTA = output.Resid_error; obj_FISTA = output.objective;
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA(:)));
-
-Resid3D = (TomoPhantom - X_FISTA).^2;
-figure(2);
-subplot(1,2,1); imshow(X_FISTA(:,:,params.slice),[0 params.maxvalplot]); title('FISTA-LS reconstruction'); colorbar;
-subplot(1,2,2); imshow(Resid3D(:,:,params.slice),[0 0.1]); title('residual'); colorbar;
-figure(3);
-subplot(1,2,1); plot(error_FISTA); title('RMSE plot');
-subplot(1,2,2); plot(obj_FISTA); title('Objective plot');
-%%
-%%
-fprintf('%s\n', 'Reconstruction using OS-FISTA-GH with FGP-TV regularization...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = single(sino3D_log); % sinogram
-params.iterFISTA = 15; %max number of outer iterations
-params.X_ideal = TomoPhantom; % ideal phantom
-params.weights = dataRaw./max(dataRaw(:)); % statistical weights for PWLS
-params.subsets = 12; % the number of subsets
-params.Regul_Lambda_FGPTV = 100; % TV regularization parameter for FGP-TV
-params.Ring_LambdaR_L1 = 0.02; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = 128; params.maxvalplot = 1.3;
-tic; [X_FISTA_GH_TV, output] = FISTA_REC(params); toc;
-
-error_FISTA_GH_TV = output.Resid_error; obj_FISTA_GH_TV = output.objective;
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA_GH_TV(:)));
-
-Resid3D = (TomoPhantom - X_FISTA_GH_TV).^2;
-figure(2);
-subplot(1,2,1); imshow(X_FISTA_GH_TV(:,:,params.slice),[0 params.maxvalplot]); title('FISTA-LS reconstruction'); colorbar;
-subplot(1,2,2); imshow(Resid3D(:,:,params.slice),[0 0.1]); title('residual'); colorbar;
-figure(3);
-subplot(1,2,1); plot(error_FISTA_GH_TV); title('RMSE plot');
-subplot(1,2,2); plot(obj_FISTA_GH_TV); title('Objective plot');
-%% \ No newline at end of file
diff --git a/Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m b/Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m
deleted file mode 100644
index f82e0b0..0000000
--- a/Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m
+++ /dev/null
@@ -1,186 +0,0 @@
-% Demonstration of tomographic 3D reconstruction from X-ray synchrotron
-% dataset (dendrites) using various data fidelities
-% ! It is advisable not to run the whole script, it will take lots of time to reconstruct the whole 3D data using many algorithms !
-clear
-close all
-%%
-% % adding paths
-addpath('../data/');
-addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/');
-addpath('../supp/');
-
-load('DendrRawData.mat') % load raw data of 3D dendritic set
-angles_rad = angles*(pi/180); % conversion to radians
-det_size = size(data_raw3D,1); % detectors dim
-angSize = size(data_raw3D, 2); % angles dim
-slices_tot = size(data_raw3D, 3); % no of slices
-recon_size = 950; % reconstruction size
-
-Sino3D = zeros(det_size, angSize, slices_tot, 'single'); % log-corrected sino
-% normalizing the data
-for jj = 1:slices_tot
- sino = data_raw3D(:,:,jj);
- for ii = 1:angSize
- Sino3D(:,ii,jj) = log((flats_ar(:,jj)-darks_ar(:,jj))./(single(sino(:,ii)) - darks_ar(:,jj)));
- end
-end
-
-Sino3D = Sino3D.*1000;
-Weights3D = single(data_raw3D); % weights for PW model
-clear data_raw3D
-%%
-% set projection/reconstruction geometry here
-proj_geom = astra_create_proj_geom('parallel', 1, det_size, angles_rad);
-vol_geom = astra_create_vol_geom(recon_size,recon_size);
-%%
-fprintf('%s\n', 'Reconstruction using FBP...');
-FBP = iradon(Sino3D(:,:,10), angles,recon_size);
-figure; imshow(FBP , [0, 3]); title ('FBP reconstruction');
-
-%--------FISTA_REC modular reconstruction alogrithms---------
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-PWLS without regularization...');
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D;
-params.iterFISTA = 18;
-params.weights = Weights3D;
-params.subsets = 8; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 1;
-
-tic; [X_fista, outputFISTA] = FISTA_REC(params); toc;
-figure; imshow(X_fista(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PWLS reconstruction');
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-PWLS-TV...');
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D;
-params.iterFISTA = 18;
-params.Regul_Lambda_FGPTV = 5.0000e+6; % TV regularization parameter for FGP-TV
-params.weights = Weights3D;
-params.subsets = 8; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 10;
-
-tic; [X_fista_TV, outputTV] = FISTA_REC(params); toc;
-figure; imshow(X_fista_TV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PWLS-TV reconstruction');
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TV...');
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D(:,:,10);
-params.iterFISTA = 18;
-params.Regul_Lambda_FGPTV = 5.0000e+6; % TV regularization parameter for FGP-TV
-params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.weights = Weights3D(:,:,10);
-params.subsets = 8; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 1;
-
-tic; [X_fista_GH_TV, outputGHTV] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_TV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TV reconstruction');
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TV-LLT...');
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D;
-params.iterFISTA = 12;
-params.Regul_Lambda_FGPTV = 5.0000e+6; % TV regularization parameter for FGP-TV
-params.Regul_LambdaLLT = 100; % regularization parameter for LLT problem
-params.Regul_tauLLT = 0.0005; % time-step parameter for the explicit scheme
-params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.weights = Weights3D;
-params.subsets = 16; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 2;
-
-tic; [X_fista_GH_TVLLT, outputGH_TVLLT] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_TVLLT(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TV-LLT reconstruction');
-
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-HigherOrderDiffusion...');
-% !GPU version!
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D(:,:,1:5);
-params.iterFISTA = 25;
-params.Regul_LambdaDiffHO = 2; % DiffHO regularization parameter
-params.Regul_DiffHO_EdgePar = 0.05; % threshold parameter
-params.Regul_Iterations = 150;
-params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.weights = Weights3D(:,:,1:5);
-params.subsets = 16; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 1;
-
-tic; [X_fista_GH_HO, outputHO] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_HO(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-HigherOrderDiffusion reconstruction');
-
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-PB...');
-% !GPU version!
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D(:,:,1);
-params.iterFISTA = 25;
-params.Regul_LambdaPatchBased_GPU = 3; % PB regularization parameter
-params.Regul_PB_h = 0.04; % threhsold parameter
-params.Regul_PB_SearchW = 3;
-params.Regul_PB_SimilW = 1;
-params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.weights = Weights3D(:,:,1);
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 1;
-
-tic; [X_fista_GH_PB, outputPB] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_PB(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PB reconstruction');
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TGV...');
-% still testing...
-clear params
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = Sino3D;
-params.iterFISTA = 12;
-params.Regul_LambdaTGV = 0.5; % TGV regularization parameter
-params.Regul_Iterations = 5;
-params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
-params.Ring_Alpha = 21; % to boost ring removal procedure
-params.weights = Weights3D;
-params.subsets = 16; % the number of ordered subsets
-params.show = 1;
-params.maxvalplot = 2.5; params.slice = 1;
-
-tic; [X_fista_GH_TGV, outputTGV] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_TGV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TGV reconstruction');
-
-
-%%
-% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-% clear params
-% params.proj_geom = proj_geom; % pass geometry to the function
-% params.vol_geom = vol_geom;
-% params.sino = Sino3D(:,:,10);
-% params.iterFISTA = 50;
-% params.L_const = 0.01; % Lipshitz constant
-% params.Regul_LambdaTV = 0.008; % TV regularization parameter for FISTA-TV
-% params.fidelity = 'student'; % choosing Student t penalty
-% params.weights = Weights3D(:,:,10);
-% params.show = 0;
-% params.initialize = 1;
-% params.maxvalplot = 2.5; params.slice = 1;
-%
-% tic; [X_fistaStudentTV] = FISTA_REC(params); toc;
-% figure; imshow(X_fistaStudentTV(:,:,1), [0, 2.5]); title ('FISTA-Student-TV reconstruction');
-%%
diff --git a/Wrappers/Matlab/demos/exportDemoRD2Data.m b/Wrappers/Matlab/demos/exportDemoRD2Data.m
deleted file mode 100644
index 028353b..0000000
--- a/Wrappers/Matlab/demos/exportDemoRD2Data.m
+++ /dev/null
@@ -1,35 +0,0 @@
-clear all
-close all
-%%
-% % adding paths
-addpath('../data/');
-addpath('../main_func/'); addpath('../main_func/regularizers_CPU/');
-addpath('../supp/');
-
-load('DendrRawData.mat') % load raw data of 3D dendritic set
-angles_rad = angles*(pi/180); % conversion to radians
-size_det = size(data_raw3D,1); % detectors dim
-angSize = size(data_raw3D, 2); % angles dim
-slices_tot = size(data_raw3D, 3); % no of slices
-recon_size = 950; % reconstruction size
-
-Sino3D = zeros(size_det, angSize, slices_tot, 'single'); % log-corrected sino
-% normalizing the data
-for jj = 1:slices_tot
- sino = data_raw3D(:,:,jj);
- for ii = 1:angSize
- Sino3D(:,ii,jj) = log((flats_ar(:,jj)-darks_ar(:,jj))./(single(sino(:,ii)) - darks_ar(:,jj)));
- end
-end
-
-Sino3D = Sino3D.*1000;
-Weights3D = single(data_raw3D); % weights for PW model
-clear data_raw3D
-
-hdf5write('DendrData.h5', '/Weights3D', Weights3D)
-hdf5write('DendrData.h5', '/Sino3D', Sino3D, 'WriteMode', 'append')
-hdf5write('DendrData.h5', '/angles_rad', angles_rad, 'WriteMode', 'append')
-hdf5write('DendrData.h5', '/size_det', size_det, 'WriteMode', 'append')
-hdf5write('DendrData.h5', '/angSize', angSize, 'WriteMode', 'append')
-hdf5write('DendrData.h5', '/slices_tot', slices_tot, 'WriteMode', 'append')
-hdf5write('DendrData.h5', '/recon_size', recon_size, 'WriteMode', 'append') \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/compile_mex.m b/Wrappers/Matlab/mex_compile/compile_mex.m
index ee85b49..d45ac04 100644
--- a/Wrappers/Matlab/mex_compile/compile_mex.m
+++ b/Wrappers/Matlab/mex_compile/compile_mex.m
@@ -8,13 +8,9 @@ cd regularizers_CPU/
% compile C regularizers
mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex LLT_model.c LLT_model_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex SplitBregman_TV.c SplitBregman_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex TGV_PD.c TGV_PD_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex PatchBased_Regul.c PatchBased_Regul_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-delete ROF_TV_core.c ROF_TV_core.h LLT_model_core.c LLT_model_core.h FGP_TV_core.c FGP_TV_core.h SplitBregman_TV_core.c SplitBregman_TV_core.h TGV_PD_core.c TGV_PD_core.h PatchBased_Regul_core.c PatchBased_Regul_core.h utils.c utils.h CCPiDefines.h
+delete ROF_TV_core.c ROF_TV_core.h FGP_TV_core.c FGP_TV_core.h utils.c utils.h CCPiDefines.h
% compile CUDA-based regularizers
%cd regularizers_GPU/
diff --git a/Wrappers/Matlab/supp/sino_add_artifacts.m b/Wrappers/Matlab/supp/sino_add_artifacts.m
deleted file mode 100644
index f601914..0000000
--- a/Wrappers/Matlab/supp/sino_add_artifacts.m
+++ /dev/null
@@ -1,33 +0,0 @@
-function sino_artifacts = sino_add_artifacts(sino,artifact_type)
-% function to add various distortions to the sinogram space, current
-% version includes: random rings and zingers (streaks)
-% Input:
-% 1. sinogram
-% 2. artifact type: 'rings' or 'zingers' (streaks)
-
-
-[Detectors, anglesNumb, SlicesZ] = size(sino);
-fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
-
-sino_artifacts = sino;
-
-if (strcmp(artifact_type,'rings'))
- fprintf('%s \n', 'Adding rings...');
- NumRings = round(Detectors/20); % Number of rings relatively to the size of Detectors
- IntenOff = linspace(0.05,0.5,NumRings); % the intensity of rings in the selected range
-
- for k = 1:SlicesZ
- % generate random indices to propagate rings
- RandInd = randperm(Detectors,Detectors);
- for jj = 1:NumRings
- ind_c = RandInd(jj);
- sino_artifacts(ind_c,1:end,k) = sino_artifacts(ind_c,1:end,k) + IntenOff(jj).*sino_artifacts(ind_c,1:end,k); % generate a constant offset
- end
-
- end
-elseif (strcmp(artifact_type,'zingers'))
- fprintf('%s \n', 'Adding zingers...');
-else
- fprintf('%s \n', 'Nothing selected, the same sinogram returned...');
-end
-end \ No newline at end of file
diff --git a/Wrappers/Matlab/supp/studentst.m b/Wrappers/Matlab/supp/studentst.m
deleted file mode 100644
index 99fed1e..0000000
--- a/Wrappers/Matlab/supp/studentst.m
+++ /dev/null
@@ -1,47 +0,0 @@
-function [f,g,h,s,k] = studentst(r,k,s)
-% Students T penalty with 'auto-tuning'
-%
-% use:
-% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
-% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
-% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
-%
-% input:
-% r - residual as column vector
-% s - scale (optional)
-% k - degrees of freedom (optional)
-%
-% output:
-% f - misfit (scalar)
-% g - gradient (column vector)
-% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
-% s,k - scale and degrees of freedom
-%
-% Tristan van Leeuwen, 2012.
-% tleeuwen@eos.ubc.ca
-
-% fit both s and k
-if nargin == 1
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
- s = tmp(1);
- k = tmp(2);
-end
-
-
-if nargin == 2
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x,k),[1],opts);
- s = tmp(1);
-end
-
-% evaulate penalty
-[f,g,h] = st(r,s,k);
-
-
-function [f,g,h] = st(r,s,k)
-n = length(r);
-c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
-f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
-g = (k+1)*r./(s*k + conj(r).*r);
-h = (k+1)./(s*k + conj(r).*r);
diff --git a/Wrappers/Matlab/supp/zing_rings_add.m b/Wrappers/Matlab/supp/zing_rings_add.m
deleted file mode 100644
index d197b1f..0000000
--- a/Wrappers/Matlab/supp/zing_rings_add.m
+++ /dev/null
@@ -1,91 +0,0 @@
-% uncomment this part of script to generate data with different noise characterisitcs
-
-fprintf('%s\n', 'Generating Projection Data...');
-
-% Creating RHS (b) - the sinogram (using a strip projection model)
-% vol_geom = astra_create_vol_geom(N, N);
-% proj_geom = astra_create_proj_geom('parallel', 1.0, P, theta_rad);
-% proj_id_temp = astra_create_projector('strip', proj_geom, vol_geom);
-% [sinogram_id, sinogramIdeal] = astra_create_sino(phantom, proj_id_temp);
-% astra_mex_data2d('delete',sinogram_id);
-% astra_mex_algorithm('delete',proj_id_temp);
-
-%%
-% inverse crime data generation
-[sino_id, sinogramIdeal] = astra_create_sino3d_cuda(phantom, proj_geom, vol_geom);
-astra_mex_data3d('delete', sino_id);
-
-% [id,x] = astra_create_backprojection3d_cuda(sinogramIdeal, proj_geom, vol_geom);
-% astra_mex_data3d('delete', id);
-%%
-%
-% % adding Gaussian noise
-% eta = 0.04; % Relative noise level
-% E = randn(size(sinogram));
-% sinogram = sinogram + eta*norm(sinogram,'fro')*E/norm(E,'fro'); % adding noise to the sinogram
-% sinogram(sinogram<0) = 0;
-% clear E;
-
-%%
-% adding zingers
-val_offset = 0;
-sino_zing = sinogramIdeal';
-vec1 = [60, 80, 80, 70, 70, 90, 90, 40, 130, 145, 155, 125];
-vec2 = [350, 450, 190, 500, 250, 530, 330, 230, 550, 250, 450, 195];
-for jj = 1:length(vec1)
- for i1 = -2:2
- for j1 = -2:2
- sino_zing(vec1(jj)+i1, vec2(jj)+j1) = val_offset;
- end
- end
-end
-
-% adding stripes into the signogram
-sino_zing_rings = sino_zing;
-coeff = linspace2(0.01,0.15,180);
-vmax = max(sinogramIdeal(:));
-sino_zing_rings(1:180,120) = sino_zing_rings(1:180,120) + vmax*0.13;
-sino_zing_rings(80:180,209) = sino_zing_rings(80:180,209) + vmax*0.14;
-sino_zing_rings(50:110,210) = sino_zing_rings(50:110,210) + vmax*0.12;
-sino_zing_rings(1:180,211) = sino_zing_rings(1:180,211) + vmax*0.14;
-sino_zing_rings(1:180,300) = sino_zing_rings(1:180,300) + vmax*coeff(:);
-sino_zing_rings(1:180,301) = sino_zing_rings(1:180,301) + vmax*0.14;
-sino_zing_rings(10:100,302) = sino_zing_rings(10:100,302) + vmax*0.15;
-sino_zing_rings(90:180,350) = sino_zing_rings(90:180,350) + vmax*0.11;
-sino_zing_rings(60:140,410) = sino_zing_rings(60:140,410) + vmax*0.12;
-sino_zing_rings(1:180,411) = sino_zing_rings(1:180,411) + vmax*0.14;
-sino_zing_rings(1:180,412) = sino_zing_rings(1:180,412) + vmax*coeff(:);
-sino_zing_rings(1:180,413) = sino_zing_rings(1:180,413) + vmax*coeff(:);
-sino_zing_rings(1:180,500) = sino_zing_rings(1:180,500) - vmax*0.12;
-sino_zing_rings(1:180,501) = sino_zing_rings(1:180,501) - vmax*0.12;
-sino_zing_rings(1:180,550) = sino_zing_rings(1:180,550) + vmax*0.11;
-sino_zing_rings(1:180,551) = sino_zing_rings(1:180,551) + vmax*0.11;
-sino_zing_rings(1:180,552) = sino_zing_rings(1:180,552) + vmax*0.11;
-
-sino_zing_rings(sino_zing_rings < 0) = 0;
-%%
-
-% adding Poisson noise
-dose = 50000;
-multifactor = 0.002;
-
-dataExp = dose.*exp(-sino_zing_rings*multifactor); % noiseless raw data
-dataPnoise = astra_add_noise_to_sino(dataExp, dose); % pre-log noisy raw data (weights)
-sino_zing_rings = log(dose./max(dataPnoise,1))/multifactor; %log corrected data -> sinogram
-Dweights = dataPnoise'; % statistical weights
-sino_zing_rings = sino_zing_rings';
-clear dataPnoise dataExp
-
-% w = dose./exp(sinogram*multifactor); % getting back raw data from log-cor
-
-% figure(1);
-% set(gcf, 'Position', get(0,'Screensize'));
-% subplot(1,2,1); imshow(phantom,[0 0.6]); title('Ideal Phantom'); colorbar;
-% subplot(1,2,2); imshow(sinogram,[0 180]); title('Noisy Sinogram'); colorbar;
-% colormap(cmapnew);
-
-% figure;
-% set(gcf, 'Position', get(0,'Screensize'));
-% subplot(1,2,1); imshow(sinogramIdeal,[0 180]); title('Ideal Sinogram'); colorbar;
-% imshow(sino_zing_rings,[0 180]); title('Noisy Sinogram with zingers and stripes'); colorbar;
-% colormap(cmapnew); \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/filters/Regularizer.py b/Wrappers/Python/ccpi/filters/Regularizer.py
deleted file mode 100644
index 4ca94f2..0000000
--- a/Wrappers/Python/ccpi/filters/Regularizer.py
+++ /dev/null
@@ -1,325 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Tue Aug 8 14:26:00 2017
-
-@author: ofn77899
-"""
-
-from ccpi.filters import cpu_regularizers
-import numpy as np
-from enum import Enum
-import timeit
-
-class Regularizer():
- '''Class to handle regularizer algorithms to be used during reconstruction
-
- Currently 5 CPU (OMP) regularization algorithms are available:
-
- 1) SplitBregman_TV
- 2) FGP_TV
- 3) LLT_model
- 4) PatchBased_Regul
- 5) TGV_PD
-
- Usage:
- the regularizer can be invoked as object or as static method
- Depending on the actual regularizer the input parameter may vary, and
- a different default setting is defined.
- reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-
- out = reg(input=u0, regularization_parameter=10., number_of_iterations=30,
- tolerance_constant=1e-4,
- TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-
- out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10.,
- number_of_iterations=30, tolerance_constant=1e-4,
- TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-
- A number of optional parameters can be passed or skipped
- out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
-
- '''
- class Algorithm(Enum):
- SplitBregman_TV = cpu_regularizers.SplitBregman_TV
- FGP_TV = cpu_regularizers.FGP_TV
- LLT_model = cpu_regularizers.LLT_model
- PatchBased_Regul = cpu_regularizers.PatchBased_Regul
- TGV_PD = cpu_regularizers.TGV_PD
- # Algorithm
-
- class TotalVariationPenalty(Enum):
- isotropic = 0
- l1 = 1
- # TotalVariationPenalty
-
- def __init__(self , algorithm, debug = True):
- self.setAlgorithm ( algorithm )
- self.debug = debug
- # __init__
-
- def setAlgorithm(self, algorithm):
- self.algorithm = algorithm
- self.pars = self.getDefaultParsForAlgorithm(algorithm)
- # setAlgorithm
-
- def getDefaultParsForAlgorithm(self, algorithm):
- pars = dict()
-
- if algorithm == Regularizer.Algorithm.SplitBregman_TV :
- pars['algorithm'] = algorithm
- pars['input'] = None
- pars['regularization_parameter'] = None
- pars['number_of_iterations'] = 35
- pars['tolerance_constant'] = 0.0001
- pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic
-
- elif algorithm == Regularizer.Algorithm.FGP_TV :
- pars['algorithm'] = algorithm
- pars['input'] = None
- pars['regularization_parameter'] = None
- pars['number_of_iterations'] = 50
- pars['tolerance_constant'] = 0.001
- pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic
-
- elif algorithm == Regularizer.Algorithm.LLT_model:
- pars['algorithm'] = algorithm
- pars['input'] = None
- pars['regularization_parameter'] = None
- pars['time_step'] = None
- pars['number_of_iterations'] = None
- pars['tolerance_constant'] = None
- pars['restrictive_Z_smoothing'] = 0
-
- elif algorithm == Regularizer.Algorithm.PatchBased_Regul:
- pars['algorithm'] = algorithm
- pars['input'] = None
- pars['searching_window_ratio'] = None
- pars['similarity_window_ratio'] = None
- pars['PB_filtering_parameter'] = None
- pars['regularization_parameter'] = None
-
- elif algorithm == Regularizer.Algorithm.TGV_PD:
- pars['algorithm'] = algorithm
- pars['input'] = None
- pars['first_order_term'] = None
- pars['second_order_term'] = None
- pars['number_of_iterations'] = None
- pars['regularization_parameter'] = None
-
- else:
- raise Exception('Unknown regularizer algorithm')
-
- self.acceptedInputKeywords = pars.keys()
-
- return pars
- # parsForAlgorithm
-
- def setParameter(self, **kwargs):
- '''set named parameter for the regularization engine
-
- raises Exception if the named parameter is not recognized
- Typical usage is:
-
- reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
- reg.setParameter(input=u0)
- reg.setParameter(regularization_parameter=10.)
-
- it can be also used as
- reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
- reg.setParameter(input=u0 , regularization_parameter=10.)
- '''
-
- for key , value in kwargs.items():
- if key in self.pars.keys():
- self.pars[key] = value
- else:
- raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key))
- # setParameter
-
- def getParameter(self, key):
- if type(key) is str:
- if key in self.acceptedInputKeywords:
- return self.pars[key]
- else:
- raise Exception('Unrecongnised parameter: {0} '.format(key) )
- elif type(key) is list:
- outpars = []
- for k in key:
- outpars.append(self.getParameter(k))
- return outpars
- else:
- raise Exception('Unhandled input {0}' .format(str(type(key))))
- # getParameter
-
-
- def __call__(self, input = None, regularization_parameter = None,
- output_all = False, **kwargs):
- '''Actual call for the regularizer.
-
- One can either set the regularization parameters first and then call the
- algorithm or set the regularization parameter during the call (as
- is done in the static methods).
- '''
-
- if kwargs is not None:
- for key, value in kwargs.items():
- #print("{0} = {1}".format(key, value))
- self.pars[key] = value
-
- if input is not None:
- self.pars['input'] = input
- if regularization_parameter is not None:
- self.pars['regularization_parameter'] = regularization_parameter
-
- if self.debug:
- print ("--------------------------------------------------")
- for key, value in self.pars.items():
- if key== 'algorithm' :
- print("{0} = {1}".format(key, value.__name__))
- elif key == 'input':
- print("{0} = {1}".format(key, np.shape(value)))
- else:
- print("{0} = {1}".format(key, value))
-
-
- if None in self.pars:
- raise Exception("Not all parameters have been provided")
-
- input = self.pars['input']
- regularization_parameter = self.pars['regularization_parameter']
- if self.algorithm == Regularizer.Algorithm.SplitBregman_TV :
- ret = self.algorithm(input, regularization_parameter,
- self.pars['number_of_iterations'],
- self.pars['tolerance_constant'],
- self.pars['TV_penalty'].value )
- elif self.algorithm == Regularizer.Algorithm.FGP_TV :
- ret = self.algorithm(input, regularization_parameter,
- self.pars['number_of_iterations'],
- self.pars['tolerance_constant'],
- self.pars['TV_penalty'].value )
- elif self.algorithm == Regularizer.Algorithm.LLT_model :
- #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
- # no default
- ret = self.algorithm(input,
- regularization_parameter,
- self.pars['time_step'] ,
- self.pars['number_of_iterations'],
- self.pars['tolerance_constant'],
- self.pars['restrictive_Z_smoothing'] )
- elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul :
- #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
- # no default
- ret = self.algorithm(input, regularization_parameter,
- self.pars['searching_window_ratio'] ,
- self.pars['similarity_window_ratio'] ,
- self.pars['PB_filtering_parameter'])
- elif self.algorithm == Regularizer.Algorithm.TGV_PD :
- #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
- # no default
- if len(np.shape(input)) == 2:
- ret = self.algorithm(input, regularization_parameter,
- self.pars['first_order_term'] ,
- self.pars['second_order_term'] ,
- self.pars['number_of_iterations'])
- elif len(np.shape(input)) == 3:
- #assuming it's 3D
- # run independent calls on each slice
- out3d = input.copy()
- for i in range(np.shape(input)[0]):
- out = self.algorithm(input[i], regularization_parameter,
- self.pars['first_order_term'] ,
- self.pars['second_order_term'] ,
- self.pars['number_of_iterations'])
- # copy the result in the 3D image
- out3d[i] = out[0].copy()
- # append the rest of the info that the algorithm returns
- output = [out3d]
- for i in range(1,len(out)):
- output.append(out[i])
- ret = output
-
-
-
- if output_all:
- return ret
- else:
- return ret[0]
-
- # __call__
-
- @staticmethod
- def SplitBregman_TV(input, regularization_parameter , **kwargs):
- start_time = timeit.default_timer()
- reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
- a = reg(input, regularization_parameter, **kwargs)
- txt = reg.printParametersToString()
- txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- return a, reg.pars, txt
-
- @staticmethod
- def FGP_TV(input, regularization_parameter , **kwargs):
- start_time = timeit.default_timer()
- reg = Regularizer(Regularizer.Algorithm.FGP_TV)
- a = reg(input, regularization_parameter, **kwargs)
- txt = reg.printParametersToString()
- txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- return a, reg.pars, txt
-
- @staticmethod
- def LLT_model(input, regularization_parameter , time_step, number_of_iterations,
- tolerance_constant, restrictive_Z_smoothing=0):
- start_time = timeit.default_timer()
- reg = Regularizer(Regularizer.Algorithm.LLT_model)
- a = reg(input, regularization_parameter, time_step=time_step,
- number_of_iterations=number_of_iterations,
- tolerance_constant=tolerance_constant,
- restrictive_Z_smoothing=restrictive_Z_smoothing)
-
- txt = reg.printParametersToString()
- txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- return a, reg.pars, txt
-
- @staticmethod
- def PatchBased_Regul(input, regularization_parameter,
- searching_window_ratio,
- similarity_window_ratio,
- PB_filtering_parameter):
- start_time = timeit.default_timer()
- reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul)
- a = reg(input,
- regularization_parameter,
- searching_window_ratio=searching_window_ratio,
- similarity_window_ratio=similarity_window_ratio,
- PB_filtering_parameter=PB_filtering_parameter )
- txt = reg.printParametersToString()
- txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- return a, reg.pars, txt
-
- @staticmethod
- def TGV_PD(input, regularization_parameter , first_order_term,
- second_order_term, number_of_iterations):
- start_time = timeit.default_timer()
-
- reg = Regularizer(Regularizer.Algorithm.TGV_PD)
- a = reg(input, regularization_parameter,
- first_order_term=first_order_term,
- second_order_term=second_order_term,
- number_of_iterations=number_of_iterations)
- txt = reg.printParametersToString()
- txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-
-
- return a, reg.pars, txt
-
- def printParametersToString(self):
- txt = r''
- for key, value in self.pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-
diff --git a/Wrappers/Python/ccpi/reconstruction/AstraDevice.py b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
deleted file mode 100644
index 57435f8..0000000
--- a/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import astra
-from ccpi.reconstruction.DeviceModel import DeviceModel
-import numpy
-
-class AstraDevice(DeviceModel):
- '''Concrete class for Astra Device'''
-
- def __init__(self,
- device_type,
- data_aquisition_geometry,
- reconstructed_volume_geometry):
-
- super(AstraDevice, self).__init__(device_type,
- data_aquisition_geometry,
- reconstructed_volume_geometry)
-
- self.type = device_type
- self.proj_geom = astra.creators.create_proj_geom(
- device_type,
- self.acquisition_data_geometry['detectorSpacingX'],
- self.acquisition_data_geometry['detectorSpacingY'],
- self.acquisition_data_geometry['cameraX'],
- self.acquisition_data_geometry['cameraY'],
- self.acquisition_data_geometry['angles'],
- )
-
- self.vol_geom = astra.creators.create_vol_geom(
- self.reconstructed_volume_geometry['X'],
- self.reconstructed_volume_geometry['Y'],
- self.reconstructed_volume_geometry['Z']
- )
-
- def doForwardProject(self, volume):
- '''Forward projects the volume according to the device geometry
-
-Uses Astra-toolbox
-'''
-
- try:
- sino_id, y = astra.creators.create_sino3d_gpu(
- volume, self.proj_geom, self.vol_geom)
- astra.matlab.data3d('delete', sino_id)
- return y
- except Exception as e:
- print(e)
- print("Value Error: ", self.proj_geom, self.vol_geom)
-
- def doBackwardProject(self, projections):
- '''Backward projects the projections according to the device geometry
-
-Uses Astra-toolbox
-'''
- idx, volume = \
- astra.creators.create_backprojection3d_gpu(
- projections,
- self.proj_geom,
- self.vol_geom)
-
- astra.matlab.data3d('delete', idx)
- return volume
-
- def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}):
- '''Create a new device based on the current device by changing some parameter
-
-VERY RISKY'''
- acquisition_data_geometry = self.acquisition_data_geometry.copy()
- for k,v in proj_par.items():
- if k in acquisition_data_geometry.keys():
- acquisition_data_geometry[k] = v
- proj_geom = [
- acquisition_data_geometry['cameraX'],
- acquisition_data_geometry['cameraY'],
- acquisition_data_geometry['detectorSpacingX'],
- acquisition_data_geometry['detectorSpacingY'],
- acquisition_data_geometry['angles']
- ]
-
- reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy()
- for k,v in vol_par.items():
- if k in reconstructed_volume_geometry.keys():
- reconstructed_volume_geometry[k] = v
-
- vol_geom = [
- reconstructed_volume_geometry['X'],
- reconstructed_volume_geometry['Y'],
- reconstructed_volume_geometry['Z']
- ]
- return AstraDevice(self.type, proj_geom, vol_geom)
-
-
-
-if __name__=="main":
- a = AstraDevice()
-
-
diff --git a/Wrappers/Python/ccpi/reconstruction/DeviceModel.py b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
deleted file mode 100644
index eeb9a34..0000000
--- a/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
+++ /dev/null
@@ -1,63 +0,0 @@
-from abc import ABCMeta, abstractmethod
-from enum import Enum
-
-class DeviceModel(metaclass=ABCMeta):
- '''Abstract class that defines the device for projection and backprojection
-
-This class defines the methods that must be implemented by concrete classes.
-
- '''
-
- class DeviceType(Enum):
- '''Type of device
-PARALLEL BEAM
-PARALLEL BEAM 3D
-CONE BEAM
-HELICAL'''
-
- PARALLEL = 'parallel'
- PARALLEL3D = 'parallel3d'
- CONE_BEAM = 'cone-beam'
- HELICAL = 'helical'
-
- def __init__(self,
- device_type,
- data_aquisition_geometry,
- reconstructed_volume_geometry):
- '''Initializes the class
-
-Mandatory parameters are:
-device_type from DeviceType Enum
-data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX,
- detectorSpacingY, angles)
-reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
-'''
- self.device_geometry = device_type
- self.acquisition_data_geometry = {
- 'cameraX': data_aquisition_geometry[0],
- 'cameraY': data_aquisition_geometry[1],
- 'detectorSpacingX' : data_aquisition_geometry[2],
- 'detectorSpacingY' : data_aquisition_geometry[3],
- 'angles' : data_aquisition_geometry[4],}
- self.reconstructed_volume_geometry = {
- 'X': reconstructed_volume_geometry[0] ,
- 'Y': reconstructed_volume_geometry[1] ,
- 'Z': reconstructed_volume_geometry[2] }
-
- @abstractmethod
- def doForwardProject(self, volume):
- '''Forward projects the volume according to the device geometry'''
- return NotImplemented
-
-
- @abstractmethod
- def doBackwardProject(self, projections):
- '''Backward projects the projections according to the device geometry'''
- return NotImplemented
-
- @abstractmethod
- def createReducedDevice(self):
- '''Create a Device to do forward/backward projections on 2D slices'''
- return NotImplemented
-
-
diff --git a/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
deleted file mode 100644
index e40ad24..0000000
--- a/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ /dev/null
@@ -1,882 +0,0 @@
-# -*- coding: utf-8 -*-
-###############################################################################
-#This work is part of the Core Imaging Library developed by
-#Visual Analytics and Imaging System Group of the Science Technology
-#Facilities Council, STFC
-#
-#Copyright 2017 Edoardo Pasca, Srikanth Nagella
-#Copyright 2017 Daniil Kazantsev
-#
-#Licensed under the Apache License, Version 2.0 (the "License");
-#you may not use this file except in compliance with the License.
-#You may obtain a copy of the License at
-#http://www.apache.org/licenses/LICENSE-2.0
-#Unless required by applicable law or agreed to in writing, software
-#distributed under the License is distributed on an "AS IS" BASIS,
-#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-#See the License for the specific language governing permissions and
-#limitations under the License.
-###############################################################################
-
-
-
-import numpy
-#from ccpi.reconstruction.parallelbeam import alg
-
-#from ccpi.imaging.Regularizer import Regularizer
-from enum import Enum
-
-import astra
-from ccpi.reconstruction.AstraDevice import AstraDevice
-
-
-
-class FISTAReconstructor():
- '''FISTA-based reconstruction algorithm using ASTRA-toolbox
-
- '''
- # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
- # ___Input___:
- # params.[] file:
- # - .proj_geom (geometry of the projector) [required]
- # - .vol_geom (geometry of the reconstructed object) [required]
- # - .sino (vectorized in 2D or 3D sinogram) [required]
- # - .iterFISTA (iterations for the main loop, default 40)
- # - .L_const (Lipschitz constant, default Power method) )
- # - .X_ideal (ideal image, if given)
- # - .weights (statisitcal weights, size of the sinogram)
- # - .ROI (Region-of-interest, only if X_ideal is given)
- # - .initialize (a 'warm start' using SIRT method from ASTRA)
- #----------------Regularization choices------------------------
- # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
- # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
- # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
- # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
- # - .Regul_Iterations (iterations for the selected penalty, default 25)
- # - .Regul_tauLLT (time step parameter for LLT term)
- # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
- # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
- #----------------Visualization parameters------------------------
- # - .show (visualize reconstruction 1/0, (0 default))
- # - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
- # - .slice (for 3D volumes - slice number to imshow)
- # ___Output___:
- # 1. X - reconstructed image/volume
- # 2. output - a structure with
- # - .Resid_error - residual error (if X_ideal is given)
- # - .objective: value of the objective function
- # - .L_const: Lipshitz constant to avoid recalculations
-
- # References:
- # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
- # Problems" by A. Beck and M Teboulle
- # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
- # 3. "A novel tomographic reconstruction method based on the robust
- # Student's t function for suppressing data outliers" D. Kazantsev et.al.
- # D. Kazantsev, 2016-17
- def __init__(self, projector_geometry,
- output_geometry,
- input_sinogram,
- device,
- **kwargs):
- # handle parmeters:
- # obligatory parameters
- self.pars = dict()
- self.pars['projector_geometry'] = projector_geometry # proj_geom
- self.pars['output_geometry'] = output_geometry # vol_geom
- self.pars['input_sinogram'] = input_sinogram # sino
- sliceZ, nangles, detectors = numpy.shape(input_sinogram)
- self.pars['detectors'] = detectors
- self.pars['number_of_angles'] = nangles
- self.pars['SlicesZ'] = sliceZ
- self.pars['output_volume'] = None
- self.pars['device_model'] = device
-
- self.use_device = True
-
- print (self.pars)
- # handle optional input parameters (at instantiation)
-
- # Accepted input keywords
- kw = (
- # mandatory fields
- 'projector_geometry',
- 'output_geometry',
- 'input_sinogram',
- 'detectors',
- 'number_of_angles',
- 'SlicesZ',
- # optional fields
- 'number_of_iterations',
- 'Lipschitz_constant' ,
- 'ideal_image' ,
- 'weights' ,
- 'region_of_interest' ,
- 'initialize' ,
- 'regularizer' ,
- 'ring_lambda_R_L1',
- 'ring_alpha',
- 'subsets',
- 'output_volume',
- 'os_subsets',
- 'os_indices',
- 'os_bins',
- 'device_model',
- 'reduced_device_model')
- self.acceptedInputKeywords = list(kw)
-
- # handle keyworded parameters
- if kwargs is not None:
- for key, value in kwargs.items():
- if key in kw:
- #print("{0} = {1}".format(key, value))
- self.pars[key] = value
-
- # set the default values for the parameters if not set
- if 'number_of_iterations' in kwargs.keys():
- self.pars['number_of_iterations'] = kwargs['number_of_iterations']
- else:
- self.pars['number_of_iterations'] = 40
- if 'weights' in kwargs.keys():
- self.pars['weights'] = kwargs['weights']
- else:
- self.pars['weights'] = \
- numpy.ones(numpy.shape(
- self.pars['input_sinogram']))
- if 'Lipschitz_constant' in kwargs.keys():
- self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
- else:
- self.pars['Lipschitz_constant'] = None
-
- if not 'ideal_image' in kwargs.keys():
- self.pars['ideal_image'] = None
-
- if not 'region_of_interest'in kwargs.keys() :
- if self.pars['ideal_image'] == None:
- self.pars['region_of_interest'] = None
- else:
- ## nonzero if the image is larger than m
- fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1)
-
- self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0)
-
- # the regularizer must be a correctly instantiated object
- if not 'regularizer' in kwargs.keys() :
- self.pars['regularizer'] = None
-
- #RING REMOVAL
- if not 'ring_lambda_R_L1' in kwargs.keys():
- self.pars['ring_lambda_R_L1'] = 0
- if not 'ring_alpha' in kwargs.keys():
- self.pars['ring_alpha'] = 1
-
- # ORDERED SUBSET
- if not 'subsets' in kwargs.keys():
- self.pars['subsets'] = 0
- else:
- self.createOrderedSubsets()
-
- if not 'initialize' in kwargs.keys():
- self.pars['initialize'] = False
-
- reduced_device = device.createReducedDevice()
- self.setParameter(reduced_device_model=reduced_device)
-
-
-
- def setParameter(self, **kwargs):
- '''set named parameter for the reconstructor engine
-
- raises Exception if the named parameter is not recognized
-
- '''
- for key , value in kwargs.items():
- if key in self.acceptedInputKeywords:
- self.pars[key] = value
- else:
- raise Exception('Wrong parameter {0} for '.format(key) +
- 'reconstructor')
- # setParameter
-
- def getParameter(self, key):
- if type(key) is str:
- if key in self.acceptedInputKeywords:
- return self.pars[key]
- else:
- raise Exception('Unrecongnised parameter: {0} '.format(key) )
- elif type(key) is list:
- outpars = []
- for k in key:
- outpars.append(self.getParameter(k))
- return outpars
- else:
- raise Exception('Unhandled input {0}' .format(str(type(key))))
-
-
- def calculateLipschitzConstantWithPowerMethod(self):
- ''' using Power method (PM) to establish L constant'''
-
- N = self.pars['output_geometry']['GridColCount']
- proj_geom = self.pars['projector_geometry']
- vol_geom = self.pars['output_geometry']
- weights = self.pars['weights']
- SlicesZ = self.pars['SlicesZ']
-
-
-
- if (proj_geom['type'] == 'parallel') or \
- (proj_geom['type'] == 'parallel3d'):
- #% for parallel geometry we can do just one slice
- #print('Calculating Lipshitz constant for parallel beam geometry...')
- niter = 5;# % number of iteration for the PM
- #N = params.vol_geom.GridColCount;
- #x1 = rand(N,N,1);
- x1 = numpy.random.rand(1,N,N)
- #sqweight = sqrt(weights(:,:,1));
- sqweight = numpy.sqrt(weights[0:1,:,:])
- proj_geomT = proj_geom.copy();
- proj_geomT['DetectorRowCount'] = 1;
- vol_geomT = vol_geom.copy();
- vol_geomT['GridSliceCount'] = 1;
-
- #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
-
-
- for i in range(niter):
- # [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT);
- # s = norm(x1(:));
- # x1 = x1/s;
- # [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
- # y = sqweight.*y;
- # astra_mex_data3d('delete', sino_id);
- # astra_mex_data3d('delete', id);
- #print ("iteration {0}".format(i))
-
- sino_id, y = astra.creators.create_sino3d_gpu(x1,
- proj_geomT,
- vol_geomT)
-
- y = (sqweight * y).copy() # element wise multiplication
-
- #b=fig.add_subplot(2,1,2)
- #imgplot = plt.imshow(x1[0])
- #plt.show()
-
- #astra_mex_data3d('delete', sino_id);
- astra.matlab.data3d('delete', sino_id)
- del x1
-
- idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(),
- proj_geomT,
- vol_geomT)
- del y
-
-
- s = numpy.linalg.norm(x1)
- ### this line?
- x1 = (x1/s).copy();
-
- # ### this line?
- # sino_id, y = astra.creators.create_sino3d_gpu(x1,
- # proj_geomT,
- # vol_geomT);
- # y = sqweight * y;
- astra.matlab.data3d('delete', sino_id);
- astra.matlab.data3d('delete', idx)
- print ("iteration {0} s= {1}".format(i,s))
-
- #end
- del proj_geomT
- del vol_geomT
- #plt.show()
- else:
- #% divergen beam geometry
- print('Calculating Lipshitz constant for divergen beam geometry...')
- niter = 8; #% number of iteration for PM
- x1 = numpy.random.rand(SlicesZ , N , N);
- #sqweight = sqrt(weights);
- sqweight = numpy.sqrt(weights[0])
-
- sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
- y = sqweight*y;
- #astra_mex_data3d('delete', sino_id);
- astra.matlab.data3d('delete', sino_id);
-
- for i in range(niter):
- #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
- idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y,
- proj_geom,
- vol_geom)
- s = numpy.linalg.norm(x1)
- ### this line?
- x1 = x1/s;
- ### this line?
- #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
- sino_id, y = astra.creators.create_sino3d_gpu(x1,
- proj_geom,
- vol_geom);
-
- y = sqweight*y;
- #astra_mex_data3d('delete', sino_id);
- #astra_mex_data3d('delete', id);
- astra.matlab.data3d('delete', sino_id);
- astra.matlab.data3d('delete', idx);
- #end
- #clear x1
- del x1
-
-
- return s
-
-
- def setRegularizer(self, regularizer):
- if regularizer is not None:
- self.pars['regularizer'] = regularizer
-
-
- def initialize(self):
- # convenience variable storage
- proj_geom = self.pars['projector_geometry']
- vol_geom = self.pars['output_geometry']
- sino = self.pars['input_sinogram']
-
- # a 'warm start' with SIRT method
- # Create a data object for the reconstruction
- rec_id = astra.matlab.data3d('create', '-vol',
- vol_geom);
-
- #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino);
- sinogram_id = astra.matlab.data3d('create', '-proj3d',
- proj_geom,
- sino)
-
- sirt_config = astra.astra_dict('SIRT3D_CUDA')
- sirt_config['ReconstructionDataId' ] = rec_id
- sirt_config['ProjectionDataId'] = sinogram_id
-
- sirt = astra.algorithm.create(sirt_config)
- astra.algorithm.run(sirt, iterations=35)
- X = astra.matlab.data3d('get', rec_id)
-
- # clean up memory
- astra.matlab.data3d('delete', rec_id)
- astra.matlab.data3d('delete', sinogram_id)
- astra.algorithm.delete(sirt)
-
-
-
- return X
-
- def createOrderedSubsets(self, subsets=None):
- if subsets is None:
- try:
- subsets = self.getParameter('subsets')
- except Exception():
- subsets = 0
- #return subsets
- else:
- self.setParameter(subsets=subsets)
-
-
- angles = self.getParameter('projector_geometry')['ProjectionAngles']
-
- #binEdges = numpy.linspace(angles.min(),
- # angles.max(),
- # subsets + 1)
- binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
- # get rearranged subset indices
- IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32)
- counterM = 0
- for ii in range(binsDiscr.max()):
- counter = 0
- for jj in range(subsets):
- curr_index = ii + jj + counter
- #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
- if binsDiscr[jj] > ii:
- if (counterM < numpy.size(IndicesReorg)):
- IndicesReorg[counterM] = curr_index
- counterM = counterM + 1
-
- counter = counter + binsDiscr[jj] - 1
-
- # store the OS in parameters
- self.setParameter(os_subsets=subsets,
- os_bins=binsDiscr,
- os_indices=IndicesReorg)
-
-
- def prepareForIteration(self):
- print ("FISTA Reconstructor: prepare for iteration")
-
- self.residual_error = numpy.zeros((self.pars['number_of_iterations']))
- self.objective = numpy.zeros((self.pars['number_of_iterations']))
-
- #2D array (for 3D data) of sparse "ring"
- detectors, nangles, sliceZ = numpy.shape(self.pars['input_sinogram'])
- self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float)
- # another ring variable
- self.r_x = self.r.copy()
-
- self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram']))
-
- if self.getParameter('Lipschitz_constant') is None:
- self.pars['Lipschitz_constant'] = \
- self.calculateLipschitzConstantWithPowerMethod()
- # errors vector (if the ground truth is given)
- self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations')));
- # objective function values vector
- self.objective = numpy.zeros((self.getParameter('number_of_iterations')));
-
-
- # prepareForIteration
-
- def iterate (self, Xin=None):
- if self.getParameter('subsets') == 0:
- return self.iterateStandard(Xin)
- else:
- return self.iterateOrderedSubsets(Xin)
-
- def iterateStandard(self, Xin=None):
- print ("FISTA Reconstructor: iterate")
-
- if Xin is None:
- if self.getParameter('initialize'):
- X = self.initialize()
- else:
- N = vol_geom['GridColCount']
- X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
- else:
- # copy by reference
- X = Xin
- # store the output volume in the parameters
- self.setParameter(output_volume=X)
- X_t = X.copy()
- # convenience variable storage
- proj_geom , vol_geom, sino , \
- SlicesZ , ring_lambda_R_L1 , weights = \
- self.getParameter([ 'projector_geometry' ,
- 'output_geometry',
- 'input_sinogram',
- 'SlicesZ' ,
- 'ring_lambda_R_L1',
- 'weights'])
-
- t = 1
-
- device = self.getParameter('device_model')
- reduced_device = self.getParameter('reduced_device_model')
-
- for i in range(self.getParameter('number_of_iterations')):
- print("iteration", i)
- X_old = X.copy()
- t_old = t
- r_old = self.r.copy()
- pg = self.getParameter('projector_geometry')['type']
- if pg == 'parallel' or \
- pg == 'fanflat' or \
- pg == 'fanflat_vec':
- # if the geometry is parallel use slice-by-slice
- # projection-backprojection routine
- #sino_updt = zeros(size(sino),'single');
-
- if self.use_device :
- self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
-
- for kkk in range(SlicesZ):
- self.sino_updt[kkk] = \
- reduced_device.doForwardProject( X_t[kkk:kkk+1] )
- else:
- proj_geomT = proj_geom.copy()
- proj_geomT['DetectorRowCount'] = 1
- vol_geomT = vol_geom.copy()
- vol_geomT['GridSliceCount'] = 1;
- self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
- for kkk in range(SlicesZ):
- sino_id, self.sino_updt[kkk] = \
- astra.creators.create_sino3d_gpu(
- X_t[kkk:kkk+1], proj_geomT, vol_geomT)
- astra.matlab.data3d('delete', sino_id)
- else:
- # for divergent 3D geometry (watch the GPU memory overflow in
- # ASTRA versions < 1.8)
- #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
-
- if self.use_device:
- self.sino_updt = device.doForwardProject(X_t)
- else:
- sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
- X_t, proj_geom, vol_geom)
- astra.matlab.data3d('delete', sino_id)
-
-
- ## RING REMOVAL
- if ring_lambda_R_L1 != 0:
- self.ringRemoval(i)
- else:
- self.residual = weights * (self.sino_updt - sino)
- self.objective[i] = 0.5 * numpy.linalg.norm(self.residual)
- #objective(i) = 0.5*norm(residual(:)); % for the objective function output
- ## Projection/Backprojection Routine
- X, X_t = self.projectionBackprojection(X, X_t)
-
- ## REGULARIZATION
- Y = self.regularize(X)
- X = Y.copy()
- ## Update Loop
- X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
-
- print ("t" , t)
- print ("X min {0} max {1}".format(X_t.min(),X_t.max()))
- self.setParameter(output_volume=X)
- return X
- ## iterate
-
- def ringRemoval(self, i):
- print ("FISTA Reconstructor: ring removal")
- residual = self.residual
- lambdaR_L1 , alpha_ring , weights , L_const , sino= \
- self.getParameter(['ring_lambda_R_L1',
- 'ring_alpha' , 'weights',
- 'Lipschitz_constant',
- 'input_sinogram'])
- r_x = self.r_x
- sino_updt = self.sino_updt
-
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(self.getParameter('input_sinogram'))
- if lambdaR_L1 > 0 :
- for kkk in range(anglesNumb):
-
- residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
- vec = residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:].squeeze()
- self.r = (r_x - (1./L_const) * vec).copy()
- self.objective[i] = (0.5 * (residual ** 2).sum())
-
- def projectionBackprojection(self, X, X_t):
- print ("FISTA Reconstructor: projection-backprojection routine")
-
- # a few useful variables
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(self.getParameter('input_sinogram'))
- residual = self.residual
- proj_geom , vol_geom , L_const = \
- self.getParameter(['projector_geometry' ,
- 'output_geometry',
- 'Lipschitz_constant'])
-
- device, reduced_device = self.getParameter(['device_model',
- 'reduced_device_model'])
-
- if self.getParameter('projector_geometry')['type'] == 'parallel' or \
- self.getParameter('projector_geometry')['type'] == 'fanflat' or \
- self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
- # if the geometry is parallel use slice-by-slice
- # projection-backprojection routine
- #sino_updt = zeros(size(sino),'single');
- x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
-
- if self.use_device:
- proj_geomT = proj_geom.copy()
- proj_geomT['DetectorRowCount'] = 1
- vol_geomT = vol_geom.copy()
- vol_geomT['GridSliceCount'] = 1;
-
- for kkk in range(SlicesZ):
-
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residual[kkk:kkk+1],
- proj_geomT, vol_geomT)
- astra.matlab.data3d('delete', x_id)
- else:
- for kkk in range(SliceZ):
- x_temp[kkk] = \
- reduced_device.doBackwardProject(residual[kkk:kkk+1])
- else:
- if self.use_device:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residual, proj_geom, vol_geom)
- astra.matlab.data3d('delete', x_id)
- else:
- x_temp = \
- device.doBackwardProject(residual)
-
-
- X = X_t - (1/L_const) * x_temp
- #astra.matlab.data3d('delete', sino_id)
- return (X , X_t)
-
-
- def regularize(self, X , output_all=False):
- #print ("FISTA Reconstructor: regularize")
-
- regularizer = self.getParameter('regularizer')
- if regularizer is not None:
- return regularizer(input=X,
- output_all=output_all)
- else:
- return X
-
- def updateLoop(self, i, X, X_old, r_old, t, t_old):
- print ("FISTA Reconstructor: update loop")
- lambdaR_L1 = self.getParameter('ring_lambda_R_L1')
-
- t = (1 + numpy.sqrt(1 + 4 * t**2))/2
- X_t = X + (((t_old -1)/t) * (X - X_old))
-
- if lambdaR_L1 > 0:
- self.r = numpy.max(
- numpy.abs(self.r) - lambdaR_L1 , 0) * \
- numpy.sign(self.r)
- self.r_x = self.r + \
- (((t_old-1)/t) * (self.r - r_old))
-
- if self.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, self.objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], self.objective[i]))
- return (X , X_t, t)
-
- def iterateOrderedSubsets(self, Xin=None):
- print ("FISTA Reconstructor: Ordered Subsets iterate")
-
- if Xin is None:
- if self.getParameter('initialize'):
- X = self.initialize()
- else:
- N = vol_geom['GridColCount']
- X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
- else:
- # copy by reference
- X = Xin
- # store the output volume in the parameters
- self.setParameter(output_volume=X)
- X_t = X.copy()
-
- # some useful constants
- proj_geom , vol_geom, sino , \
- SlicesZ, weights , alpha_ring ,\
- lambdaR_L1 , L_const , iterFISTA = self.getParameter(
- ['projector_geometry' , 'output_geometry', 'input_sinogram',
- 'SlicesZ' , 'weights', 'ring_alpha' ,
- 'ring_lambda_R_L1', 'Lipschitz_constant',
- 'number_of_iterations'])
-
-
- # errors vector (if the ground truth is given)
- Resid_error = numpy.zeros((iterFISTA));
- # objective function values vector
- #objective = numpy.zeros((iterFISTA));
- objective = self.objective
-
-
- t = 1
-
- ## additional for
- proj_geomSUB = proj_geom.copy()
- self.residual2 = numpy.zeros(numpy.shape(sino))
- residual2 = self.residual2
- sino_updt_FULL = self.residual.copy()
- r_x = self.r.copy()
-
- print ("starting iterations")
- ## % Outer FISTA iterations loop
- for i in range(self.getParameter('number_of_iterations')):
- # With OS approach it becomes trickier to correlate independent
- # subsets, hence additional work is required one solution is to
- # work with a full sinogram at times
-
- r_old = self.r.copy()
- t_old = t
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(self.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
- if (i > 1 and lambdaR_L1 > 0) :
- for kkk in range(anglesNumb):
-
- residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt_FULL[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
-
- vec = self.residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:] # 1 or 0?
- r_x = self.r_x
- # update ring variable
- self.r = (r_x - (1./L_const) * vec).copy()
-
- # subset loop
- counterInd = 1
- geometry_type = self.getParameter('projector_geometry')['type']
- angles = self.getParameter('projector_geometry')['ProjectionAngles']
-
- for ss in range(self.getParameter('subsets')):
- #print ("Subset {0}".format(ss))
- X_old = X.copy()
- t_old = t
-
- # the number of projections per subset
- numProjSub = self.getParameter('os_bins')[ss]
- CurrSubIndices = self.getParameter('os_indices')\
- [counterInd:counterInd+numProjSub]
- #print ("Len CurrSubIndices {0}".format(numProjSub))
- mask = numpy.zeros(numpy.shape(angles), dtype=bool)
- #cc = 0
- for j in range(len(CurrSubIndices)):
- mask[int(CurrSubIndices[j])] = True
- proj_geomSUB['ProjectionAngles'] = angles[mask]
-
- if self.use_device:
- device = self.getParameter('device_model')\
- .createReducedDevice(
- proj_par={'angles':angles[mask]},
- vol_par={})
-
- shape = list(numpy.shape(self.getParameter('input_sinogram')))
- shape[1] = numProjSub
- sino_updt_Sub = numpy.zeros(shape)
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
-
- for kkk in range(SlicesZ):
- if self.use_device:
- sinoT = device.doForwardProject(X_t[kkk:kkk+1])
- else:
- sino_id, sinoT = astra.creators.create_sino3d_gpu (
- X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
- astra.matlab.data3d('delete', sino_id)
- sino_updt_Sub[kkk] = sinoT.T.copy()
-
- else:
- # for 3D geometry (watch the GPU memory overflow in
- # ASTRA < 1.8)
- if self.use_device:
- sino_updt_Sub = device.doForwardProject(X_t)
-
- else:
- sino_id, sino_updt_Sub = \
- astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
-
- astra.matlab.data3d('delete', sino_id)
-
- #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub))
- if lambdaR_L1 > 0 :
- ## RING REMOVAL
- #print ("ring removal")
- residualSub , sino_updt_Sub, sino_updt_FULL = \
- self.ringRemovalOrderedSubsets(ss,
- counterInd,
- sino_updt_Sub,
- sino_updt_FULL)
- else:
- #PWLS model
- #print ("PWLS model")
- residualSub = weights[:,CurrSubIndices,:] * \
- ( sino_updt_Sub - \
- sino[:,CurrSubIndices,:].squeeze() )
- objective[i] = 0.5 * numpy.linalg.norm(residualSub)
-
- # projection/backprojection routine
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
- # if geometry is 2D use slice-by-slice projection-backprojection
- # routine
- x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
- for kkk in range(SlicesZ):
- if self.use_device:
- x_temp[kkk] = device.doBackwardProject(
- residualSub[kkk:kkk+1])
- else:
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residualSub[kkk:kkk+1],
- proj_geomSUB, vol_geom)
- astra.matlab.data3d('delete', x_id)
-
- else:
- if self.use_device:
- x_temp = device.doBackwardProject(
- residualSub)
- else:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residualSub, proj_geomSUB, vol_geom)
-
- astra.matlab.data3d('delete', x_id)
-
- X = X_t - (1/L_const) * x_temp
-
- ## REGULARIZATION
- X = self.regularize(X)
-
- ## Update subset Loop
- t = (1 + numpy.sqrt(1 + 4 * t**2))/2
- X_t = X + (((t_old -1)/t) * (X - X_old))
- # FINAL
- ## update iteration loop
- if lambdaR_L1 > 0:
- self.r = numpy.max(
- numpy.abs(self.r) - lambdaR_L1 , 0) * \
- numpy.sign(self.r)
- self.r_x = self.r + \
- (((t_old-1)/t) * (self.r - r_old))
-
- if self.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, self.objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], self.objective[i]))
- print("X min {0} max {1}".format(X.min(),X.max()))
- self.setParameter(output_volume=X)
- counterInd = counterInd + numProjSub
-
- return X
-
- def ringRemovalOrderedSubsets(self, ss,counterInd,
- sino_updt_Sub, sino_updt_FULL):
- residual = self.residual
- r_x = self.r_x
- weights , alpha_ring , sino = \
- self.getParameter( ['weights', 'ring_alpha', 'input_sinogram'])
- numProjSub = self.getParameter('os_bins')[ss]
- CurrSubIndices = self.getParameter('os_indices')\
- [counterInd:counterInd+numProjSub]
-
- shape = list(numpy.shape(self.getParameter('input_sinogram')))
- shape[1] = numProjSub
-
- residualSub = numpy.zeros(shape)
-
- for kkk in range(numProjSub):
- #print ("ring removal indC ... {0}".format(kkk))
- indC = int(CurrSubIndices[kkk])
- residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
- (sino_updt_Sub[:,kkk,:].squeeze() - \
- sino[:,indC,:].squeeze() - alpha_ring * r_x)
- # filling the full sinogram
- sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
-
- return (residualSub , sino_updt_Sub, sino_updt_FULL)
-
-
diff --git a/Wrappers/Python/ccpi/reconstruction/Reconstructor.py b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
deleted file mode 100644
index 2ad8a44..0000000
--- a/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
+++ /dev/null
@@ -1,598 +0,0 @@
-# -*- coding: utf-8 -*-
-###############################################################################
-#This work is part of the Core Imaging Library developed by
-#Visual Analytics and Imaging System Group of the Science Technology
-#Facilities Council, STFC
-#
-#Copyright 2017 Edoardo Pasca, Srikanth Nagella
-#Copyright 2017 Daniil Kazantsev
-#
-#Licensed under the Apache License, Version 2.0 (the "License");
-#you may not use this file except in compliance with the License.
-#You may obtain a copy of the License at
-#http://www.apache.org/licenses/LICENSE-2.0
-#Unless required by applicable law or agreed to in writing, software
-#distributed under the License is distributed on an "AS IS" BASIS,
-#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-#See the License for the specific language governing permissions and
-#limitations under the License.
-###############################################################################
-
-
-
-import numpy
-import h5py
-from ccpi.reconstruction.parallelbeam import alg
-
-from Regularizer import Regularizer
-from enum import Enum
-
-import astra
-
-
-class Reconstructor:
-
- class Algorithm(Enum):
- CGLS = alg.cgls
- CGLS_CONV = alg.cgls_conv
- SIRT = alg.sirt
- MLEM = alg.mlem
- CGLS_TICHONOV = alg.cgls_tikhonov
- CGLS_TVREG = alg.cgls_TVreg
- FISTA = 'fista'
-
- def __init__(self, algorithm = None, projection_data = None,
- angles = None, center_of_rotation = None ,
- flat_field = None, dark_field = None,
- iterations = None, resolution = None, isLogScale = False, threads = None,
- normalized_projection = None):
-
- self.pars = dict()
- self.pars['algorithm'] = algorithm
- self.pars['projection_data'] = projection_data
- self.pars['normalized_projection'] = normalized_projection
- self.pars['angles'] = angles
- self.pars['center_of_rotation'] = numpy.double(center_of_rotation)
- self.pars['flat_field'] = flat_field
- self.pars['iterations'] = iterations
- self.pars['dark_field'] = dark_field
- self.pars['resolution'] = resolution
- self.pars['isLogScale'] = isLogScale
- self.pars['threads'] = threads
- if (iterations != None):
- self.pars['iterationValues'] = numpy.zeros((iterations))
-
- if projection_data != None and dark_field != None and flat_field != None:
- norm = self.normalize(projection_data, dark_field, flat_field, 0.1)
- self.pars['normalized_projection'] = norm
-
-
- def setPars(self, parameters):
- keys = ['algorithm','projection_data' ,'normalized_projection', \
- 'angles' , 'center_of_rotation' , 'flat_field', \
- 'iterations','dark_field' , 'resolution', 'isLogScale' , \
- 'threads' , 'iterationValues', 'regularize']
-
- for k in keys:
- if k not in parameters.keys():
- self.pars[k] = None
- else:
- self.pars[k] = parameters[k]
-
-
- def sanityCheck(self):
- projection_data = self.pars['projection_data']
- dark_field = self.pars['dark_field']
- flat_field = self.pars['flat_field']
- angles = self.pars['angles']
-
- if projection_data != None and dark_field != None and \
- angles != None and flat_field != None:
- data_shape = numpy.shape(projection_data)
- angle_shape = numpy.shape(angles)
-
- if angle_shape[0] != data_shape[0]:
- #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
- # (angle_shape[0] , data_shape[0]) )
- return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
- (angle_shape[0] , data_shape[0]) )
-
- if data_shape[1:] != numpy.shape(flat_field):
- #raise Exception('Projection and flat field dimensions do not match')
- return (False , 'Projection and flat field dimensions do not match')
- if data_shape[1:] != numpy.shape(dark_field):
- #raise Exception('Projection and dark field dimensions do not match')
- return (False , 'Projection and dark field dimensions do not match')
-
- return (True , '' )
- elif self.pars['normalized_projection'] != None:
- data_shape = numpy.shape(self.pars['normalized_projection'])
- angle_shape = numpy.shape(angles)
-
- if angle_shape[0] != data_shape[0]:
- #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
- # (angle_shape[0] , data_shape[0]) )
- return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
- (angle_shape[0] , data_shape[0]) )
- else:
- return (True , '' )
- else:
- return (False , 'Not enough data')
-
- def reconstruct(self, parameters = None):
- if parameters != None:
- self.setPars(parameters)
-
- go , reason = self.sanityCheck()
- if go:
- return self._reconstruct()
- else:
- raise Exception(reason)
-
-
- def _reconstruct(self, parameters=None):
- if parameters!=None:
- self.setPars(parameters)
- parameters = self.pars
-
- if parameters['algorithm'] != None and \
- parameters['normalized_projection'] != None and \
- parameters['angles'] != None and \
- parameters['center_of_rotation'] != None and \
- parameters['iterations'] != None and \
- parameters['resolution'] != None and\
- parameters['threads'] != None and\
- parameters['isLogScale'] != None:
-
-
- if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS,
- Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT):
- #store parameters
- self.pars = parameters
- result = parameters['algorithm'](
- parameters['normalized_projection'] ,
- parameters['angles'],
- parameters['center_of_rotation'],
- parameters['resolution'],
- parameters['iterations'],
- parameters['threads'] ,
- parameters['isLogScale']
- )
- return result
- elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV,
- Reconstructor.Algorithm.CGLS_TICHONOV,
- Reconstructor.Algorithm.CGLS_TVREG) :
- self.pars = parameters
- result = parameters['algorithm'](
- parameters['normalized_projection'] ,
- parameters['angles'],
- parameters['center_of_rotation'],
- parameters['resolution'],
- parameters['iterations'],
- parameters['threads'] ,
- parameters['regularize'],
- numpy.zeros((parameters['iterations'])),
- parameters['isLogScale']
- )
-
- elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA:
- pass
-
- else:
- if parameters['projection_data'] != None and \
- parameters['dark_field'] != None and \
- parameters['flat_field'] != None:
- norm = self.normalize(parameters['projection_data'],
- parameters['dark_field'],
- parameters['flat_field'], 0.1)
- self.pars['normalized_projection'] = norm
- return self._reconstruct(parameters)
-
-
-
- def _normalize(self, projection, dark, flat, def_val=0):
- a = (projection - dark)
- b = (flat-dark)
- with numpy.errstate(divide='ignore', invalid='ignore'):
- c = numpy.true_divide( a, b )
- c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0
- return c
-
- def normalize(self, projections, dark, flat, def_val=0):
- norm = [self._normalize(projection, dark, flat, def_val) for projection in projections]
- return numpy.asarray (norm, dtype=numpy.float32)
-
-
-
-class FISTA():
- '''FISTA-based reconstruction algorithm using ASTRA-toolbox
-
- '''
- # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
- # ___Input___:
- # params.[] file:
- # - .proj_geom (geometry of the projector) [required]
- # - .vol_geom (geometry of the reconstructed object) [required]
- # - .sino (vectorized in 2D or 3D sinogram) [required]
- # - .iterFISTA (iterations for the main loop, default 40)
- # - .L_const (Lipschitz constant, default Power method) )
- # - .X_ideal (ideal image, if given)
- # - .weights (statisitcal weights, size of the sinogram)
- # - .ROI (Region-of-interest, only if X_ideal is given)
- # - .initialize (a 'warm start' using SIRT method from ASTRA)
- #----------------Regularization choices------------------------
- # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
- # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
- # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
- # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
- # - .Regul_Iterations (iterations for the selected penalty, default 25)
- # - .Regul_tauLLT (time step parameter for LLT term)
- # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
- # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
- #----------------Visualization parameters------------------------
- # - .show (visualize reconstruction 1/0, (0 default))
- # - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
- # - .slice (for 3D volumes - slice number to imshow)
- # ___Output___:
- # 1. X - reconstructed image/volume
- # 2. output - a structure with
- # - .Resid_error - residual error (if X_ideal is given)
- # - .objective: value of the objective function
- # - .L_const: Lipshitz constant to avoid recalculations
-
- # References:
- # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
- # Problems" by A. Beck and M Teboulle
- # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
- # 3. "A novel tomographic reconstruction method based on the robust
- # Student's t function for suppressing data outliers" D. Kazantsev et.al.
- # D. Kazantsev, 2016-17
- def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs):
- self.params = dict()
- self.params['projector_geometry'] = projector_geometry
- self.params['output_geometry'] = output_geometry
- self.params['input_sinogram'] = input_sinogram
- detectors, nangles, sliceZ = numpy.shape(input_sinogram)
- self.params['detectors'] = detectors
- self.params['number_og_angles'] = nangles
- self.params['SlicesZ'] = sliceZ
-
- # Accepted input keywords
- kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' ,
- 'weights' , 'region_of_interest' , 'initialize' ,
- 'regularizer' ,
- 'ring_lambda_R_L1',
- 'ring_alpha')
-
- # handle keyworded parameters
- if kwargs is not None:
- for key, value in kwargs.items():
- if key in kw:
- #print("{0} = {1}".format(key, value))
- self.pars[key] = value
-
- # set the default values for the parameters if not set
- if 'number_of_iterations' in kwargs.keys():
- self.pars['number_of_iterations'] = kwargs['number_of_iterations']
- else:
- self.pars['number_of_iterations'] = 40
- if 'weights' in kwargs.keys():
- self.pars['weights'] = kwargs['weights']
- else:
- self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram']))
- if 'Lipschitz_constant' in kwargs.keys():
- self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
- else:
- self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod()
-
- if not self.pars['ideal_image'] in kwargs.keys():
- self.pars['ideal_image'] = None
-
- if not self.pars['region_of_interest'] :
- if self.pars['ideal_image'] == None:
- pass
- else:
- self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0)
-
- if not self.pars['regularizer'] :
- self.pars['regularizer'] = None
- else:
- # the regularizer must be a correctly instantiated object
- if not self.pars['ring_lambda_R_L1']:
- self.pars['ring_lambda_R_L1'] = 0
- if not self.pars['ring_alpha']:
- self.pars['ring_alpha'] = 1
-
-
-
-
- def calculateLipschitzConstantWithPowerMethod(self):
- ''' using Power method (PM) to establish L constant'''
-
- #N = params.vol_geom.GridColCount
- N = self.pars['output_geometry'].GridColCount
- proj_geom = self.params['projector_geometry']
- vol_geom = self.params['output_geometry']
- weights = self.pars['weights']
- SlicesZ = self.pars['SlicesZ']
-
- if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'):
- #% for parallel geometry we can do just one slice
- #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...');
- niter = 15;# % number of iteration for the PM
- #N = params.vol_geom.GridColCount;
- #x1 = rand(N,N,1);
- x1 = numpy.random.rand(1,N,N)
- #sqweight = sqrt(weights(:,:,1));
- sqweight = numpy.sqrt(weights.T[0])
- proj_geomT = proj_geom.copy();
- proj_geomT.DetectorRowCount = 1;
- vol_geomT = vol_geom.copy();
- vol_geomT['GridSliceCount'] = 1;
-
-
- for i in range(niter):
- if i == 0:
- #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
- sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
- y = sqweight * y # element wise multiplication
- #astra_mex_data3d('delete', sino_id);
- astra.matlab.data3d('delete', sino_id)
-
- idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT);
- s = numpy.linalg.norm(x1)
- ### this line?
- x1 = x1/s;
- ### this line?
- sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
- y = sqweight*y;
- astra.matlab.data3d('delete', sino_id);
- astra.matlab.data3d('delete', idx);
- #end
- del proj_geomT
- del vol_geomT
- else:
- #% divergen beam geometry
- #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...');
- niter = 8; #% number of iteration for PM
- x1 = numpy.random.rand(SlicesZ , N , N);
- #sqweight = sqrt(weights);
- sqweight = numpy.sqrt(weights.T[0])
-
- sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
- y = sqweight*y;
- #astra_mex_data3d('delete', sino_id);
- astra.matlab.data3d('delete', sino_id);
-
- for i in range(niter):
- #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
- idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y,
- proj_geom,
- vol_geom)
- s = numpy.linalg.norm(x1)
- ### this line?
- x1 = x1/s;
- ### this line?
- #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
- sino_id, y = astra.creators.create_sino3d_gpu(x1,
- proj_geom,
- vol_geom);
-
- y = sqweight*y;
- #astra_mex_data3d('delete', sino_id);
- #astra_mex_data3d('delete', id);
- astra.matlab.data3d('delete', sino_id);
- astra.matlab.data3d('delete', idx);
- #end
- #clear x1
- del x1
-
- return s
-
-
- def setRegularizer(self, regularizer):
- #if regularizer
- self.pars['regularizer'] = regularizer
-
-
-
-
-
-def getEntry(location):
- for item in nx[location].keys():
- print (item)
-
-
-print ("Loading Data")
-
-##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif"
-####ind = [i * 1049 for i in range(360)]
-#### use only 360 images
-##images = 200
-##ind = [int(i * 1049 / images) for i in range(images)]
-##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None)
-
-#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs"
-fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs"
-nx = h5py.File(fname, "r")
-
-# the data are stored in a particular location in the hdf5
-for item in nx['entry1/tomo_entry/data'].keys():
- print (item)
-
-data = nx.get('entry1/tomo_entry/data/rotation_angle')
-angles = numpy.zeros(data.shape)
-data.read_direct(angles)
-print (angles)
-# angles should be in degrees
-
-data = nx.get('entry1/tomo_entry/data/data')
-stack = numpy.zeros(data.shape)
-data.read_direct(stack)
-print (data.shape)
-
-print ("Data Loaded")
-
-
-# Normalize
-data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
-itype = numpy.zeros(data.shape)
-data.read_direct(itype)
-# 2 is dark field
-darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
-dark = darks[0]
-for i in range(1, len(darks)):
- dark += darks[i]
-dark = dark / len(darks)
-#dark[0][0] = dark[0][1]
-
-# 1 is flat field
-flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
-flat = flats[0]
-for i in range(1, len(flats)):
- flat += flats[i]
-flat = flat / len(flats)
-#flat[0][0] = dark[0][1]
-
-
-# 0 is projection data
-proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
-angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
-angle_proj = numpy.asarray (angle_proj)
-angle_proj = angle_proj.astype(numpy.float32)
-
-# normalized data are
-# norm = (projection - dark)/(flat-dark)
-
-def normalize(projection, dark, flat, def_val=0.1):
- a = (projection - dark)
- b = (flat-dark)
- with numpy.errstate(divide='ignore', invalid='ignore'):
- c = numpy.true_divide( a, b )
- c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0
- return c
-
-
-norm = [normalize(projection, dark, flat) for projection in proj]
-norm = numpy.asarray (norm)
-norm = norm.astype(numpy.float32)
-
-#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm,
-# angles = angle_proj, center_of_rotation = 86.2 ,
-# flat_field = flat, dark_field = dark,
-# iterations = 15, resolution = 1, isLogScale = False, threads = 3)
-
-#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj,
-# angles = angle_proj, center_of_rotation = 86.2 ,
-# flat_field = flat, dark_field = dark,
-# iterations = 15, resolution = 1, isLogScale = False, threads = 3)
-#img_cgls = recon.reconstruct()
-#
-#pars = dict()
-#pars['algorithm'] = Reconstructor.Algorithm.SIRT
-#pars['projection_data'] = proj
-#pars['angles'] = angle_proj
-#pars['center_of_rotation'] = numpy.double(86.2)
-#pars['flat_field'] = flat
-#pars['iterations'] = 15
-#pars['dark_field'] = dark
-#pars['resolution'] = 1
-#pars['isLogScale'] = False
-#pars['threads'] = 3
-#
-#img_sirt = recon.reconstruct(pars)
-#
-#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM
-#img_mlem = recon.reconstruct()
-
-############################################################
-############################################################
-#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV
-#recon.pars['regularize'] = numpy.double(0.1)
-#img_cgls_conv = recon.reconstruct()
-
-niterations = 15
-threads = 3
-
-img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
-img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
-img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
-
-iteration_values = numpy.zeros((niterations,))
-img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
- iteration_values, False)
-print ("iteration values %s" % str(iteration_values))
-
-iteration_values = numpy.zeros((niterations,))
-img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
- numpy.double(1e-5), iteration_values , False)
-print ("iteration values %s" % str(iteration_values))
-iteration_values = numpy.zeros((niterations,))
-img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
- numpy.double(1e-5), iteration_values , False)
-print ("iteration values %s" % str(iteration_values))
-
-
-##numpy.save("cgls_recon.npy", img_data)
-import matplotlib.pyplot as plt
-fig, ax = plt.subplots(1,6,sharey=True)
-ax[0].imshow(img_cgls[80])
-ax[0].axis('off') # clear x- and y-axes
-ax[1].imshow(img_sirt[80])
-ax[1].axis('off') # clear x- and y-axes
-ax[2].imshow(img_mlem[80])
-ax[2].axis('off') # clear x- and y-axesplt.show()
-ax[3].imshow(img_cgls_conv[80])
-ax[3].axis('off') # clear x- and y-axesplt.show()
-ax[4].imshow(img_cgls_tikhonov[80])
-ax[4].axis('off') # clear x- and y-axesplt.show()
-ax[5].imshow(img_cgls_TVreg[80])
-ax[5].axis('off') # clear x- and y-axesplt.show()
-
-
-plt.show()
-
-#viewer = edo.CILViewer()
-#viewer.setInputAsNumpy(img_cgls2)
-#viewer.displaySliceActor(0)
-#viewer.startRenderLoop()
-
-import vtk
-
-def NumpyToVTKImageData(numpyarray):
- if (len(numpy.shape(numpyarray)) == 3):
- doubleImg = vtk.vtkImageData()
- shape = numpy.shape(numpyarray)
- doubleImg.SetDimensions(shape[0], shape[1], shape[2])
- doubleImg.SetOrigin(0,0,0)
- doubleImg.SetSpacing(1,1,1)
- doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1)
- #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation())
- doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1)
-
- for i in range(shape[0]):
- for j in range(shape[1]):
- for k in range(shape[2]):
- doubleImg.SetScalarComponentFromDouble(
- i,j,k,0, numpyarray[i][j][k])
- #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) )
- # rescale to appropriate VTK_UNSIGNED_SHORT
- stats = vtk.vtkImageAccumulate()
- stats.SetInputData(doubleImg)
- stats.Update()
- iMin = stats.GetMin()[0]
- iMax = stats.GetMax()[0]
- scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin)
-
- shiftScaler = vtk.vtkImageShiftScale ()
- shiftScaler.SetInputData(doubleImg)
- shiftScaler.SetScale(scale)
- shiftScaler.SetShift(iMin)
- shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT)
- shiftScaler.Update()
- return shiftScaler.GetOutput()
-
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetFileName(alg + "_recon.mha")
-#writer.SetInputData(NumpyToVTKImageData(img_cgls2))
-#writer.Write()
diff --git a/Wrappers/Python/src/cpu_regularizers.cpp b/Wrappers/Python/src/cpu_regularizers.cpp
deleted file mode 100644
index 3529ebd..0000000
--- a/Wrappers/Python/src/cpu_regularizers.cpp
+++ /dev/null
@@ -1,756 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
-
-#include <iostream>
-#include <cmath>
-
-#include <boost/python.hpp>
-#include <boost/python/numpy.hpp>
-#include "boost/tuple/tuple.hpp"
-
-#include "SplitBregman_TV_core.h"
-#include "LLT_model_core.h"
-#include "PatchBased_Regul_core.h"
-#include "TGV_PD_core.h"
-#include "utils.h"
-
-
-
-#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64)
-#include <windows.h>
-// this trick only if compiler is MSVC
-__if_not_exists(uint8_t) { typedef __int8 uint8_t; }
-__if_not_exists(uint16_t) { typedef __int8 uint16_t; }
-#endif
-
-namespace bp = boost::python;
-namespace np = boost::python::numpy;
-
-/*! in the Matlab implementation this is called as
-void mexFunction(
-int nlhs, mxArray *plhs[],
-int nrhs, const mxArray *prhs[])
-where:
-prhs Array of pointers to the INPUT mxArrays
-nrhs int number of INPUT mxArrays
-
-nlhs Array of pointers to the OUTPUT mxArrays
-plhs int number of OUTPUT mxArrays
-
-***********************************************************
-
-***********************************************************
-double mxGetScalar(const mxArray *pm);
-args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray.
-Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double.
-***********************************************************
-char *mxArrayToString(const mxArray *array_ptr);
-args: array_ptr Pointer to mxCHAR array.
-Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array.
-Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string.
-***********************************************************
-mxClassID mxGetClassID(const mxArray *pm);
-args: pm Pointer to an mxArray
-Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types,
-mxGetClassId returns a unique value identifying the class of the array contents.
-Use mxIsClass to determine whether an array is of a specific user-defined type.
-
-mxClassID Value MATLAB Type MEX Type C Primitive Type
-mxINT8_CLASS int8 int8_T char, byte
-mxUINT8_CLASS uint8 uint8_T unsigned char, byte
-mxINT16_CLASS int16 int16_T short
-mxUINT16_CLASS uint16 uint16_T unsigned short
-mxINT32_CLASS int32 int32_T int
-mxUINT32_CLASS uint32 uint32_T unsigned int
-mxINT64_CLASS int64 int64_T long long
-mxUINT64_CLASS uint64 uint64_T unsigned long long
-mxSINGLE_CLASS single float float
-mxDOUBLE_CLASS double double double
-
-****************************************************************
-double *mxGetPr(const mxArray *pm);
-args: pm Pointer to an mxArray of type double
-Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data.
-****************************************************************
-mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims,
-mxClassID classid, mxComplexity ComplexFlag);
-args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2.
-dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension.
-For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array.
-classid Identifier for the class of the array, which determines the way the numerical data is represented in memory.
-For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer.
-ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran).
-Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran).
-If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not
-enough free heap space to create the mxArray.
-*/
-
-
-
-bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
-
- // the result is in the following list
- bp::list result;
-
- int number_of_dims, dimX, dimY, dimZ, ll, j, count;
- //const int *dim_array;
- float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old;
-
- //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- //dim_array = mxGetDimensions(prhs[0]);
-
- number_of_dims = input.get_nd();
- int dim_array[3];
-
- dim_array[0] = input.shape(0);
- dim_array[1] = input.shape(1);
- if (number_of_dims == 2) {
- dim_array[2] = -1;
- }
- else {
- dim_array[2] = input.shape(2);
- }
-
- // Parameter handling is be done in Python
- ///*Handling Matlab input data*/
- //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- ///*Handling Matlab input data*/
- //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
- A = reinterpret_cast<float *>(input.get_data());
-
- //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
- mu = (float)d_mu;
-
- //iter = 35; /* default iterations number */
-
- //epsil = 0.0001; /* default tolerance constant */
- epsil = (float)d_epsil;
- //methTV = 0; /* default isotropic TV penalty */
- //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */
- //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
- //if (nrhs == 5) {
- // char *penalty_type;
- // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- // mxFree(penalty_type);
- //}
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
-
- lambda = 2.0f*mu;
- count = 1;
- re_old = 0.0f;
- /*Handling Matlab output data*/
- dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npU = np::zeros(shape, dtype);
- np::ndarray npU_old = np::zeros(shape, dtype);
- np::ndarray npDx = np::zeros(shape, dtype);
- np::ndarray npDy = np::zeros(shape, dtype);
- np::ndarray npBx = np::zeros(shape, dtype);
- np::ndarray npBy = np::zeros(shape, dtype);
-
- U = reinterpret_cast<float *>(npU.get_data());
- U_old = reinterpret_cast<float *>(npU_old.get_data());
- Dx = reinterpret_cast<float *>(npDx.get_data());
- Dy = reinterpret_cast<float *>(npDy.get_data());
- Bx = reinterpret_cast<float *>(npBx.get_data());
- By = reinterpret_cast<float *>(npBy.get_data());
-
-
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for (ll = 0; ll < iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
-
- if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
-
- updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j < dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j], 2);
- re1 += pow(U_old[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*copyIm(U_old, U, dimX, dimY, dimZ); */
-
- }
- //printf("SB iterations stopped at iteration: %i\n", ll);
- result.append<np::ndarray>(npU);
- result.append<int>(ll);
- }
- if (number_of_dims == 3) {
- /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npU = np::zeros(shape, dtype);
- np::ndarray npU_old = np::zeros(shape, dtype);
- np::ndarray npDx = np::zeros(shape, dtype);
- np::ndarray npDy = np::zeros(shape, dtype);
- np::ndarray npDz = np::zeros(shape, dtype);
- np::ndarray npBx = np::zeros(shape, dtype);
- np::ndarray npBy = np::zeros(shape, dtype);
- np::ndarray npBz = np::zeros(shape, dtype);
-
- U = reinterpret_cast<float *>(npU.get_data());
- U_old = reinterpret_cast<float *>(npU_old.get_data());
- Dx = reinterpret_cast<float *>(npDx.get_data());
- Dy = reinterpret_cast<float *>(npDy.get_data());
- Dz = reinterpret_cast<float *>(npDz.get_data());
- Bx = reinterpret_cast<float *>(npBx.get_data());
- By = reinterpret_cast<float *>(npBy.get_data());
- Bz = reinterpret_cast<float *>(npBz.get_data());
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for (ll = 0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
-
- if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
- else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
-
- updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U[j] - U_old[j], 2);
- re1 += pow(U[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- /*printf("%f %i %i \n", re, ll, count); */
- re_old = re;
- }
- //printf("SB iterations stopped at iteration: %i\n", ll);
- result.append<np::ndarray>(npU);
- result.append<int>(ll);
- }
- return result;
-
- }
-
-bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {
- // the result is in the following list
- bp::list result;
-
- int number_of_dims, dimX, dimY, dimZ, ll, j, count;
- //const int *dim_array;
- float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old;
- unsigned short *Map = NULL;
-
- number_of_dims = input.get_nd();
- int dim_array[3];
-
- dim_array[0] = input.shape(0);
- dim_array[1] = input.shape(1);
- if (number_of_dims == 2) {
- dim_array[2] = -1;
- }
- else {
- dim_array[2] = input.shape(2);
- }
-
- ///*Handling Matlab input data*/
- //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
- //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
- //tau = (float)mxGetScalar(prhs[2]); /* time-step */
- //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/
- //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */
- //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
-
- U0 = reinterpret_cast<float *>(input.get_data());
- lambda = (float)d_lambda;
- tau = (float)d_tau;
- // iter is passed as parameter
- epsil = (float)d_epsil;
- // switcher is passed as parameter
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
-
- if (number_of_dims == 2) {
- /*2D case*/
- /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
-
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
-
- np::ndarray npU = np::zeros(shape, dtype);
- np::ndarray npU_old = np::zeros(shape, dtype);
- np::ndarray npD1 = np::zeros(shape, dtype);
- np::ndarray npD2 = np::zeros(shape, dtype);
-
- //result.append<np::ndarray>(npU);
-
- U = reinterpret_cast<float *>(npU.get_data());
- U_old = reinterpret_cast<float *>(npU_old.get_data());
- D1 = reinterpret_cast<float *>(npD1.get_data());
- D2 = reinterpret_cast<float *>(npD2.get_data());
-
- /*Copy U0 to U*/
- copyIm(U0, U, dimX, dimY, dimZ);
-
- count = 1;
- re_old = 0.0f;
-
- for (ll = 0; ll < iter; ll++) {
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der2D(U, D1, D2, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j], 2);
- re1 += pow(U_old[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- // printf("HO iterations stopped at iteration: %i\n", ll);
- result.append<np::ndarray>(npU);
-
- }
- else if (number_of_dims == 3) {
- /*3D case*/
- dimZ = dim_array[2];
- /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- if (switcher != 0) {
- Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
- }*/
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
-
- np::ndarray npU = np::zeros(shape, dtype);
- np::ndarray npU_old = np::zeros(shape, dtype);
- np::ndarray npD1 = np::zeros(shape, dtype);
- np::ndarray npD2 = np::zeros(shape, dtype);
- np::ndarray npD3 = np::zeros(shape, dtype);
- np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>());
- Map = reinterpret_cast<unsigned short *>(npMap.get_data());
- if (switcher != 0) {
- //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
-
- Map = reinterpret_cast<unsigned short *>(npMap.get_data());
- }
-
- U = reinterpret_cast<float *>(npU.get_data());
- U_old = reinterpret_cast<float *>(npU_old.get_data());
- D1 = reinterpret_cast<float *>(npD1.get_data());
- D2 = reinterpret_cast<float *>(npD2.get_data());
- D3 = reinterpret_cast<float *>(npD2.get_data());
-
- /*Copy U0 to U*/
- copyIm(U0, U, dimX, dimY, dimZ);
-
- count = 1;
- re_old = 0.0f;
-
-
- if (switcher == 1) {
- /* apply restrictive smoothing */
- calcMap(U, Map, dimX, dimY, dimZ);
- /*clear outliers */
- cleanMap(Map, dimX, dimY, dimZ);
- }
- for (ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der3D(U, D1, D2, D3, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j], 2);
- re1 += pow(U_old[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- //printf("HO iterations stopped at iteration: %i\n", ll);
- result.append<np::ndarray>(npU);
- if (switcher != 0) result.append<np::ndarray>(npMap);
-
- }
- return result;
-}
-
-
-bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) {
- // the result is in the following list
- bp::list result;
-
- int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
- //const int *dims;
- float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda;
-
- numdims = input.get_nd();
- int dims[3];
-
- dims[0] = input.shape(0);
- dims[1] = input.shape(1);
- if (numdims == 2) {
- dims[2] = -1;
- }
- else {
- dims[2] = input.shape(2);
- }
- /*numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);*/
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); }
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
-
- //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- ///*Handling inputs*/
- //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */
- A = reinterpret_cast<float *>(input.get_data());
- //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */
- //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */
- //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */
-
- //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
- //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
-
- lambda = (float)d_lambda;
- h = (float)d_h;
- SearchW = SearchW_real + 2 * SimilW;
-
- /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
-
- padXY = SearchW + 2 * SimilW; /* padding sizes */
- newsizeX = N + 2 * (padXY); /* the X size of the padded array */
- newsizeY = M + 2 * (padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */
- int N_dims[] = { newsizeX, newsizeY, newsizeZ };
- /******************************2D case ****************************/
- if (numdims == 2) {
- ///*Handling output*/
- //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- ///*allocating memory for the padded arrays */
- //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- ///**************************************************************************/
-
- bp::tuple shape = bp::make_tuple(N, M);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npB = np::zeros(shape, dtype);
-
- shape = bp::make_tuple(newsizeX, newsizeY);
- np::ndarray npAp = np::zeros(shape, dtype);
- np::ndarray npBp = np::zeros(shape, dtype);
- B = reinterpret_cast<float *>(npB.get_data());
- Ap = reinterpret_cast<float *>(npAp.get_data());
- Bp = reinterpret_cast<float *>(npBp.get_data());
-
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- result.append<np::ndarray>(npB);
- }
- else
- {
- /******************************3D case ****************************/
- ///*Handling output*/
- //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- ///*allocating memory for the padded arrays */
- //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
- bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]);
- bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npB = np::zeros(shape, dtype);
- np::ndarray npAp = np::zeros(shape_AB, dtype);
- np::ndarray npBp = np::zeros(shape_AB, dtype);
- B = reinterpret_cast<float *>(npB.get_data());
- Ap = reinterpret_cast<float *>(npAp.get_data());
- Bp = reinterpret_cast<float *>(npBp.get_data());
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- result.append<np::ndarray>(npB);
- } /*end else ndims*/
-
- return result;
-}
-
-bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) {
- // the result is in the following list
- bp::list result;
- int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll;
- //const int *dim_array;
- float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
-
- //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- //dim_array = mxGetDimensions(prhs[0]);
- number_of_dims = input.get_nd();
- int dim_array[3];
-
- dim_array[0] = input.shape(0);
- dim_array[1] = input.shape(1);
- if (number_of_dims == 2) {
- dim_array[2] = -1;
- }
- else {
- dim_array[2] = input.shape(2);
- }
- /*Handling Matlab input data*/
- //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
-
- A = reinterpret_cast<float *>(input.get_data());
-
- //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
- //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/
- //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/
- //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/
- //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
- lambda = (float)d_lambda;
- alpha1 = (float)d_alpha1;
- alpha0 = (float)d_alpha0;
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
-
- if (number_of_dims == 2) {
- /*2D case*/
- dimZ = 1;
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npU = np::zeros(shape, dtype);
- np::ndarray npP1 = np::zeros(shape, dtype);
- np::ndarray npP2 = np::zeros(shape, dtype);
- np::ndarray npQ1 = np::zeros(shape, dtype);
- np::ndarray npQ2 = np::zeros(shape, dtype);
- np::ndarray npQ3 = np::zeros(shape, dtype);
- np::ndarray npV1 = np::zeros(shape, dtype);
- np::ndarray npV1_old = np::zeros(shape, dtype);
- np::ndarray npV2 = np::zeros(shape, dtype);
- np::ndarray npV2_old = np::zeros(shape, dtype);
- np::ndarray npU_old = np::zeros(shape, dtype);
-
- U = reinterpret_cast<float *>(npU.get_data());
- U_old = reinterpret_cast<float *>(npU_old.get_data());
- P1 = reinterpret_cast<float *>(npP1.get_data());
- P2 = reinterpret_cast<float *>(npP2.get_data());
- Q1 = reinterpret_cast<float *>(npQ1.get_data());
- Q2 = reinterpret_cast<float *>(npQ2.get_data());
- Q3 = reinterpret_cast<float *>(npQ3.get_data());
- V1 = reinterpret_cast<float *>(npV1.get_data());
- V1_old = reinterpret_cast<float *>(npV1_old.get_data());
- V2 = reinterpret_cast<float *>(npV2.get_data());
- V2_old = reinterpret_cast<float *>(npV2_old.get_data());
- //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /*dual variables*/
- /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
- /*printf("%i \n", i);*/
- L2 = 12.0; /*Lipshitz constant*/
- tau = 1.0 / pow(L2, 0.5);
- sigma = 1.0 / pow(L2, 0.5);
-
- /*Copy A to U*/
- copyIm(A, U, dimX, dimY, dimZ);
- /* Here primal-dual iterations begin for 2D */
- for (ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for P*/
- ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
-
- /*get updated solution U*/
- newU(U, U_old, dimX, dimY, dimZ);
-
- /*saving V into V_old*/
- copyIm(V1, V1_old, dimX, dimY, dimZ);
- copyIm(V2, V2_old, dimX, dimY, dimZ);
-
- /* upd V*/
- UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
-
- /*get new V*/
- newU(V1, V1_old, dimX, dimY, dimZ);
- newU(V2, V2_old, dimX, dimY, dimZ);
- } /*end of iterations*/
-
- result.append<np::ndarray>(npU);
- }
-
- return result;
-}
-
-BOOST_PYTHON_MODULE(cpu_regularizers_boost)
-{
- np::initialize();
-
- //To specify that this module is a package
- bp::object package = bp::scope();
- package.attr("__path__") = "cpu_regularizers_boost";
-
- np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
- np::dtype dt2 = np::dtype::get_builtin<uint16_t>();
-
- def("SplitBregman_TV", SplitBregman_TV);
- def("LLT_model", LLT_model);
- def("PatchBased_Regul", PatchBased_Regul);
- def("TGV_PD", TGV_PD);
-}
diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py
deleted file mode 100644
index 42c375a..0000000
--- a/Wrappers/Python/test/astra_test.py
+++ /dev/null
@@ -1,85 +0,0 @@
-import astra
-import numpy
-import filefun
-
-
-# read in the same data as the DemoRD2
-angles = filefun.dlmread("DemoRD2/angles.csv")
-darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",")
-flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",")
-
-if True:
- Sino3D = numpy.load("DemoRD2/Sino3D.npy")
-else:
- sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",")
- a = map (lambda x:x, numpy.shape(sino))
- a.append(20)
-
- Sino3D = numpy.zeros(tuple(a), dtype="float")
-
- for i in range(1,numpy.shape(Sino3D)[2]+1):
- print("Read file DemoRD2/sino_%02d.csv" % i)
- sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",")
- Sino3D.T[i-1] = sino.T
-
-Weights3D = numpy.asarray(Sino3D, dtype="float")
-
-##angles_rad = angles*(pi/180); % conversion to radians
-##size_det = size(data_raw3D,1); % detectors dim
-##angSize = size(data_raw3D, 2); % angles dim
-##slices_tot = size(data_raw3D, 3); % no of slices
-##recon_size = 950; % reconstruction size
-
-
-angles_rad = angles * numpy.pi /180.
-size_det, angSize, slices_tot = numpy.shape(Sino3D)
-size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)]
-recon_size = 950
-Z_slices = 3;
-det_row_count = Z_slices;
-
-#proj_geom = astra_create_proj_geom('parallel3d', 1, 1,
-# det_row_count, size_det, angles_rad);
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-proj_geom = astra.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- size_det,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices);
-
-sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float")
-
-#weights = ones(size(sino));
-weights = numpy.ones(numpy.shape(sino))
-
-#####################################################################
-## PowerMethod for Lipschitz constant
-
-N = vol_geom['GridColCount']
-x1 = numpy.random.rand(1,N,N)
-#sqweight = sqrt(weights(:,:,1));
-sqweight = numpy.sqrt(weights.T[0]).T
-##proj_geomT = proj_geom;
-proj_geomT = proj_geom.copy()
-##proj_geomT.DetectorRowCount = 1;
-proj_geomT['DetectorRowCount'] = 1
-##vol_geomT = vol_geom;
-vol_geomT = vol_geom.copy()
-##vol_geomT.GridSliceCount = 1;
-vol_geomT['GridSliceCount'] = 1
-
-##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
-
-#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
-sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT);
-
-##y = sqweight.*y;
-##astra_mex_data3d('delete', sino_id);
-
-
diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py
deleted file mode 100644
index 20a9278..0000000
--- a/Wrappers/Python/test/create_phantom_projections.py
+++ /dev/null
@@ -1,49 +0,0 @@
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-import h5py
-import numpy
-import matplotlib.pyplot as plt
-
-nx = h5py.File('phant3D_256.h5', "r")
-phantom = numpy.asarray(nx.get('/dataset1'))
-pX,pY,pZ = numpy.shape(phantom)
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nxa = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nxa['/'].keys()]
-print (entries)
-
-angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
-
-
-device = AstraDevice(
- DeviceModel.DeviceType.PARALLEL3D.value,
- [ pX , pY , 1., 1., angles_rad],
- [ pX, pY, pZ ] )
-
-
-proj = device.doForwardProject(phantom)
-stack = [proj[:,i,:] for i in range(len(angles_rad))]
-stack = numpy.asarray(stack)
-
-
-fig = plt.figure()
-a=fig.add_subplot(1,2,1)
-a.set_title('proj')
-imgplot = plt.imshow(proj[:,100,:])
-a=fig.add_subplot(1,2,2)
-a.set_title('stack')
-imgplot = plt.imshow(stack[100])
-plt.show()
-
-pf = h5py.File("phantom3D256_projections.h5" , "w")
-pf.create_dataset("/projections", data=stack)
-pf.create_dataset("/sinogram", data=proj)
-pf.create_dataset("/angles", data=angles_rad)
-pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
-pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
-pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
-pf.flush()
-pf.close()
diff --git a/Wrappers/Python/test/metrics.py b/Wrappers/Python/test/metrics.py
new file mode 100644
index 0000000..53f68fb
--- /dev/null
+++ b/Wrappers/Python/test/metrics.py
@@ -0,0 +1,20 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Feb 21 13:34:32 2018
+# quality metrics
+@author: algol
+"""
+import numpy as np
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+
+def rmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
+ return rmse \ No newline at end of file
diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py
deleted file mode 100644
index eff6c43..0000000
--- a/Wrappers/Python/test/readhd5.py
+++ /dev/null
@@ -1,42 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-"""
-
-import h5py
-import numpy
-
-def getEntry(nx, location):
- for item in nx[location].keys():
- print (item)
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-Sino3D = numpy.asarray(nx.get('/Sino3D'))
-Weights3D = numpy.asarray(nx.get('/Weights3D'))
-angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles_rad'))
-recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
-size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
-
-slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-
-#from ccpi.viewer.CILViewer2D import CILViewer2D
-#v = CILViewer2D()
-#v.setInputAsNumpy(Weights3D)
-#v.startRenderLoop()
-
-import matplotlib.pyplot as plt
-fig = plt.figure()
-
-a=fig.add_subplot(1,1,1)
-a.set_title('noise')
-imgplot = plt.imshow(Weights3D[0].T)
-plt.show()
diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py
deleted file mode 100644
index 905eeea..0000000
--- a/Wrappers/Python/test/simple_astra_test.py
+++ /dev/null
@@ -1,25 +0,0 @@
-import astra
-import numpy
-
-detectorSpacingX = 1.0
-detectorSpacingY = 1.0
-det_row_count = 128
-det_col_count = 128
-
-angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-image_size_x = 64
-image_size_y = 64
-image_size_z = 32
-
-vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z)
-
-x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x)
-sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom)
diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py
deleted file mode 100644
index 01f1354..0000000
--- a/Wrappers/Python/test/test_reconstructor-os_phantom.py
+++ /dev/null
@@ -1,480 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-Based on DemoRD2.m
-"""
-
-import h5py
-import numpy
-
-from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
-import astra
-import matplotlib.pyplot as plt
-from ccpi.imaging.Regularizer import Regularizer
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-
-#from ccpi.viewer.CILViewer2D import *
-
-
-def RMSE(signal1, signal2):
- '''RMSE Root Mean Squared Error'''
- if numpy.shape(signal1) == numpy.shape(signal2):
- err = (signal1 - signal2)
- err = numpy.sum( err * err )/numpy.size(signal1); # MSE
- err = sqrt(err); # RMSE
- return err
- else:
- raise Exception('Input signals must have the same shape')
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-projections = numpy.asarray(nx.get('/projections'), dtype="float32")
-#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
-#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
-angSize = numpy.size(angles_rad)
-image_size_x, image_size_y, image_size_z = \
- numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
-det_col_count, det_row_count = \
- numpy.asarray(nx.get('/camera/size'))
-#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
-
-Z_slices = 20
-#det_row_count = image_size_y
-# next definition is just for consistency of naming
-#det_col_count = image_size_x
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-##image_size_x = recon_size
-##image_size_y = recon_size
-##image_size_z = Z_slices
-vol_geom = astra.creators.create_vol_geom( image_size_x,
- image_size_y,
- image_size_z)
-
-## First pass the arguments to the FISTAReconstructor and test the
-## Lipschitz constant
-astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
-## create the sinogram
-Sino3D = numpy.transpose(projections, axes=[1,0,2])
-
-fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- #weights=Weights3D,
- device=astradevice)
-
-print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-fistaRecon.setParameter(number_of_iterations = 4)
-#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
-fistaRecon.setParameter(ring_alpha = 21)
-fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
-subsets = 8
-fistaRecon.setParameter(subsets=subsets)
-
-
-#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
-#reg.setParameter(regularization_parameter=0.005,
-# number_of_iterations=50)
-reg = Regularizer(Regularizer.Algorithm.FGP_TV)
-reg.setParameter(regularization_parameter=5e6,
- tolerance_constant=0.0001,
- number_of_iterations=50)
-
-#fistaRecon.setParameter(regularizer=reg)
-#lc = fistaRecon.getParameter('Lipschitz_constant')
-#reg.setParameter(regularization_parameter=5e6/lc)
-
-## Ordered subset
-if True:
- #subsets = 8
- fistaRecon.setParameter(subsets=subsets)
- fistaRecon.createOrderedSubsets()
-else:
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
- #binEdges = numpy.linspace(angles.min(),
- # angles.max(),
- # subsets + 1)
- binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
- # get rearranged subset indices
- IndicesReorg = numpy.zeros((numpy.shape(angles)))
- counterM = 0
- for ii in range(binsDiscr.max()):
- counter = 0
- for jj in range(subsets):
- curr_index = ii + jj + counter
- #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
- if binsDiscr[jj] > ii:
- if (counterM < numpy.size(IndicesReorg)):
- IndicesReorg[counterM] = curr_index
- counterM = counterM + 1
-
- counter = counter + binsDiscr[jj] - 1
-
-
-if True:
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- print ("prepare for iteration")
- fistaRecon.prepareForIteration()
-
-
-
- print("initializing ...")
- if True:
- # if X doesn't exist
- #N = params.vol_geom.GridColCount
- N = vol_geom['GridColCount']
- print ("N " + str(N))
- X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
- dtype=numpy.float) * 0.001
- X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
- dtype=numpy.float)
- else:
- #X = fistaRecon.initialize()
- X = numpy.load("X.npy")
-
- print (numpy.shape(X))
- X_t = X.copy()
- print ("initialized")
- proj_geom , vol_geom, sino , \
- SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
- ['projector_geometry' , 'output_geometry',
- 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha'])
- lambdaR_L1 , alpha_ring , weights , L_const= \
- fistaRecon.getParameter(['ring_lambda_R_L1',
- 'ring_alpha' , 'weights',
- 'Lipschitz_constant'])
-
- #fistaRecon.setParameter(number_of_iterations = 3)
- iterFISTA = fistaRecon.getParameter('number_of_iterations')
- # errors vector (if the ground truth is given)
- Resid_error = numpy.zeros((iterFISTA));
- # objective function values vector
- objective = numpy.zeros((iterFISTA));
-
-
- t = 1
-
-
- ## additional for
- proj_geomSUB = proj_geom.copy()
- fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
- residual2 = fistaRecon.residual2
- sino_updt_FULL = fistaRecon.residual.copy()
- r_x = fistaRecon.r.copy()
-
- results = []
- print ("starting iterations")
-## % Outer FISTA iterations loop
- for i in range(fistaRecon.getParameter('number_of_iterations')):
-## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
-## % one solution is to work with a full sinogram at times
-## if ((i >= 3) && (lambdaR_L1 > 0))
-## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
-## astra_mex_data3d('delete', sino_id2);
-## end
- # With OS approach it becomes trickier to correlate independent subsets,
- # hence additional work is required one solution is to work with a full
- # sinogram at times
-
-
- #t_old = t
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(fistaRecon.getParameter('input_sinogram'))
- ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
- r_old = fistaRecon.r.copy()
-
- if (i > 1 and lambdaR_L1 > 0) :
- for kkk in range(anglesNumb):
-
- residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt_FULL[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
- #r_old = fistaRecon.r.copy()
- vec = fistaRecon.residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:] # 1 or 0?
- r_x = fistaRecon.r_x
- # update ring variable
- fistaRecon.r = (r_x - (1./L_const) * vec)
-
- # subset loop
- counterInd = 1
- geometry_type = fistaRecon.getParameter('projector_geometry')['type']
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
-
-## if geometry_type == 'parallel' or \
-## geometry_type == 'fanflat' or \
-## geometry_type == 'fanflat_vec' :
-##
-## for kkk in range(SlicesZ):
-## sino_id, sinoT[kkk] = \
-## astra.creators.create_sino3d_gpu(
-## X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
-## sino_updt_Sub[kkk] = sinoT.T.copy()
-##
-## else:
-## sino_id, sino_updt_Sub = \
-## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
-##
-## astra.matlab.data3d('delete', sino_id)
-
- for ss in range(fistaRecon.getParameter('subsets')):
- print ("Subset {0}".format(ss))
- X_old = X.copy()
- t_old = t
- print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
-
- # the number of projections per subset
- numProjSub = fistaRecon.getParameter('os_bins')[ss]
- CurrSubIndices = fistaRecon.getParameter('os_indices')\
- [counterInd:counterInd+numProjSub]
- shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
- shape[1] = numProjSub
- sino_updt_Sub = numpy.zeros(shape)
-
- #print ("Len CurrSubIndices {0}".format(numProjSub))
- mask = numpy.zeros(numpy.shape(angles), dtype=bool)
- cc = 0
- for j in range(len(CurrSubIndices)):
- mask[int(CurrSubIndices[j])] = True
-
- ## this is a reduced device
- rdev = fistaRecon.getParameter('device_model')\
- .createReducedDevice(proj_par={'angles' : angles[mask]},
- vol_par={})
- proj_geomSUB['ProjectionAngles'] = angles[mask]
-
-
-
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
-
- for kkk in range(SlicesZ):
- sino_id, sinoT = astra.creators.create_sino3d_gpu (
- X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
- sino_updt_Sub[kkk] = sinoT.T.copy()
- astra.matlab.data3d('delete', sino_id)
- else:
- # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
- sino_id, sino_updt_Sub = \
- astra.creators.create_sino3d_gpu (X_t,
- proj_geomSUB,
- vol_geom)
-
- astra.matlab.data3d('delete', sino_id)
-
-
-
-
- ## RING REMOVAL
- residual = fistaRecon.residual
-
-
- if lambdaR_L1 > 0 :
- print ("ring removal")
- residualSub = numpy.zeros(shape)
- ## for a chosen subset
- ## for kkk = 1:numProjSub
- ## indC = CurrSubIndeces(kkk);
- ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
- ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
- ## end
- for kkk in range(numProjSub):
- #print ("ring removal indC ... {0}".format(kkk))
- indC = int(CurrSubIndices[kkk])
- residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
- (sino_updt_Sub[:,kkk,:].squeeze() - \
- sino[:,indC,:].squeeze() - alpha_ring * r_x)
- # filling the full sinogram
- sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
-
- else:
- #PWLS model
- # I guess we need to use mask here instead
- residualSub = weights[:,CurrSubIndices,:] * \
- ( sino_updt_Sub - \
- sino[:,CurrSubIndices,:].squeeze() )
- # it seems that in the original code the following like is not
- # calculated in the case of ring removal
- objective[i] = 0.5 * numpy.linalg.norm(residualSub)
-
- #backprojection
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
- # if geometry is 2D use slice-by-slice projection-backprojection
- # routine
- x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
- for kkk in range(SlicesZ):
-
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residualSub[kkk:kkk+1],
- proj_geomSUB, vol_geom)
- astra.matlab.data3d('delete', x_id)
-
- else:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residualSub, proj_geomSUB, vol_geom)
-
- astra.matlab.data3d('delete', x_id)
-
- X = X_t - (1/L_const) * x_temp
-
-
-
- ## REGULARIZATION
- ## SKIPPING FOR NOW
- ## Should be simpli
- # regularizer = fistaRecon.getParameter('regularizer')
- # for slices:
- # out = regularizer(input=X)
- print ("regularizer")
- reg = fistaRecon.getParameter('regularizer')
-
- if reg is not None:
- X = reg(input=X,
- output_all=False)
-
- t = (1 + numpy.sqrt(1 + 4 * t **2))/2
- X_t = X + (((t_old -1)/t) * (X-X_old))
- counterInd = counterInd + numProjSub - 1
- if i == 1:
- r_old = fistaRecon.r.copy()
-
- ## FINAL
- print ("final")
- lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
- if lambdaR_L1 > 0:
- fistaRecon.r = numpy.max(
- numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
- numpy.sign(fistaRecon.r)
- # updating r
- r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
-
-
- if fistaRecon.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], objective[i]))
-
- results.append(X[10])
- numpy.save("X_out_os.npy", X)
-
-else:
-
-
-
- astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
- regul = Regularizer(Regularizer.Algorithm.FGP_TV)
- regul.setParameter(regularization_parameter=5e6,
- number_of_iterations=50,
- tolerance_constant=1e-4,
- TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
-
- fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- weights=Weights3D,
- device=astradevice,
- #regularizer = regul,
- subsets=8)
-
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- fistaRecon.setParameter(number_of_iterations = 1)
- fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
- fistaRecon.setParameter(ring_alpha = 21)
- fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
- #fistaRecon.setParameter(subsets=8)
-
- #lc = fistaRecon.getParameter('Lipschitz_constant')
- #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
-
- fistaRecon.prepareForIteration()
- X = fistaRecon.iterate(numpy.load("X.npy"))
-
-
-# plot
-fig = plt.figure()
-cols = 3
-
-## add the difference
-rd = []
-for i in range(1,len(results)):
- rd.append(results[i-1])
- rd.append(results[i])
- rd.append(results[i] - results[i-1])
-
-rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \
- (len (rd))
-for i in range(len (results)):
- a=fig.add_subplot(rows,cols,i+1)
- imgplot = plt.imshow(results[i], vmin=0, vmax=1)
- a.text(0.05, 0.95, "iteration {0}".format(i),
- verticalalignment='top')
-## i = i + 1
-## a=fig.add_subplot(rows,cols,i+1)
-## imgplot = plt.imshow(results[i], vmin=0, vmax=10)
-## a.text(0.05, 0.95, "iteration {0}".format(i),
-## verticalalignment='top')
-
-## a=fig.add_subplot(rows,cols,i+2)
-## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
-## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
-## verticalalignment='top')
-
-
-
-plt.show()
diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py
deleted file mode 100644
index 40065e7..0000000
--- a/Wrappers/Python/test/test_reconstructor.py
+++ /dev/null
@@ -1,359 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-Based on DemoRD2.m
-"""
-
-import h5py
-import numpy
-
-from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
-import astra
-import matplotlib.pyplot as plt
-from ccpi.imaging.Regularizer import Regularizer
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-
-def RMSE(signal1, signal2):
- '''RMSE Root Mean Squared Error'''
- if numpy.shape(signal1) == numpy.shape(signal2):
- err = (signal1 - signal2)
- err = numpy.sum( err * err )/numpy.size(signal1); # MSE
- err = sqrt(err); # RMSE
- return err
- else:
- raise Exception('Input signals must have the same shape')
-
-def createAstraDevice(projector_geometry, output_geometry):
- '''TODO remove'''
-
- device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [projector_geometry['DetectorRowCount'] ,
- projector_geometry['DetectorColCount'] ,
- projector_geometry['DetectorSpacingX'] ,
- projector_geometry['DetectorSpacingY'] ,
- projector_geometry['ProjectionAngles']
- ],
- [
- output_geometry['GridColCount'],
- output_geometry['GridRowCount'],
- output_geometry['GridSliceCount'] ] )
- return device
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
-Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
-angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
-recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
-size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
-slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-
-Z_slices = 20
-det_row_count = Z_slices
-# next definition is just for consistency of naming
-det_col_count = size_det
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-image_size_x = recon_size
-image_size_y = recon_size
-image_size_z = Z_slices
-vol_geom = astra.creators.create_vol_geom( image_size_x,
- image_size_y,
- image_size_z)
-
-## First pass the arguments to the FISTAReconstructor and test the
-## Lipschitz constant
-
-##fistaRecon = FISTAReconstructor(proj_geom,
-## vol_geom,
-## Sino3D ,
-## weights=Weights3D)
-##
-##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-##fistaRecon.setParameter(number_of_iterations = 12)
-##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
-##fistaRecon.setParameter(ring_alpha = 21)
-##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-##
-##reg = Regularizer(Regularizer.Algorithm.LLT_model)
-##reg.setParameter(regularization_parameter=25,
-## time_step=0.0003,
-## tolerance_constant=0.0001,
-## number_of_iterations=300)
-##fistaRecon.setParameter(regularizer=reg)
-
-## Ordered subset
-if False:
- subsets = 16
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
- #binEdges = numpy.linspace(angles.min(),
- # angles.max(),
- # subsets + 1)
- binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
- # get rearranged subset indices
- IndicesReorg = numpy.zeros((numpy.shape(angles)))
- counterM = 0
- for ii in range(binsDiscr.max()):
- counter = 0
- for jj in range(subsets):
- curr_index = ii + jj + counter
- #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
- if binsDiscr[jj] > ii:
- if (counterM < numpy.size(IndicesReorg)):
- IndicesReorg[counterM] = curr_index
- counterM = counterM + 1
-
- counter = counter + binsDiscr[jj] - 1
-
-
-if False:
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- print ("prepare for iteration")
- fistaRecon.prepareForIteration()
-
-
-
- print("initializing ...")
- if False:
- # if X doesn't exist
- #N = params.vol_geom.GridColCount
- N = vol_geom['GridColCount']
- print ("N " + str(N))
- X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
- else:
- #X = fistaRecon.initialize()
- X = numpy.load("X.npy")
-
- print (numpy.shape(X))
- X_t = X.copy()
- print ("initialized")
- proj_geom , vol_geom, sino , \
- SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
- 'output_geometry',
- 'input_sinogram',
- 'SlicesZ'])
-
- #fistaRecon.setParameter(number_of_iterations = 3)
- iterFISTA = fistaRecon.getParameter('number_of_iterations')
- # errors vector (if the ground truth is given)
- Resid_error = numpy.zeros((iterFISTA));
- # objective function values vector
- objective = numpy.zeros((iterFISTA));
-
-
- t = 1
-
-
- print ("starting iterations")
-## % Outer FISTA iterations loop
- for i in range(fistaRecon.getParameter('number_of_iterations')):
- X_old = X.copy()
- t_old = t
- r_old = fistaRecon.r.copy()
- if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
- # if the geometry is parallel use slice-by-slice
- # projection-backprojection routine
- #sino_updt = zeros(size(sino),'single');
- proj_geomT = proj_geom.copy()
- proj_geomT['DetectorRowCount'] = 1
- vol_geomT = vol_geom.copy()
- vol_geomT['GridSliceCount'] = 1;
- sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
- for kkk in range(SlicesZ):
- sino_id, sino_updt[kkk] = \
- astra.creators.create_sino3d_gpu(
- X_t[kkk:kkk+1], proj_geom, vol_geom)
- astra.matlab.data3d('delete', sino_id)
- else:
- # for divergent 3D geometry (watch the GPU memory overflow in
- # ASTRA versions < 1.8)
- #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- sino_id, sino_updt = astra.creators.create_sino3d_gpu(
- X_t, proj_geom, vol_geom)
-
- ## RING REMOVAL
- residual = fistaRecon.residual
- lambdaR_L1 , alpha_ring , weights , L_const= \
- fistaRecon.getParameter(['ring_lambda_R_L1',
- 'ring_alpha' , 'weights',
- 'Lipschitz_constant'])
- r_x = fistaRecon.r_x
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(fistaRecon.getParameter('input_sinogram'))
- if lambdaR_L1 > 0 :
- print ("ring removal")
- for kkk in range(anglesNumb):
-
- residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
- vec = residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:].squeeze()
- fistaRecon.r = (r_x - (1./L_const) * vec).copy()
- objective[i] = (0.5 * (residual ** 2).sum())
-## % the ring removal part (Group-Huber fidelity)
-## for kkk = 1:anglesNumb
-## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*
-## (squeeze(sino_updt(:,kkk,:)) -
-## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
-## end
-## vec = sum(residual,2);
-## if (SlicesZ > 1)
-## vec = squeeze(vec(:,1,:));
-## end
-## r = r_x - (1./L_const).*vec;
-## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
-
-
-
- # Projection/Backprojection Routine
- if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
- x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
- print ("Projection/Backprojection Routine")
- for kkk in range(SlicesZ):
-
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residual[kkk:kkk+1],
- proj_geomT, vol_geomT)
- astra.matlab.data3d('delete', x_id)
- else:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residual, proj_geom, vol_geom)
-
- X = X_t - (1/L_const) * x_temp
- astra.matlab.data3d('delete', sino_id)
- astra.matlab.data3d('delete', x_id)
-
-
- ## REGULARIZATION
- ## SKIPPING FOR NOW
- ## Should be simpli
- # regularizer = fistaRecon.getParameter('regularizer')
- # for slices:
- # out = regularizer(input=X)
- print ("skipping regularizer")
-
-
- ## FINAL
- print ("final")
- lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
- if lambdaR_L1 > 0:
- fistaRecon.r = numpy.max(
- numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
- numpy.sign(fistaRecon.r)
- t = (1 + numpy.sqrt(1 + 4 * t**2))/2
- X_t = X + (((t_old -1)/t) * (X - X_old))
-
- if lambdaR_L1 > 0:
- fistaRecon.r_x = fistaRecon.r + \
- (((t_old-1)/t) * (fistaRecon.r - r_old))
-
- if fistaRecon.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], objective[i]))
-
-## if (lambdaR_L1 > 0)
-## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
-## end
-##
-## t = (1 + sqrt(1 + 4*t^2))/2; % updating t
-## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-##
-## if (lambdaR_L1 > 0)
-## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
-## end
-##
-## if (show == 1)
-## figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
-## if (lambdaR_L1 > 0)
-## figure(11); plot(r); title('Rings offset vector')
-## end
-## pause(0.01);
-## end
-## if (strcmp(X_ideal, 'none' ) == 0)
-## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
-## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
-## else
-## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
-## end
-else:
-
- # create a device for forward/backprojection
- #astradevice = createAstraDevice(proj_geom, vol_geom)
-
- astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
-
- regul = Regularizer(Regularizer.Algorithm.FGP_TV)
- regul.setParameter(regularization_parameter=5e6,
- number_of_iterations=50,
- tolerance_constant=1e-4,
- TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
-
- fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- device = astradevice,
- weights=Weights3D,
- regularizer = regul
- )
-
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- fistaRecon.setParameter(number_of_iterations = 18)
- fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
- fistaRecon.setParameter(ring_alpha = 21)
- fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-
-
-
- fistaRecon.prepareForIteration()
- X = numpy.load("X.npy")
-
-
- X = fistaRecon.iterate(X)
- #numpy.save("X_out.npy", X)
diff --git a/data/DendrRawData.mat b/data/DendrRawData.mat
deleted file mode 100644
index 2de7f0c..0000000
--- a/data/DendrRawData.mat
+++ /dev/null
Binary files differ
diff --git a/data/phantom_bone512.mat b/data/phantom_bone512.mat
deleted file mode 100644
index ae3c7d8..0000000
--- a/data/phantom_bone512.mat
+++ /dev/null
Binary files differ
diff --git a/data/sino_basalt.mat b/data/sino_basalt.mat
deleted file mode 100644
index 164d144..0000000
--- a/data/sino_basalt.mat
+++ /dev/null
Binary files differ