summaryrefslogtreecommitdiffstats
path: root/test
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2019-12-02 16:15:12 +0000
committerGitHub <noreply@github.com>2019-12-02 16:15:12 +0000
commit33ee243a2cb5704d7f961cad8ec2c45ebfe23df2 (patch)
treee2dfab4cb5f80c4532b6ea7ca5139536bc7a77ed /test
parentdb6f1ffb64879bde896211d51d3739451ccba029 (diff)
parent981445657f9e7041e3d954148146f21af61cf59f (diff)
downloadregularization-33ee243a2cb5704d7f961cad8ec2c45ebfe23df2.tar.gz
regularization-33ee243a2cb5704d7f961cad8ec2c45ebfe23df2.tar.bz2
regularization-33ee243a2cb5704d7f961cad8ec2c45ebfe23df2.tar.xz
regularization-33ee243a2cb5704d7f961cad8ec2c45ebfe23df2.zip
Merge pull request #137 from vais-ral/pdtv
Adds primal-dual TV version for CPU/GPU
Diffstat (limited to 'test')
-rw-r--r--test/test_CPU_regularisers.py11
-rwxr-xr-xtest/test_run_test.py90
2 files changed, 99 insertions, 2 deletions
diff --git a/test/test_CPU_regularisers.py b/test/test_CPU_regularisers.py
index 95e2a3f..266ca8a 100644
--- a/test/test_CPU_regularisers.py
+++ b/test/test_CPU_regularisers.py
@@ -3,7 +3,7 @@ import unittest
import os
#import timeit
import numpy as np
-from ccpi.filters.regularisers import FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th, ROF_TV
+from ccpi.filters.regularisers import FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th, ROF_TV, PD_TV
from testroutines import BinReader, rmse
###############################################################################
@@ -39,6 +39,15 @@ class TestRegularisers(unittest.TestCase):
self.assertAlmostEqual(rms,0.02,delta=0.01)
+ def test_PD_TV_CPU(self):
+ Im,input,ref = self.getPars()
+
+ pd_cpu,info = PD_TV(input, 0.02, 300, 0.0, 0, 0, 8, 0.0025, 'cpu');
+
+ rms = rmse(Im, pd_cpu)
+
+ self.assertAlmostEqual(rms,0.02,delta=0.01)
+
def test_TV_ROF_CPU(self):
# set parameters
Im, input,ref = self.getPars()
diff --git a/test/test_run_test.py b/test/test_run_test.py
index f27e7fc..1707aec 100755
--- a/test/test_run_test.py
+++ b/test/test_run_test.py
@@ -2,7 +2,7 @@ import unittest
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, PD_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
#from PIL import Image
from testroutines import BinReader, rmse, printParametersToString
@@ -164,6 +164,94 @@ class TestRegularisers(unittest.TestCase):
self.assertLessEqual(diff_im.sum() , 1)
+ def test_PD_TV_CPU_vs_GPU(self):
+ print(__name__)
+ #filename = os.path.join("test","lena_gray_512.tif")
+ #plt = TiffReader()
+ filename = os.path.join("test","test_imageLena.bin")
+ plt = BinReader()
+ # read image
+ Im = plt.imread(filename)
+ Im = np.asarray(Im, dtype='float32')
+
+ Im = Im/255
+ perc = 0.05
+ u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+ u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+
+ # map the u0 u0->u0>0
+ # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+ u0 = u0.astype('float32')
+ u_ref = u_ref.astype('float32')
+
+ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+ print ("____________PD-TV bench___________________")
+ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+
+ pars = {'algorithm' : PD_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :1500 ,\
+ 'tolerance_constant':0.0,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0,
+ 'lipschitz_const' : 8,
+ 'tau' : 0.0025}
+
+ print ("#############PD TV CPU####################")
+ start_time = timeit.default_timer()
+ (pd_cpu,info_vec_cpu) = PD_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['lipschitz_const'],
+ pars['tau'],'cpu')
+
+ rms = rmse(Im, pd_cpu)
+ pars['rmse'] = rms
+
+ txtstr = printParametersToString(pars)
+ txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+ print (txtstr)
+
+ print ("##############PD TV GPU##################")
+ start_time = timeit.default_timer()
+ try:
+ (pd_gpu,info_vec_gpu) = PD_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['lipschitz_const'],
+ pars['tau'],'gpu')
+
+ except ValueError as ve:
+ self.skipTest("Results not comparable. GPU computing error.")
+
+ rms = rmse(Im, pd_gpu)
+ pars['rmse'] = rms
+ pars['algorithm'] = PD_TV
+ txtstr = printParametersToString(pars)
+ txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+ print (txtstr)
+
+ print ("--------Compare the results--------")
+ tolerance = 1e-05
+ diff_im = np.zeros(np.shape(pd_cpu))
+ diff_im = abs(pd_cpu - pd_gpu)
+ diff_im[diff_im > tolerance] = 1
+
+ self.assertLessEqual(diff_im.sum() , 1)
+
+
def test_SB_TV_CPU_vs_GPU(self):
print(__name__)
#filename = os.path.join("test","lena_gray_512.tif")