diff options
author | algol <dkazanc@hotmail.com> | 2017-10-26 15:29:16 +0100 |
---|---|---|
committer | algol <dkazanc@hotmail.com> | 2017-10-26 15:29:16 +0100 |
commit | e6349ed946772ee25a2f3ea1eba03e4c77e4f75e (patch) | |
tree | 47dd09cac6b16c2dff2ae874538c3ea64281876f /src | |
parent | a4ee6ded8036fa1a10ef860478f49d2eb2cd11e0 (diff) | |
parent | ed7dd1150261eddbc8dc5cea9b46ced884d5a884 (diff) | |
download | regularization-e6349ed946772ee25a2f3ea1eba03e4c77e4f75e.tar.gz regularization-e6349ed946772ee25a2f3ea1eba03e4c77e4f75e.tar.bz2 regularization-e6349ed946772ee25a2f3ea1eba03e4c77e4f75e.tar.xz regularization-e6349ed946772ee25a2f3ea1eba03e4c77e4f75e.zip |
Merge branch 'master' of https://github.com/vais-ral/CCPi-FISTA_Reconstruction
Diffstat (limited to 'src')
35 files changed, 6276 insertions, 0 deletions
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt new file mode 100644 index 0000000..cbe2fec --- /dev/null +++ b/src/CMakeLists.txt @@ -0,0 +1,14 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +add_subdirectory(Python)
\ No newline at end of file diff --git a/src/Python/CMakeLists.txt b/src/Python/CMakeLists.txt new file mode 100644 index 0000000..1b73380 --- /dev/null +++ b/src/Python/CMakeLists.txt @@ -0,0 +1,181 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# variables that must be set for conda compilation + +#PREFIX=C:\Apps\Miniconda2\envs\cil\Library +#LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include +set (NUMPY_VERSION 1.12) + +## Tries to parse the output of conda env list to determine the current +## active conda environment +message ("Trying to determine your active conda environment...") +execute_process(COMMAND "conda" "env" "list" + OUTPUT_VARIABLE _CONDA_ENVS + RESULT_VARIABLE _CONDA_RESULT + ERROR_VARIABLE _CONDA_ERR) + if(NOT _CONDA_RESULT) + string(REPLACE "\n" ";" ENV_LIST ${_CONDA_ENVS}) + foreach(line ${ENV_LIST}) + string(REGEX MATCHALL "(.+)[*](.+)" match ${line}) + if (NOT ${match} EQUAL "") + #message("MATCHED " ${CMAKE_MATCH_0}) + #message("MATCHED " ${CMAKE_MATCH_1}) + #message("MATCHED " ${CMAKE_MATCH_2}) + string(STRIP ${CMAKE_MATCH_1} CONDA_ENVIRONMENT) + string(STRIP ${CMAKE_MATCH_2} CONDA_ENVIRONMENT_PATH) + endif() + endforeach() + else() + message(FATAL_ERROR "ERROR with conda command " ${_CONDA_ERR}) + endif() + +if (${CONDA_ENVIRONMENT} AND ${CONDA_ENVIRONMENT_PATH}) + message (FATAL_ERROR "CONDA NOT FOUND") +else() + message("**********************************************************") + message("Using current conda environmnet " ${CONDA_ENVIRONMENT}) + message("Using current conda environmnet path " ${CONDA_ENVIRONMENT_PATH}) +endif() + +message("CIL VERSION " ${CIL_VERSION}) + +# set the Python variables for the Conda environment +include(FindAnacondaEnvironment.cmake) +findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH}) + +message("Python found " ${PYTHON_VERSION_STRING}) +message("Python found Major " ${PYTHON_VERSION_MAJOR}) +message("Python found Minor " ${PYTHON_VERSION_MINOR}) + +findPythonPackagesPath() +message("PYTHON_PACKAGES_FOUND " ${PYTHON_PACKAGES_PATH}) + +## CACHE SOME VARIABLES ## +set (CONDA_ENVIRONMENT ${CONDA_ENVIRONMENT} CACHE INTERNAL "active conda environment" FORCE) +set (CONDA_ENVIRONMENT_PATH ${CONDA_ENVIRONMENT_PATH} CACHE INTERNAL "active conda environment" FORCE) + +set (PYTHON_VERSION_STRING ${PYTHON_VERSION_STRING} CACHE INTERNAL "conda environment Python version string" FORCE) +set (PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "conda environment Python version major" FORCE) +set (PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "conda environment Python version minor" FORCE) +set (PYTHON_VERSION_PATCH ${PYTHON_VERSION_PATCH} CACHE INTERNAL "conda environment Python version patch" FORCE) +set (PYTHON_PACKAGES_PATH ${PYTHON_PACKAGES_PATH} CACHE INTERNAL "conda environment Python packages path" FORCE) + +if (WIN32) + #set (CONDA_ENVIRONMENT_PATH "C:\\Apps\\Miniconda2\\envs\\${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") + set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}\\Library" CACHE PATH "env dir") + set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}\\include" CACHE PATH "env dir") +elseif (UNIX) + #set (CONDA_ENVIRONMENT_PATH "/apps/anaconda/2.4/envs/${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") + set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}/lib/python${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}" CACHE PATH "env dir") + set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}/include" CACHE PATH "env dir") +endif() + +######### CONFIGURE REGULARIZER PACKAGE ############# + +# copy the Pyhon files of the package regularizer +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging/) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi) +# regularizers +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/Regularizer.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) + +# Copy and configure the relative conda build and recipes +configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py) +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) + +if (WIN32) + + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile.bat) + +elseif(UNIX) + + message ("We are on UNIX") + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) + # assumes we will use bash + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile.sh) + +endif() + +########## CONFIGURE FISTA RECONSTRUCTOR PACKAGE +# fista reconstructor +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) + +configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py) +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) + +if (WIN32) + + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.bat) + +elseif(UNIX) + message ("We are on UNIX") + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) + # assumes we will use bash + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.sh) +endif() + +############################# TARGETS + +########################## REGULARIZER PACKAGE ############################### + +# runs cmake on the build tree to update the code from source +add_custom_target(update_code + COMMAND ${CMAKE_COMMAND} + ARGS ${CMAKE_SOURCE_DIR} + WORKING_DIRECTORY ${CMAKE_BINARY_DIR} + ) + + +add_custom_target(fista + COMMAND bash + compile-fista.sh + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + DEPENDS ${update_code} + ) + +add_custom_target(regularizers + COMMAND bash + compile.sh + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + DEPENDS update_code + ) + +add_custom_target(install-fista + COMMAND conda + install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + ) + +add_custom_target(install-regularizers + COMMAND conda + install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + ) +### add tests + +#add_executable(RegularizersTest ) +#find_package(tiff) +#if (TIFF_FOUND) +# message("LibTIFF Found") +# message("TIFF_INCLUDE_DIR " ${TIFF_INCLUDE_DIR}) +# message("TIFF_LIBRARIES" ${TIFF_LIBRARIES}) +#else() +# message("LibTIFF not found") +#endif() diff --git a/src/Python/FindAnacondaEnvironment.cmake b/src/Python/FindAnacondaEnvironment.cmake new file mode 100644 index 0000000..fa4637a --- /dev/null +++ b/src/Python/FindAnacondaEnvironment.cmake @@ -0,0 +1,149 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# #.rst: +# FindAnacondaEnvironment +# -------------- +# +# Find Python executable and library for a specific Anaconda environment +# +# This module finds the Python interpreter for a specific Anaconda enviroment, +# if installed and determines where the include files and libraries are. +# This code sets the following variables: +# +# :: +# PYTHONINTERP_FOUND - if the Python interpret has been found +# PYTHON_EXECUTABLE - the Python interpret found +# PYTHON_LIBRARY - path to the python library +# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) +# PYTHON_INCLUDE_DIRS - path to where Python.h is found +# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) +# PYTHON_VERSION_MAJOR - major Python version +# PYTHON_VERSION_MINOR - minor Python version +# PYTHON_VERSION_PATCH - patch Python version + + + +function (findPythonForAnacondaEnvironment env) + if (WIN32) + file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE) + elseif (UNIX) + file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE) + endif() + + + message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE}) + ####### FROM FindPythonInterpr ######## + # determine python version string + if(PYTHON_EXECUTABLE) + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c + "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}") + list(GET _VERSION 0 _PYTHON_VERSION_MAJOR) + list(GET _VERSION 1 _PYTHON_VERSION_MINOR) + list(GET _VERSION 2 _PYTHON_VERSION_PATCH) + if(PYTHON_VERSION_PATCH EQUAL 0) + # it's called "Python 2.7", not "2.7.0" + string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}") + endif() + else() + # sys.version predates sys.version_info, so use that + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}") + string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}") + string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}") + if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)") + set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}") + else() + set(PYTHON_VERSION_PATCH "0") + endif() + else() + # sys.version was first documented for Python 1.5, so assume + # this is older. + set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE) + set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE) + set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE) + set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE) + endif() + endif() + unset(_PYTHON_VERSION_RESULT) + unset(_VERSION) + endif() + ############################################### + + set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE) + set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE) + set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE) + set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE) + set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE) + set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE) + message("My version found " ${PYTHON_VERSION_STRING}) + +endfunction() + + + +set(Python_ADDITIONAL_VERSIONS 3.5) + +find_package(PythonInterp) +if (PYTHONINTERP_FOUND) + + message("Found interpret " ${PYTHON_EXECUTABLE}) + message("Python Library " ${PYTHON_LIBRARY}) + message("Python Include Dir " ${PYTHON_INCLUDE_DIR}) + message("Python Include Path " ${PYTHON_INCLUDE_PATH}) + + foreach(pv ${PYTHON_VERSION_STRING}) + message("Found interpret " ${pv}) + endforeach() +endif() + + + +find_package(PythonLibs) +if (PYTHONLIB_FOUND) + message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES}) + message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH}) + message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS}) + message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} ) +else() + message("No PythonLibs Found") +endif() + + + + +function(findPythonPackagesPath) + execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())" + RESULT_VARIABLE PYTHON_CVPY_PROCESS + OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH + OUTPUT_STRIP_TRAILING_WHITESPACE) + #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH}) + if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages") + set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages") + endif() + + SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE) + +endfunction() + + diff --git a/src/Python/Matlab2Python_utils.cpp b/src/Python/Matlab2Python_utils.cpp new file mode 100644 index 0000000..ee76bc7 --- /dev/null +++ b/src/Python/Matlab2Python_utils.cpp @@ -0,0 +1,276 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + +#include <iostream> +#include <cmath> + +#include <boost/python.hpp> +#include <boost/python/numpy.hpp> +#include "boost/tuple/tuple.hpp" + +#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) +#include <windows.h> +// this trick only if compiler is MSVC +__if_not_exists(uint8_t) { typedef __int8 uint8_t; } +__if_not_exists(uint16_t) { typedef __int8 uint16_t; } +#endif + +namespace bp = boost::python; +namespace np = boost::python::numpy; + +/*! in the Matlab implementation this is called as +void mexFunction( +int nlhs, mxArray *plhs[], +int nrhs, const mxArray *prhs[]) +where: +prhs Array of pointers to the INPUT mxArrays +nrhs int number of INPUT mxArrays + +nlhs Array of pointers to the OUTPUT mxArrays +plhs int number of OUTPUT mxArrays + +*********************************************************** + +*********************************************************** +double mxGetScalar(const mxArray *pm); +args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. +Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. +*********************************************************** +char *mxArrayToString(const mxArray *array_ptr); +args: array_ptr Pointer to mxCHAR array. +Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. +Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. +*********************************************************** +mxClassID mxGetClassID(const mxArray *pm); +args: pm Pointer to an mxArray +Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, +mxGetClassId returns a unique value identifying the class of the array contents. +Use mxIsClass to determine whether an array is of a specific user-defined type. + +mxClassID Value MATLAB Type MEX Type C Primitive Type +mxINT8_CLASS int8 int8_T char, byte +mxUINT8_CLASS uint8 uint8_T unsigned char, byte +mxINT16_CLASS int16 int16_T short +mxUINT16_CLASS uint16 uint16_T unsigned short +mxINT32_CLASS int32 int32_T int +mxUINT32_CLASS uint32 uint32_T unsigned int +mxINT64_CLASS int64 int64_T long long +mxUINT64_CLASS uint64 uint64_T unsigned long long +mxSINGLE_CLASS single float float +mxDOUBLE_CLASS double double double + +**************************************************************** +double *mxGetPr(const mxArray *pm); +args: pm Pointer to an mxArray of type double +Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. +**************************************************************** +mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, +mxClassID classid, mxComplexity ComplexFlag); +args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. +dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. +For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. +classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. +For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. +ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). +Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). +If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not +enough free heap space to create the mxArray. +*/ + +void mexErrMessageText(char* text) { + std::cerr << text << std::endl; +} + +/* +double mxGetScalar(const mxArray *pm); +args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. +Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. +*/ + +template<typename T> +double mxGetScalar(const np::ndarray plh) { + return (double)bp::extract<T>(plh[0]); +} + + + +template<typename T> +T * mxGetData(const np::ndarray pm) { + //args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. + //Returns: Pointer to the value of the first real(nonimaginary) element of the mxArray.In C, mxGetScalar returns a double. + /*Access the numpy array pointer: + char * get_data() const; + Returns: Array’s raw data pointer as a char + Note: This returns char so stride math works properly on it.User will have to reinterpret_cast it. + probably this would work. + A = reinterpret_cast<float *>(prhs[0]); + */ + //return reinterpret_cast<T *>(prhs[0]); +} + +template<typename T> +np::ndarray zeros(int dims , int * dim_array, T el) { + bp::tuple shape; + if (dims == 3) + shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + else if (dims == 2) + shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<T>(); + np::ndarray zz = np::zeros(shape, dtype); + return zz; +} + + +bp::list mexFunction( np::ndarray input ) { + int number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + /**************************************************************************/ + np::ndarray zz = zeros(3, dim_array, (int)0); + np::ndarray fzz = zeros(3, dim_array, (float)0); + /**************************************************************************/ + + int * A = reinterpret_cast<int *>( input.get_data() ); + int * B = reinterpret_cast<int *>( zz.get_data() ); + float * C = reinterpret_cast<float *>(fzz.get_data()); + + //Copy data and cast + for (int i = 0; i < dim_array[0]; i++) { + for (int j = 0; j < dim_array[1]; j++) { + for (int k = 0; k < dim_array[2]; k++) { + int index = k + dim_array[2] * j + dim_array[2] * dim_array[1] * i; + int val = (*(A + index)); + float fval = sqrt((float)val); + std::memcpy(B + index , &val, sizeof(int)); + std::memcpy(C + index , &fval, sizeof(float)); + } + } + } + + + bp::list result; + + result.append<int>(number_of_dims); + result.append<int>(dim_array[0]); + result.append<int>(dim_array[1]); + result.append<int>(dim_array[2]); + result.append<np::ndarray>(zz); + result.append<np::ndarray>(fzz); + + //result.append<bp::tuple>(tup); + return result; + +} +bp::list doSomething(np::ndarray input, PyObject *pyobj , PyObject *pyobj2) { + + boost::python::object output(boost::python::handle<>(boost::python::borrowed(pyobj))); + int isOutput = !(output == boost::python::api::object()); + + boost::python::object calculate(boost::python::handle<>(boost::python::borrowed(pyobj2))); + int isCalculate = !(calculate == boost::python::api::object()); + + int number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + /**************************************************************************/ + np::ndarray zz = zeros(3, dim_array, (int)0); + np::ndarray fzz = zeros(3, dim_array, (float)0); + /**************************************************************************/ + + int * A = reinterpret_cast<int *>(input.get_data()); + int * B = reinterpret_cast<int *>(zz.get_data()); + float * C = reinterpret_cast<float *>(fzz.get_data()); + + //Copy data and cast + for (int i = 0; i < dim_array[0]; i++) { + for (int j = 0; j < dim_array[1]; j++) { + for (int k = 0; k < dim_array[2]; k++) { + int index = k + dim_array[2] * j + dim_array[2] * dim_array[1] * i; + int val = (*(A + index)); + float fval = sqrt((float)val); + std::memcpy(B + index, &val, sizeof(int)); + std::memcpy(C + index, &fval, sizeof(float)); + // if the PyObj is not None evaluate the function + if (isOutput) + output(fval); + if (isCalculate) { + float nfval = (float)bp::extract<float>(calculate(val)); + if (isOutput) + output(nfval); + std::memcpy(C + index, &nfval, sizeof(float)); + } + } + } + } + + + bp::list result; + + result.append<int>(number_of_dims); + result.append<int>(dim_array[0]); + result.append<int>(dim_array[1]); + result.append<int>(dim_array[2]); + result.append<np::ndarray>(zz); + result.append<np::ndarray>(fzz); + + //result.append<bp::tuple>(tup); + return result; + +} + + +BOOST_PYTHON_MODULE(prova) +{ + np::initialize(); + + //To specify that this module is a package + bp::object package = bp::scope(); + package.attr("__path__") = "prova"; + + np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); + np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); + + //import_array(); + //numpy_boost_python_register_type<float, 1>(); + //numpy_boost_python_register_type<float, 2>(); + //numpy_boost_python_register_type<float, 3>(); + //numpy_boost_python_register_type<double, 3>(); + def("mexFunction", mexFunction); + def("doSomething", doSomething); +} diff --git a/src/Python/Regularizer.py b/src/Python/Regularizer.py new file mode 100644 index 0000000..15dbbb4 --- /dev/null +++ b/src/Python/Regularizer.py @@ -0,0 +1,322 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Aug 8 14:26:00 2017 + +@author: ofn77899 +""" + +import regularizers +import numpy as np +from enum import Enum +import timeit + +class Regularizer(): + '''Class to handle regularizer algorithms to be used during reconstruction + + Currently 5 CPU (OMP) regularization algorithms are available: + + 1) SplitBregman_TV + 2) FGP_TV + 3) LLT_model + 4) PatchBased_Regul + 5) TGV_PD + + Usage: + the regularizer can be invoked as object or as static method + Depending on the actual regularizer the input parameter may vary, and + a different default setting is defined. + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + + out = reg(input=u0, regularization_parameter=10., number_of_iterations=30, + tolerance_constant=1e-4, + TV_Penalty=Regularizer.TotalVariationPenalty.l1) + + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., + number_of_iterations=30, tolerance_constant=1e-4, + TV_Penalty=Regularizer.TotalVariationPenalty.l1) + + A number of optional parameters can be passed or skipped + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + + ''' + class Algorithm(Enum): + SplitBregman_TV = regularizers.SplitBregman_TV + FGP_TV = regularizers.FGP_TV + LLT_model = regularizers.LLT_model + PatchBased_Regul = regularizers.PatchBased_Regul + TGV_PD = regularizers.TGV_PD + # Algorithm + + class TotalVariationPenalty(Enum): + isotropic = 0 + l1 = 1 + # TotalVariationPenalty + + def __init__(self , algorithm, debug = True): + self.setAlgorithm ( algorithm ) + self.debug = debug + # __init__ + + def setAlgorithm(self, algorithm): + self.algorithm = algorithm + self.pars = self.getDefaultParsForAlgorithm(algorithm) + # setAlgorithm + + def getDefaultParsForAlgorithm(self, algorithm): + pars = dict() + + if algorithm == Regularizer.Algorithm.SplitBregman_TV : + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['number_of_iterations'] = 35 + pars['tolerance_constant'] = 0.0001 + pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic + + elif algorithm == Regularizer.Algorithm.FGP_TV : + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['number_of_iterations'] = 50 + pars['tolerance_constant'] = 0.001 + pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic + + elif algorithm == Regularizer.Algorithm.LLT_model: + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['time_step'] = None + pars['number_of_iterations'] = None + pars['tolerance_constant'] = None + pars['restrictive_Z_smoothing'] = 0 + + elif algorithm == Regularizer.Algorithm.PatchBased_Regul: + pars['algorithm'] = algorithm + pars['input'] = None + pars['searching_window_ratio'] = None + pars['similarity_window_ratio'] = None + pars['PB_filtering_parameter'] = None + pars['regularization_parameter'] = None + + elif algorithm == Regularizer.Algorithm.TGV_PD: + pars['algorithm'] = algorithm + pars['input'] = None + pars['first_order_term'] = None + pars['second_order_term'] = None + pars['number_of_iterations'] = None + pars['regularization_parameter'] = None + + else: + raise Exception('Unknown regularizer algorithm') + + return pars + # parsForAlgorithm + + def setParameter(self, **kwargs): + '''set named parameter for the regularization engine + + raises Exception if the named parameter is not recognized + Typical usage is: + + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + + it can be also used as + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + reg.setParameter(input=u0 , regularization_parameter=10.) + ''' + + for key , value in kwargs.items(): + if key in self.pars.keys(): + self.pars[key] = value + else: + raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) + # setParameter + + def getParameter(self, **kwargs): + ret = {} + for key , value in kwargs.items(): + if key in self.pars.keys(): + ret[key] = self.pars[key] + else: + raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) + # setParameter + + + def __call__(self, input = None, regularization_parameter = None, **kwargs): + '''Actual call for the regularizer. + + One can either set the regularization parameters first and then call the + algorithm or set the regularization parameter during the call (as + is done in the static methods). + ''' + + if kwargs is not None: + for key, value in kwargs.items(): + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + if input is not None: + self.pars['input'] = input + if regularization_parameter is not None: + self.pars['regularization_parameter'] = regularization_parameter + + if self.debug: + print ("--------------------------------------------------") + for key, value in self.pars.items(): + if key== 'algorithm' : + print("{0} = {1}".format(key, value.__name__)) + elif key == 'input': + print("{0} = {1}".format(key, np.shape(value))) + else: + print("{0} = {1}".format(key, value)) + + + if None in self.pars: + raise Exception("Not all parameters have been provided") + + input = self.pars['input'] + regularization_parameter = self.pars['regularization_parameter'] + if self.algorithm == Regularizer.Algorithm.SplitBregman_TV : + return self.algorithm(input, regularization_parameter, + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['TV_penalty'].value ) + elif self.algorithm == Regularizer.Algorithm.FGP_TV : + return self.algorithm(input, regularization_parameter, + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['TV_penalty'].value ) + elif self.algorithm == Regularizer.Algorithm.LLT_model : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + return self.algorithm(input, + regularization_parameter, + self.pars['time_step'] , + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['restrictive_Z_smoothing'] ) + elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + return self.algorithm(input, regularization_parameter, + self.pars['searching_window_ratio'] , + self.pars['similarity_window_ratio'] , + self.pars['PB_filtering_parameter']) + elif self.algorithm == Regularizer.Algorithm.TGV_PD : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + if len(np.shape(input)) == 2: + return self.algorithm(input, regularization_parameter, + self.pars['first_order_term'] , + self.pars['second_order_term'] , + self.pars['number_of_iterations']) + elif len(np.shape(input)) == 3: + #assuming it's 3D + # run independent calls on each slice + out3d = input.copy() + for i in range(np.shape(input)[2]): + out = self.algorithm(input, regularization_parameter, + self.pars['first_order_term'] , + self.pars['second_order_term'] , + self.pars['number_of_iterations']) + # copy the result in the 3D image + out3d.T[i] = out[0].copy() + # append the rest of the info that the algorithm returns + output = [out3d] + for i in range(1,len(out)): + output.append(out[i]) + return output + + + + + + # __call__ + + @staticmethod + def SplitBregman_TV(input, regularization_parameter , **kwargs): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + out = list( reg(input, regularization_parameter, **kwargs) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def FGP_TV(input, regularization_parameter , **kwargs): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.FGP_TV) + out = list( reg(input, regularization_parameter, **kwargs) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def LLT_model(input, regularization_parameter , time_step, number_of_iterations, + tolerance_constant, restrictive_Z_smoothing=0): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.LLT_model) + out = list( reg(input, regularization_parameter, time_step=time_step, + number_of_iterations=number_of_iterations, + tolerance_constant=tolerance_constant, + restrictive_Z_smoothing=restrictive_Z_smoothing) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def PatchBased_Regul(input, regularization_parameter, + searching_window_ratio, + similarity_window_ratio, + PB_filtering_parameter): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul) + out = list( reg(input, + regularization_parameter, + searching_window_ratio=searching_window_ratio, + similarity_window_ratio=similarity_window_ratio, + PB_filtering_parameter=PB_filtering_parameter ) + ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def TGV_PD(input, regularization_parameter , first_order_term, + second_order_term, number_of_iterations): + start_time = timeit.default_timer() + + reg = Regularizer(Regularizer.Algorithm.TGV_PD) + out = list( reg(input, regularization_parameter, + first_order_term=first_order_term, + second_order_term=second_order_term, + number_of_iterations=number_of_iterations) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + + return out + + def printParametersToString(self): + txt = r'' + for key, value in self.pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt + diff --git a/src/Python/ccpi/__init__.py b/src/Python/ccpi/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/Python/ccpi/__init__.py diff --git a/src/Python/ccpi/imaging/Regularizer.py b/src/Python/ccpi/imaging/Regularizer.py new file mode 100644 index 0000000..fb9ae08 --- /dev/null +++ b/src/Python/ccpi/imaging/Regularizer.py @@ -0,0 +1,322 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Aug 8 14:26:00 2017 + +@author: ofn77899 +""" + +from ccpi.imaging import cpu_regularizers +import numpy as np +from enum import Enum +import timeit + +class Regularizer(): + '''Class to handle regularizer algorithms to be used during reconstruction + + Currently 5 CPU (OMP) regularization algorithms are available: + + 1) SplitBregman_TV + 2) FGP_TV + 3) LLT_model + 4) PatchBased_Regul + 5) TGV_PD + + Usage: + the regularizer can be invoked as object or as static method + Depending on the actual regularizer the input parameter may vary, and + a different default setting is defined. + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + + out = reg(input=u0, regularization_parameter=10., number_of_iterations=30, + tolerance_constant=1e-4, + TV_Penalty=Regularizer.TotalVariationPenalty.l1) + + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., + number_of_iterations=30, tolerance_constant=1e-4, + TV_Penalty=Regularizer.TotalVariationPenalty.l1) + + A number of optional parameters can be passed or skipped + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + + ''' + class Algorithm(Enum): + SplitBregman_TV = cpu_regularizers.SplitBregman_TV + FGP_TV = cpu_regularizers.FGP_TV + LLT_model = cpu_regularizers.LLT_model + PatchBased_Regul = cpu_regularizers.PatchBased_Regul + TGV_PD = cpu_regularizers.TGV_PD + # Algorithm + + class TotalVariationPenalty(Enum): + isotropic = 0 + l1 = 1 + # TotalVariationPenalty + + def __init__(self , algorithm, debug = True): + self.setAlgorithm ( algorithm ) + self.debug = debug + # __init__ + + def setAlgorithm(self, algorithm): + self.algorithm = algorithm + self.pars = self.getDefaultParsForAlgorithm(algorithm) + # setAlgorithm + + def getDefaultParsForAlgorithm(self, algorithm): + pars = dict() + + if algorithm == Regularizer.Algorithm.SplitBregman_TV : + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['number_of_iterations'] = 35 + pars['tolerance_constant'] = 0.0001 + pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic + + elif algorithm == Regularizer.Algorithm.FGP_TV : + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['number_of_iterations'] = 50 + pars['tolerance_constant'] = 0.001 + pars['TV_penalty'] = Regularizer.TotalVariationPenalty.isotropic + + elif algorithm == Regularizer.Algorithm.LLT_model: + pars['algorithm'] = algorithm + pars['input'] = None + pars['regularization_parameter'] = None + pars['time_step'] = None + pars['number_of_iterations'] = None + pars['tolerance_constant'] = None + pars['restrictive_Z_smoothing'] = 0 + + elif algorithm == Regularizer.Algorithm.PatchBased_Regul: + pars['algorithm'] = algorithm + pars['input'] = None + pars['searching_window_ratio'] = None + pars['similarity_window_ratio'] = None + pars['PB_filtering_parameter'] = None + pars['regularization_parameter'] = None + + elif algorithm == Regularizer.Algorithm.TGV_PD: + pars['algorithm'] = algorithm + pars['input'] = None + pars['first_order_term'] = None + pars['second_order_term'] = None + pars['number_of_iterations'] = None + pars['regularization_parameter'] = None + + else: + raise Exception('Unknown regularizer algorithm') + + return pars + # parsForAlgorithm + + def setParameter(self, **kwargs): + '''set named parameter for the regularization engine + + raises Exception if the named parameter is not recognized + Typical usage is: + + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + + it can be also used as + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + reg.setParameter(input=u0 , regularization_parameter=10.) + ''' + + for key , value in kwargs.items(): + if key in self.pars.keys(): + self.pars[key] = value + else: + raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) + # setParameter + + def getParameter(self, **kwargs): + ret = {} + for key , value in kwargs.items(): + if key in self.pars.keys(): + ret[key] = self.pars[key] + else: + raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key)) + # setParameter + + + def __call__(self, input = None, regularization_parameter = None, **kwargs): + '''Actual call for the regularizer. + + One can either set the regularization parameters first and then call the + algorithm or set the regularization parameter during the call (as + is done in the static methods). + ''' + + if kwargs is not None: + for key, value in kwargs.items(): + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + if input is not None: + self.pars['input'] = input + if regularization_parameter is not None: + self.pars['regularization_parameter'] = regularization_parameter + + if self.debug: + print ("--------------------------------------------------") + for key, value in self.pars.items(): + if key== 'algorithm' : + print("{0} = {1}".format(key, value.__name__)) + elif key == 'input': + print("{0} = {1}".format(key, np.shape(value))) + else: + print("{0} = {1}".format(key, value)) + + + if None in self.pars: + raise Exception("Not all parameters have been provided") + + input = self.pars['input'] + regularization_parameter = self.pars['regularization_parameter'] + if self.algorithm == Regularizer.Algorithm.SplitBregman_TV : + return self.algorithm(input, regularization_parameter, + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['TV_penalty'].value ) + elif self.algorithm == Regularizer.Algorithm.FGP_TV : + return self.algorithm(input, regularization_parameter, + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['TV_penalty'].value ) + elif self.algorithm == Regularizer.Algorithm.LLT_model : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + return self.algorithm(input, + regularization_parameter, + self.pars['time_step'] , + self.pars['number_of_iterations'], + self.pars['tolerance_constant'], + self.pars['restrictive_Z_smoothing'] ) + elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + return self.algorithm(input, regularization_parameter, + self.pars['searching_window_ratio'] , + self.pars['similarity_window_ratio'] , + self.pars['PB_filtering_parameter']) + elif self.algorithm == Regularizer.Algorithm.TGV_PD : + #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) + # no default + if len(np.shape(input)) == 2: + return self.algorithm(input, regularization_parameter, + self.pars['first_order_term'] , + self.pars['second_order_term'] , + self.pars['number_of_iterations']) + elif len(np.shape(input)) == 3: + #assuming it's 3D + # run independent calls on each slice + out3d = input.copy() + for i in range(np.shape(input)[2]): + out = self.algorithm(input, regularization_parameter, + self.pars['first_order_term'] , + self.pars['second_order_term'] , + self.pars['number_of_iterations']) + # copy the result in the 3D image + out3d.T[i] = out[0].copy() + # append the rest of the info that the algorithm returns + output = [out3d] + for i in range(1,len(out)): + output.append(out[i]) + return output + + + + + + # __call__ + + @staticmethod + def SplitBregman_TV(input, regularization_parameter , **kwargs): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + out = list( reg(input, regularization_parameter, **kwargs) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def FGP_TV(input, regularization_parameter , **kwargs): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.FGP_TV) + out = list( reg(input, regularization_parameter, **kwargs) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def LLT_model(input, regularization_parameter , time_step, number_of_iterations, + tolerance_constant, restrictive_Z_smoothing=0): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.LLT_model) + out = list( reg(input, regularization_parameter, time_step=time_step, + number_of_iterations=number_of_iterations, + tolerance_constant=tolerance_constant, + restrictive_Z_smoothing=restrictive_Z_smoothing) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def PatchBased_Regul(input, regularization_parameter, + searching_window_ratio, + similarity_window_ratio, + PB_filtering_parameter): + start_time = timeit.default_timer() + reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul) + out = list( reg(input, + regularization_parameter, + searching_window_ratio=searching_window_ratio, + similarity_window_ratio=similarity_window_ratio, + PB_filtering_parameter=PB_filtering_parameter ) + ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + return out + + @staticmethod + def TGV_PD(input, regularization_parameter , first_order_term, + second_order_term, number_of_iterations): + start_time = timeit.default_timer() + + reg = Regularizer(Regularizer.Algorithm.TGV_PD) + out = list( reg(input, regularization_parameter, + first_order_term=first_order_term, + second_order_term=second_order_term, + number_of_iterations=number_of_iterations) ) + out.append(reg.pars) + txt = reg.printParametersToString() + txt += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + out.append(txt) + + return out + + def printParametersToString(self): + txt = r'' + for key, value in self.pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt + diff --git a/src/Python/ccpi/imaging/__init__.py b/src/Python/ccpi/imaging/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/Python/ccpi/imaging/__init__.py diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py new file mode 100644 index 0000000..c903712 --- /dev/null +++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py @@ -0,0 +1,612 @@ +# -*- coding: utf-8 -*- +############################################################################### +#This work is part of the Core Imaging Library developed by +#Visual Analytics and Imaging System Group of the Science Technology +#Facilities Council, STFC +# +#Copyright 2017 Edoardo Pasca, Srikanth Nagella +#Copyright 2017 Daniil Kazantsev +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +#http://www.apache.org/licenses/LICENSE-2.0 +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +############################################################################### + + + +import numpy +#from ccpi.reconstruction.parallelbeam import alg + +#from ccpi.imaging.Regularizer import Regularizer +from enum import Enum + +import astra + + + +class FISTAReconstructor(): + '''FISTA-based reconstruction algorithm using ASTRA-toolbox + + ''' + # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> + # ___Input___: + # params.[] file: + # - .proj_geom (geometry of the projector) [required] + # - .vol_geom (geometry of the reconstructed object) [required] + # - .sino (vectorized in 2D or 3D sinogram) [required] + # - .iterFISTA (iterations for the main loop, default 40) + # - .L_const (Lipschitz constant, default Power method) ) + # - .X_ideal (ideal image, if given) + # - .weights (statisitcal weights, size of the sinogram) + # - .ROI (Region-of-interest, only if X_ideal is given) + # - .initialize (a 'warm start' using SIRT method from ASTRA) + #----------------Regularization choices------------------------ + # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) + # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) + # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) + # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) + # - .Regul_Iterations (iterations for the selected penalty, default 25) + # - .Regul_tauLLT (time step parameter for LLT term) + # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) + # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) + #----------------Visualization parameters------------------------ + # - .show (visualize reconstruction 1/0, (0 default)) + # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) + # - .slice (for 3D volumes - slice number to imshow) + # ___Output___: + # 1. X - reconstructed image/volume + # 2. output - a structure with + # - .Resid_error - residual error (if X_ideal is given) + # - .objective: value of the objective function + # - .L_const: Lipshitz constant to avoid recalculations + + # References: + # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse + # Problems" by A. Beck and M Teboulle + # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo + # 3. "A novel tomographic reconstruction method based on the robust + # Student's t function for suppressing data outliers" D. Kazantsev et.al. + # D. Kazantsev, 2016-17 + def __init__(self, projector_geometry, output_geometry, input_sinogram, + **kwargs): + # handle parmeters: + # obligatory parameters + self.pars = dict() + self.pars['projector_geometry'] = projector_geometry # proj_geom + self.pars['output_geometry'] = output_geometry # vol_geom + self.pars['input_sinogram'] = input_sinogram # sino + sliceZ, nangles, detectors = numpy.shape(input_sinogram) + self.pars['detectors'] = detectors + self.pars['number_of_angles'] = nangles + self.pars['SlicesZ'] = sliceZ + self.pars['output_volume'] = None + + print (self.pars) + # handle optional input parameters (at instantiation) + + # Accepted input keywords + kw = ( + # mandatory fields + 'projector_geometry', + 'output_geometry', + 'input_sinogram', + 'detectors', + 'number_of_angles', + 'SlicesZ', + # optional fields + 'number_of_iterations', + 'Lipschitz_constant' , + 'ideal_image' , + 'weights' , + 'region_of_interest' , + 'initialize' , + 'regularizer' , + 'ring_lambda_R_L1', + 'ring_alpha', + 'subsets', + 'output_volume', + 'os_subsets', + 'os_indices', + 'os_bins') + self.acceptedInputKeywords = list(kw) + + # handle keyworded parameters + if kwargs is not None: + for key, value in kwargs.items(): + if key in kw: + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + # set the default values for the parameters if not set + if 'number_of_iterations' in kwargs.keys(): + self.pars['number_of_iterations'] = kwargs['number_of_iterations'] + else: + self.pars['number_of_iterations'] = 40 + if 'weights' in kwargs.keys(): + self.pars['weights'] = kwargs['weights'] + else: + self.pars['weights'] = \ + numpy.ones(numpy.shape( + self.pars['input_sinogram'])) + if 'Lipschitz_constant' in kwargs.keys(): + self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] + else: + self.pars['Lipschitz_constant'] = None + + if not 'ideal_image' in kwargs.keys(): + self.pars['ideal_image'] = None + + if not 'region_of_interest'in kwargs.keys() : + if self.pars['ideal_image'] == None: + self.pars['region_of_interest'] = None + else: + ## nonzero if the image is larger than m + fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1) + + self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0) + + # the regularizer must be a correctly instantiated object + if not 'regularizer' in kwargs.keys() : + self.pars['regularizer'] = None + + #RING REMOVAL + if not 'ring_lambda_R_L1' in kwargs.keys(): + self.pars['ring_lambda_R_L1'] = 0 + if not 'ring_alpha' in kwargs.keys(): + self.pars['ring_alpha'] = 1 + + # ORDERED SUBSET + if not 'subsets' in kwargs.keys(): + self.pars['subsets'] = 0 + else: + self.createOrderedSubsets() + + if not 'initialize' in kwargs.keys(): + self.pars['initialize'] = False + + + + + def setParameter(self, **kwargs): + '''set named parameter for the reconstructor engine + + raises Exception if the named parameter is not recognized + + ''' + for key , value in kwargs.items(): + if key in self.acceptedInputKeywords: + self.pars[key] = value + else: + raise Exception('Wrong parameter {0} for '.format(key) + + 'reconstructor') + # setParameter + + def getParameter(self, key): + if type(key) is str: + if key in self.acceptedInputKeywords: + return self.pars[key] + else: + raise Exception('Unrecongnised parameter: {0} '.format(key) ) + elif type(key) is list: + outpars = [] + for k in key: + outpars.append(self.getParameter(k)) + return outpars + else: + raise Exception('Unhandled input {0}' .format(str(type(key)))) + + + def calculateLipschitzConstantWithPowerMethod(self): + ''' using Power method (PM) to establish L constant''' + + N = self.pars['output_geometry']['GridColCount'] + proj_geom = self.pars['projector_geometry'] + vol_geom = self.pars['output_geometry'] + weights = self.pars['weights'] + SlicesZ = self.pars['SlicesZ'] + + + + if (proj_geom['type'] == 'parallel') or \ + (proj_geom['type'] == 'parallel3d'): + #% for parallel geometry we can do just one slice + #print('Calculating Lipshitz constant for parallel beam geometry...') + niter = 5;# % number of iteration for the PM + #N = params.vol_geom.GridColCount; + #x1 = rand(N,N,1); + x1 = numpy.random.rand(1,N,N) + #sqweight = sqrt(weights(:,:,1)); + sqweight = numpy.sqrt(weights[0]) + proj_geomT = proj_geom.copy(); + proj_geomT['DetectorRowCount'] = 1; + vol_geomT = vol_geom.copy(); + vol_geomT['GridSliceCount'] = 1; + + #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + + + for i in range(niter): + # [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT); + # s = norm(x1(:)); + # x1 = x1/s; + # [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + # y = sqweight.*y; + # astra_mex_data3d('delete', sino_id); + # astra_mex_data3d('delete', id); + #print ("iteration {0}".format(i)) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geomT, + vol_geomT) + + y = (sqweight * y).copy() # element wise multiplication + + #b=fig.add_subplot(2,1,2) + #imgplot = plt.imshow(x1[0]) + #plt.show() + + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id) + del x1 + + idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(), + proj_geomT, + vol_geomT) + del y + + + s = numpy.linalg.norm(x1) + ### this line? + x1 = (x1/s).copy(); + + # ### this line? + # sino_id, y = astra.creators.create_sino3d_gpu(x1, + # proj_geomT, + # vol_geomT); + # y = sqweight * y; + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx) + print ("iteration {0} s= {1}".format(i,s)) + + #end + del proj_geomT + del vol_geomT + #plt.show() + else: + #% divergen beam geometry + print('Calculating Lipshitz constant for divergen beam geometry...') + niter = 8; #% number of iteration for PM + x1 = numpy.random.rand(SlicesZ , N , N); + #sqweight = sqrt(weights); + sqweight = numpy.sqrt(weights[0]) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id); + + for i in range(niter): + #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, + proj_geom, + vol_geom) + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geom, + vol_geom); + + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + #astra_mex_data3d('delete', id); + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + #clear x1 + del x1 + + + return s + + + def setRegularizer(self, regularizer): + if regularizer is not None: + self.pars['regularizer'] = regularizer + + + def initialize(self): + # convenience variable storage + proj_geom = self.pars['projector_geometry'] + vol_geom = self.pars['output_geometry'] + sino = self.pars['input_sinogram'] + + # a 'warm start' with SIRT method + # Create a data object for the reconstruction + rec_id = astra.matlab.data3d('create', '-vol', + vol_geom); + + #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino); + sinogram_id = astra.matlab.data3d('create', '-proj3d', + proj_geom, + sino) + + sirt_config = astra.astra_dict('SIRT3D_CUDA') + sirt_config['ReconstructionDataId' ] = rec_id + sirt_config['ProjectionDataId'] = sinogram_id + + sirt = astra.algorithm.create(sirt_config) + astra.algorithm.run(sirt, iterations=35) + X = astra.matlab.data3d('get', rec_id) + + # clean up memory + astra.matlab.data3d('delete', rec_id) + astra.matlab.data3d('delete', sinogram_id) + astra.algorithm.delete(sirt) + + + + return X + + def createOrderedSubsets(self, subsets=None): + if subsets is None: + try: + subsets = self.getParameter('subsets') + except Exception(): + subsets = 0 + #return subsets + else: + self.setParameter(subsets=subsets) + + + angles = self.getParameter('projector_geometry')['ProjectionAngles'] + + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + # store the OS in parameters + self.setParameter(os_subsets=subsets, + os_bins=binsDiscr, + os_indices=IndicesReorg) + + + def prepareForIteration(self): + print ("FISTA Reconstructor: prepare for iteration") + + self.residual_error = numpy.zeros((self.pars['number_of_iterations'])) + self.objective = numpy.zeros((self.pars['number_of_iterations'])) + + #2D array (for 3D data) of sparse "ring" + detectors, nangles, sliceZ = numpy.shape(self.pars['input_sinogram']) + self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float) + # another ring variable + self.r_x = self.r.copy() + + self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram'])) + + if self.getParameter('Lipschitz_constant') is None: + self.pars['Lipschitz_constant'] = \ + self.calculateLipschitzConstantWithPowerMethod() + # errors vector (if the ground truth is given) + self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations'))); + # objective function values vector + self.objective = numpy.zeros((self.getParameter('number_of_iterations'))); + + + # prepareForIteration + + def iterate(self, Xin=None): + print ("FISTA Reconstructor: iterate") + + if Xin is None: + if self.getParameter('initialize'): + X = self.initialize() + else: + N = vol_geom['GridColCount'] + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + # copy by reference + X = Xin + # store the output volume in the parameters + self.setParameter(output_volume=X) + X_t = X.copy() + # convenience variable storage + proj_geom , vol_geom, sino , \ + SlicesZ = self.getParameter([ 'projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ' ]) + + t = 1 + + for i in range(self.getParameter('number_of_iterations')): + X_old = X.copy() + t_old = t + r_old = self.r.copy() + if self.getParameter('projector_geometry')['type'] == 'parallel' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat_vec': + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + for kkk in range(SlicesZ): + sino_id, self.sino_updt[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geomT, vol_geomT) + astra.matlab.data3d('delete', sino_id) + else: + # for divergent 3D geometry (watch the GPU memory overflow in + # ASTRA versions < 1.8) + #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + sino_id, self.sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geom, vol_geom) + + + ## RING REMOVAL + self.ringRemoval(i) + ## Projection/Backprojection Routine + self.projectionBackprojection(X, X_t) + astra.matlab.data3d('delete', sino_id) + ## REGULARIZATION + X = self.regularize(X) + ## Update Loop + X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old) + self.setParameter(output_volume=X) + return X + ## iterate + + def ringRemoval(self, i): + print ("FISTA Reconstructor: ring removal") + residual = self.residual + lambdaR_L1 , alpha_ring , weights , L_const , sino= \ + self.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant', + 'input_sinogram']) + r_x = self.r_x + sino_updt = self.sino_updt + + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(self.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + for kkk in range(anglesNumb): + + residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + self.r = (r_x - (1./L_const) * vec).copy() + self.objective[i] = (0.5 * (residual ** 2).sum()) + + def projectionBackprojection(self, X, X_t): + print ("FISTA Reconstructor: projection-backprojection routine") + + # a few useful variables + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(self.getParameter('input_sinogram')) + residual = self.residual + proj_geom , vol_geom , L_const = \ + self.getParameter(['projector_geometry' , + 'output_geometry', + 'Lipschitz_constant']) + + + if self.getParameter('projector_geometry')['type'] == 'parallel' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat_vec': + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + + X = X_t - (1/L_const) * x_temp + #astra.matlab.data3d('delete', sino_id) + astra.matlab.data3d('delete', x_id) + + def regularize(self, X): + print ("FISTA Reconstructor: regularize") + + regularizer = self.getParameter('regularizer') + if regularizer is not None: + return regularizer(input=X) + else: + return X + + def updateLoop(self, i, X, X_old, r_old, t, t_old): + print ("FISTA Reconstructor: update loop") + lambdaR_L1 = self.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + self.r = numpy.max( + numpy.abs(self.r) - lambdaR_L1 , 0) * \ + numpy.sign(self.r) + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + self.r_x = self.r + \ + (((t_old-1)/t) * (self.r - r_old)) + + if self.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, self.objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], self.objective[i])) + return (X , X_t, t) + + def os_iterate(self, Xin=None): + print ("FISTA Reconstructor: iterate") + + if Xin is None: + if self.getParameter('initialize'): + X = self.initialize() + else: + N = vol_geom['GridColCount'] + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + # copy by reference + X = Xin + # store the output volume in the parameters + self.setParameter(output_volume=X) + X_t = X.copy() + + # some useful constants + proj_geom , vol_geom, sino , \ + SlicesZ, weights , alpha_ring ,\ + lambdaR_L1 , L_const = self.getParameter( + ['projector_geometry' , 'output_geometry', + 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha' , + 'ring_lambda_R_L1', 'Lipschitz_constant']) diff --git a/src/Python/ccpi/reconstruction/Reconstructor.py b/src/Python/ccpi/reconstruction/Reconstructor.py new file mode 100644 index 0000000..ba67327 --- /dev/null +++ b/src/Python/ccpi/reconstruction/Reconstructor.py @@ -0,0 +1,598 @@ +# -*- coding: utf-8 -*- +############################################################################### +#This work is part of the Core Imaging Library developed by +#Visual Analytics and Imaging System Group of the Science Technology +#Facilities Council, STFC +# +#Copyright 2017 Edoardo Pasca, Srikanth Nagella +#Copyright 2017 Daniil Kazantsev +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +#http://www.apache.org/licenses/LICENSE-2.0 +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +############################################################################### + + + +import numpy +import h5py +from ccpi.reconstruction.parallelbeam import alg + +from Regularizer import Regularizer +from enum import Enum + +import astra + + +class Reconstructor: + + class Algorithm(Enum): + CGLS = alg.cgls + CGLS_CONV = alg.cgls_conv + SIRT = alg.sirt + MLEM = alg.mlem + CGLS_TICHONOV = alg.cgls_tikhonov + CGLS_TVREG = alg.cgls_TVreg + FISTA = 'fista' + + def __init__(self, algorithm = None, projection_data = None, + angles = None, center_of_rotation = None , + flat_field = None, dark_field = None, + iterations = None, resolution = None, isLogScale = False, threads = None, + normalized_projection = None): + + self.pars = dict() + self.pars['algorithm'] = algorithm + self.pars['projection_data'] = projection_data + self.pars['normalized_projection'] = normalized_projection + self.pars['angles'] = angles + self.pars['center_of_rotation'] = numpy.double(center_of_rotation) + self.pars['flat_field'] = flat_field + self.pars['iterations'] = iterations + self.pars['dark_field'] = dark_field + self.pars['resolution'] = resolution + self.pars['isLogScale'] = isLogScale + self.pars['threads'] = threads + if (iterations != None): + self.pars['iterationValues'] = numpy.zeros((iterations)) + + if projection_data != None and dark_field != None and flat_field != None: + norm = self.normalize(projection_data, dark_field, flat_field, 0.1) + self.pars['normalized_projection'] = norm + + + def setPars(self, parameters): + keys = ['algorithm','projection_data' ,'normalized_projection', \ + 'angles' , 'center_of_rotation' , 'flat_field', \ + 'iterations','dark_field' , 'resolution', 'isLogScale' , \ + 'threads' , 'iterationValues', 'regularize'] + + for k in keys: + if k not in parameters.keys(): + self.pars[k] = None + else: + self.pars[k] = parameters[k] + + + def sanityCheck(self): + projection_data = self.pars['projection_data'] + dark_field = self.pars['dark_field'] + flat_field = self.pars['flat_field'] + angles = self.pars['angles'] + + if projection_data != None and dark_field != None and \ + angles != None and flat_field != None: + data_shape = numpy.shape(projection_data) + angle_shape = numpy.shape(angles) + + if angle_shape[0] != data_shape[0]: + #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ + # (angle_shape[0] , data_shape[0]) ) + return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ + (angle_shape[0] , data_shape[0]) ) + + if data_shape[1:] != numpy.shape(flat_field): + #raise Exception('Projection and flat field dimensions do not match') + return (False , 'Projection and flat field dimensions do not match') + if data_shape[1:] != numpy.shape(dark_field): + #raise Exception('Projection and dark field dimensions do not match') + return (False , 'Projection and dark field dimensions do not match') + + return (True , '' ) + elif self.pars['normalized_projection'] != None: + data_shape = numpy.shape(self.pars['normalized_projection']) + angle_shape = numpy.shape(angles) + + if angle_shape[0] != data_shape[0]: + #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ + # (angle_shape[0] , data_shape[0]) ) + return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ + (angle_shape[0] , data_shape[0]) ) + else: + return (True , '' ) + else: + return (False , 'Not enough data') + + def reconstruct(self, parameters = None): + if parameters != None: + self.setPars(parameters) + + go , reason = self.sanityCheck() + if go: + return self._reconstruct() + else: + raise Exception(reason) + + + def _reconstruct(self, parameters=None): + if parameters!=None: + self.setPars(parameters) + parameters = self.pars + + if parameters['algorithm'] != None and \ + parameters['normalized_projection'] != None and \ + parameters['angles'] != None and \ + parameters['center_of_rotation'] != None and \ + parameters['iterations'] != None and \ + parameters['resolution'] != None and\ + parameters['threads'] != None and\ + parameters['isLogScale'] != None: + + + if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS, + Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT): + #store parameters + self.pars = parameters + result = parameters['algorithm']( + parameters['normalized_projection'] , + parameters['angles'], + parameters['center_of_rotation'], + parameters['resolution'], + parameters['iterations'], + parameters['threads'] , + parameters['isLogScale'] + ) + return result + elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV, + Reconstructor.Algorithm.CGLS_TICHONOV, + Reconstructor.Algorithm.CGLS_TVREG) : + self.pars = parameters + result = parameters['algorithm']( + parameters['normalized_projection'] , + parameters['angles'], + parameters['center_of_rotation'], + parameters['resolution'], + parameters['iterations'], + parameters['threads'] , + parameters['regularize'], + numpy.zeros((parameters['iterations'])), + parameters['isLogScale'] + ) + + elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA: + pass + + else: + if parameters['projection_data'] != None and \ + parameters['dark_field'] != None and \ + parameters['flat_field'] != None: + norm = self.normalize(parameters['projection_data'], + parameters['dark_field'], + parameters['flat_field'], 0.1) + self.pars['normalized_projection'] = norm + return self._reconstruct(parameters) + + + + def _normalize(self, projection, dark, flat, def_val=0): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 + return c + + def normalize(self, projections, dark, flat, def_val=0): + norm = [self._normalize(projection, dark, flat, def_val) for projection in projections] + return numpy.asarray (norm, dtype=numpy.float32) + + + +class FISTA(): + '''FISTA-based reconstruction algorithm using ASTRA-toolbox + + ''' + # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> + # ___Input___: + # params.[] file: + # - .proj_geom (geometry of the projector) [required] + # - .vol_geom (geometry of the reconstructed object) [required] + # - .sino (vectorized in 2D or 3D sinogram) [required] + # - .iterFISTA (iterations for the main loop, default 40) + # - .L_const (Lipschitz constant, default Power method) ) + # - .X_ideal (ideal image, if given) + # - .weights (statisitcal weights, size of the sinogram) + # - .ROI (Region-of-interest, only if X_ideal is given) + # - .initialize (a 'warm start' using SIRT method from ASTRA) + #----------------Regularization choices------------------------ + # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) + # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) + # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) + # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) + # - .Regul_Iterations (iterations for the selected penalty, default 25) + # - .Regul_tauLLT (time step parameter for LLT term) + # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) + # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) + #----------------Visualization parameters------------------------ + # - .show (visualize reconstruction 1/0, (0 default)) + # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) + # - .slice (for 3D volumes - slice number to imshow) + # ___Output___: + # 1. X - reconstructed image/volume + # 2. output - a structure with + # - .Resid_error - residual error (if X_ideal is given) + # - .objective: value of the objective function + # - .L_const: Lipshitz constant to avoid recalculations + + # References: + # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse + # Problems" by A. Beck and M Teboulle + # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo + # 3. "A novel tomographic reconstruction method based on the robust + # Student's t function for suppressing data outliers" D. Kazantsev et.al. + # D. Kazantsev, 2016-17 + def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs): + self.params = dict() + self.params['projector_geometry'] = projector_geometry + self.params['output_geometry'] = output_geometry + self.params['input_sinogram'] = input_sinogram + detectors, nangles, sliceZ = numpy.shape(input_sinogram) + self.params['detectors'] = detectors + self.params['number_og_angles'] = nangles + self.params['SlicesZ'] = sliceZ + + # Accepted input keywords + kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' , + 'weights' , 'region_of_interest' , 'initialize' , + 'regularizer' , + 'ring_lambda_R_L1', + 'ring_alpha') + + # handle keyworded parameters + if kwargs is not None: + for key, value in kwargs.items(): + if key in kw: + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + # set the default values for the parameters if not set + if 'number_of_iterations' in kwargs.keys(): + self.pars['number_of_iterations'] = kwargs['number_of_iterations'] + else: + self.pars['number_of_iterations'] = 40 + if 'weights' in kwargs.keys(): + self.pars['weights'] = kwargs['weights'] + else: + self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram'])) + if 'Lipschitz_constant' in kwargs.keys(): + self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] + else: + self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod() + + if not self.pars['ideal_image'] in kwargs.keys(): + self.pars['ideal_image'] = None + + if not self.pars['region_of_interest'] : + if self.pars['ideal_image'] == None: + pass + else: + self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0) + + if not self.pars['regularizer'] : + self.pars['regularizer'] = None + else: + # the regularizer must be a correctly instantiated object + if not self.pars['ring_lambda_R_L1']: + self.pars['ring_lambda_R_L1'] = 0 + if not self.pars['ring_alpha']: + self.pars['ring_alpha'] = 1 + + + + + def calculateLipschitzConstantWithPowerMethod(self): + ''' using Power method (PM) to establish L constant''' + + #N = params.vol_geom.GridColCount + N = self.pars['output_geometry'].GridColCount + proj_geom = self.params['projector_geometry'] + vol_geom = self.params['output_geometry'] + weights = self.pars['weights'] + SlicesZ = self.pars['SlicesZ'] + + if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'): + #% for parallel geometry we can do just one slice + #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...'); + niter = 15;# % number of iteration for the PM + #N = params.vol_geom.GridColCount; + #x1 = rand(N,N,1); + x1 = numpy.random.rand(1,N,N) + #sqweight = sqrt(weights(:,:,1)); + sqweight = numpy.sqrt(weights.T[0]) + proj_geomT = proj_geom.copy(); + proj_geomT.DetectorRowCount = 1; + vol_geomT = vol_geom.copy(); + vol_geomT['GridSliceCount'] = 1; + + + for i in range(niter): + if i == 0: + #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT); + y = sqweight * y # element wise multiplication + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id) + + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT); + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + y = sqweight*y; + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + del proj_geomT + del vol_geomT + else + #% divergen beam geometry + #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...'); + niter = 8; #% number of iteration for PM + x1 = numpy.random.rand(SlicesZ , N , N); + #sqweight = sqrt(weights); + sqweight = numpy.sqrt(weights.T[0]) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id); + + for i in range(niter): + #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, + proj_geom, + vol_geom) + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geom, + vol_geom); + + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + #astra_mex_data3d('delete', id); + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + #clear x1 + del x1 + + return s + + + def setRegularizer(self, regularizer): + if regularizer + self.pars['regularizer'] = regularizer + + + + + +def getEntry(location): + for item in nx[location].keys(): + print (item) + + +print ("Loading Data") + +##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif" +####ind = [i * 1049 for i in range(360)] +#### use only 360 images +##images = 200 +##ind = [int(i * 1049 / images) for i in range(images)] +##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None) + +#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs" +fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs" +nx = h5py.File(fname, "r") + +# the data are stored in a particular location in the hdf5 +for item in nx['entry1/tomo_entry/data'].keys(): + print (item) + +data = nx.get('entry1/tomo_entry/data/rotation_angle') +angles = numpy.zeros(data.shape) +data.read_direct(angles) +print (angles) +# angles should be in degrees + +data = nx.get('entry1/tomo_entry/data/data') +stack = numpy.zeros(data.shape) +data.read_direct(stack) +print (data.shape) + +print ("Data Loaded") + + +# Normalize +data = nx.get('entry1/tomo_entry/instrument/detector/image_key') +itype = numpy.zeros(data.shape) +data.read_direct(itype) +# 2 is dark field +darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ] +dark = darks[0] +for i in range(1, len(darks)): + dark += darks[i] +dark = dark / len(darks) +#dark[0][0] = dark[0][1] + +# 1 is flat field +flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ] +flat = flats[0] +for i in range(1, len(flats)): + flat += flats[i] +flat = flat / len(flats) +#flat[0][0] = dark[0][1] + + +# 0 is projection data +proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ] +angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ] +angle_proj = numpy.asarray (angle_proj) +angle_proj = angle_proj.astype(numpy.float32) + +# normalized data are +# norm = (projection - dark)/(flat-dark) + +def normalize(projection, dark, flat, def_val=0.1): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 + return c + + +norm = [normalize(projection, dark, flat) for projection in proj] +norm = numpy.asarray (norm) +norm = norm.astype(numpy.float32) + +#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm, +# angles = angle_proj, center_of_rotation = 86.2 , +# flat_field = flat, dark_field = dark, +# iterations = 15, resolution = 1, isLogScale = False, threads = 3) + +#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj, +# angles = angle_proj, center_of_rotation = 86.2 , +# flat_field = flat, dark_field = dark, +# iterations = 15, resolution = 1, isLogScale = False, threads = 3) +#img_cgls = recon.reconstruct() +# +#pars = dict() +#pars['algorithm'] = Reconstructor.Algorithm.SIRT +#pars['projection_data'] = proj +#pars['angles'] = angle_proj +#pars['center_of_rotation'] = numpy.double(86.2) +#pars['flat_field'] = flat +#pars['iterations'] = 15 +#pars['dark_field'] = dark +#pars['resolution'] = 1 +#pars['isLogScale'] = False +#pars['threads'] = 3 +# +#img_sirt = recon.reconstruct(pars) +# +#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM +#img_mlem = recon.reconstruct() + +############################################################ +############################################################ +#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV +#recon.pars['regularize'] = numpy.double(0.1) +#img_cgls_conv = recon.reconstruct() + +niterations = 15 +threads = 3 + +img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) +img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) +img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) + +iteration_values = numpy.zeros((niterations,)) +img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + iteration_values, False) +print ("iteration values %s" % str(iteration_values)) + +iteration_values = numpy.zeros((niterations,)) +img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + numpy.double(1e-5), iteration_values , False) +print ("iteration values %s" % str(iteration_values)) +iteration_values = numpy.zeros((niterations,)) +img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + numpy.double(1e-5), iteration_values , False) +print ("iteration values %s" % str(iteration_values)) + + +##numpy.save("cgls_recon.npy", img_data) +import matplotlib.pyplot as plt +fig, ax = plt.subplots(1,6,sharey=True) +ax[0].imshow(img_cgls[80]) +ax[0].axis('off') # clear x- and y-axes +ax[1].imshow(img_sirt[80]) +ax[1].axis('off') # clear x- and y-axes +ax[2].imshow(img_mlem[80]) +ax[2].axis('off') # clear x- and y-axesplt.show() +ax[3].imshow(img_cgls_conv[80]) +ax[3].axis('off') # clear x- and y-axesplt.show() +ax[4].imshow(img_cgls_tikhonov[80]) +ax[4].axis('off') # clear x- and y-axesplt.show() +ax[5].imshow(img_cgls_TVreg[80]) +ax[5].axis('off') # clear x- and y-axesplt.show() + + +plt.show() + +#viewer = edo.CILViewer() +#viewer.setInputAsNumpy(img_cgls2) +#viewer.displaySliceActor(0) +#viewer.startRenderLoop() + +import vtk + +def NumpyToVTKImageData(numpyarray): + if (len(numpy.shape(numpyarray)) == 3): + doubleImg = vtk.vtkImageData() + shape = numpy.shape(numpyarray) + doubleImg.SetDimensions(shape[0], shape[1], shape[2]) + doubleImg.SetOrigin(0,0,0) + doubleImg.SetSpacing(1,1,1) + doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1) + #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation()) + doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1) + + for i in range(shape[0]): + for j in range(shape[1]): + for k in range(shape[2]): + doubleImg.SetScalarComponentFromDouble( + i,j,k,0, numpyarray[i][j][k]) + #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) ) + # rescale to appropriate VTK_UNSIGNED_SHORT + stats = vtk.vtkImageAccumulate() + stats.SetInputData(doubleImg) + stats.Update() + iMin = stats.GetMin()[0] + iMax = stats.GetMax()[0] + scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin) + + shiftScaler = vtk.vtkImageShiftScale () + shiftScaler.SetInputData(doubleImg) + shiftScaler.SetScale(scale) + shiftScaler.SetShift(iMin) + shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT) + shiftScaler.Update() + return shiftScaler.GetOutput() + +#writer = vtk.vtkMetaImageWriter() +#writer.SetFileName(alg + "_recon.mha") +#writer.SetInputData(NumpyToVTKImageData(img_cgls2)) +#writer.Write() diff --git a/src/Python/ccpi/reconstruction/__init__.py b/src/Python/ccpi/reconstruction/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/Python/ccpi/reconstruction/__init__.py diff --git a/src/Python/compile-fista.bat.in b/src/Python/compile-fista.bat.in new file mode 100644 index 0000000..b1db686 --- /dev/null +++ b/src/Python/compile-fista.bat.in @@ -0,0 +1,7 @@ +set CIL_VERSION=@CIL_VERSION@ + +set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ +set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +REM activate @CONDA_ENVIRONMENT@ +conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge diff --git a/src/Python/compile-fista.sh.in b/src/Python/compile-fista.sh.in new file mode 100644 index 0000000..267f014 --- /dev/null +++ b/src/Python/compile-fista.sh.in @@ -0,0 +1,9 @@ +#!/bin/sh +# compile within the right conda environment +#module load python/anaconda +#source activate @CONDA_ENVIRONMENT@ + +export CIL_VERSION=@CIL_VERSION@ +export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/src/Python/compile.bat.in b/src/Python/compile.bat.in new file mode 100644 index 0000000..e5342ed --- /dev/null +++ b/src/Python/compile.bat.in @@ -0,0 +1,7 @@ +set CIL_VERSION=@CIL_VERSION@ + +set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ +set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +REM activate @CONDA_ENVIRONMENT@ +conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
\ No newline at end of file diff --git a/src/Python/compile.sh.in b/src/Python/compile.sh.in new file mode 100644 index 0000000..93fdba2 --- /dev/null +++ b/src/Python/compile.sh.in @@ -0,0 +1,9 @@ +#!/bin/sh +# compile within the right conda environment +#module load python/anaconda +#source activate @CONDA_ENVIRONMENT@ + +export CIL_VERSION=@CIL_VERSION@ +export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/src/Python/conda-recipe/bld.bat b/src/Python/conda-recipe/bld.bat new file mode 100644 index 0000000..69491de --- /dev/null +++ b/src/Python/conda-recipe/bld.bat @@ -0,0 +1,14 @@ +IF NOT DEFINED CIL_VERSION ( +ECHO CIL_VERSION Not Defined. +exit 1 +) + +mkdir "%SRC_DIR%\ccpi" +xcopy /e "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi" + +cd %SRC_DIR%\ccpi\Python + +%PYTHON% setup.py build_ext +if errorlevel 1 exit 1 +%PYTHON% setup.py install +if errorlevel 1 exit 1 diff --git a/src/Python/conda-recipe/build.sh b/src/Python/conda-recipe/build.sh new file mode 100644 index 0000000..855047f --- /dev/null +++ b/src/Python/conda-recipe/build.sh @@ -0,0 +1,14 @@ + +if [ -z "$CIL_VERSION" ]; then + echo "Need to set CIL_VERSION" + exit 1 +fi +mkdir "$SRC_DIR/ccpi" +cp -r "$RECIPE_DIR/../.." "$SRC_DIR/ccpi" + +cd $SRC_DIR/ccpi/Python + +$PYTHON setup.py build_ext +$PYTHON setup.py install + + diff --git a/src/Python/conda-recipe/meta.yaml b/src/Python/conda-recipe/meta.yaml new file mode 100644 index 0000000..7068e9d --- /dev/null +++ b/src/Python/conda-recipe/meta.yaml @@ -0,0 +1,30 @@ +package: + name: ccpi-regularizers + version: {{ environ['CIL_VERSION'] }} + + +build: + preserve_egg_dir: False + script_env: + - CIL_VERSION +# number: 0 + +requirements: + build: + - python + - numpy + - setuptools + - boost ==1.64 + - boost-cpp ==1.64 + - cython + + run: + - python + - numpy + - boost ==1.64 + + +about: + home: http://www.ccpi.ac.uk + license: BSD license + summary: 'CCPi Core Imaging Library Quantification Toolbox' diff --git a/src/Python/fista-recipe/build.sh b/src/Python/fista-recipe/build.sh new file mode 100644 index 0000000..e3f3552 --- /dev/null +++ b/src/Python/fista-recipe/build.sh @@ -0,0 +1,10 @@ +if [ -z "$CIL_VERSION" ]; then + echo "Need to set CIL_VERSION" + exit 1 +fi +mkdir "$SRC_DIR/ccpifista" +cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista" + +cd $SRC_DIR/ccpifista + +$PYTHON setup-fista.py install diff --git a/src/Python/fista-recipe/meta.yaml b/src/Python/fista-recipe/meta.yaml new file mode 100644 index 0000000..265541f --- /dev/null +++ b/src/Python/fista-recipe/meta.yaml @@ -0,0 +1,29 @@ +package: + name: ccpi-fista + version: {{ environ['CIL_VERSION'] }} + + +build: + preserve_egg_dir: False + script_env: + - CIL_VERSION +# number: 0 + +requirements: + build: + - python + - numpy + - setuptools + + run: + - python + - numpy + #- astra-toolbox + - ccpi-regularizers + + + +about: + home: http://www.ccpi.ac.uk + license: Apache v.2.0 license + summary: 'CCPi Core Imaging Library (Viewer)' diff --git a/src/Python/fista_module.cpp b/src/Python/fista_module.cpp new file mode 100644 index 0000000..aca3be0 --- /dev/null +++ b/src/Python/fista_module.cpp @@ -0,0 +1,1050 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + +#include <iostream> +#include <cmath> + +#include <boost/python.hpp> +#include <boost/python/numpy.hpp> +#include "boost/tuple/tuple.hpp" + +#include "SplitBregman_TV_core.h" +#include "FGP_TV_core.h" +#include "LLT_model_core.h" +#include "PatchBased_Regul_core.h" +#include "TGV_PD_core.h" +#include "utils.h" + + + +#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) +#include <windows.h> +// this trick only if compiler is MSVC +__if_not_exists(uint8_t) { typedef __int8 uint8_t; } +__if_not_exists(uint16_t) { typedef __int8 uint16_t; } +#endif + +namespace bp = boost::python; +namespace np = boost::python::numpy; + +/*! in the Matlab implementation this is called as +void mexFunction( +int nlhs, mxArray *plhs[], +int nrhs, const mxArray *prhs[]) +where: +prhs Array of pointers to the INPUT mxArrays +nrhs int number of INPUT mxArrays + +nlhs Array of pointers to the OUTPUT mxArrays +plhs int number of OUTPUT mxArrays + +*********************************************************** + +*********************************************************** +double mxGetScalar(const mxArray *pm); +args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. +Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. +*********************************************************** +char *mxArrayToString(const mxArray *array_ptr); +args: array_ptr Pointer to mxCHAR array. +Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. +Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. +*********************************************************** +mxClassID mxGetClassID(const mxArray *pm); +args: pm Pointer to an mxArray +Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, +mxGetClassId returns a unique value identifying the class of the array contents. +Use mxIsClass to determine whether an array is of a specific user-defined type. + +mxClassID Value MATLAB Type MEX Type C Primitive Type +mxINT8_CLASS int8 int8_T char, byte +mxUINT8_CLASS uint8 uint8_T unsigned char, byte +mxINT16_CLASS int16 int16_T short +mxUINT16_CLASS uint16 uint16_T unsigned short +mxINT32_CLASS int32 int32_T int +mxUINT32_CLASS uint32 uint32_T unsigned int +mxINT64_CLASS int64 int64_T long long +mxUINT64_CLASS uint64 uint64_T unsigned long long +mxSINGLE_CLASS single float float +mxDOUBLE_CLASS double double double + +**************************************************************** +double *mxGetPr(const mxArray *pm); +args: pm Pointer to an mxArray of type double +Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. +**************************************************************** +mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, +mxClassID classid, mxComplexity ComplexFlag); +args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. +dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. +For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. +classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. +For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. +ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). +Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). +If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not +enough free heap space to create the mxArray. +*/ + + + +bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + mu = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + lambda = 2.0f*mu; + count = 1; + re_old = 0.0f; + /*Handling Matlab output data*/ + dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + + + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll < iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); + + if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + + updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j < dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*copyIm(U_old, U, dimX, dimY, dimZ); */ + + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npDz = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + np::ndarray npBz = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Dz = reinterpret_cast<float *>(npDz.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + Bz = reinterpret_cast<float *>(npBz.get_data()); + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll<iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); + + if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + + updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U[j] - U_old[j], 2); + re1 += pow(U[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + /*printf("%f %i %i \n", re, ll, count); */ + re_old = re; + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + return result; + + } + + + +bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL; + float lambda, tk, tkp1, re, re1, re_old, epsil, funcval; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + lambda = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); + bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + np::ndarray out1 = np::zeros(shape1, dtype); + + //float *funcvalA = (float *)mxGetData(plhs[1]); + float * funcvalA = reinterpret_cast<float *>(out1.get_data()); + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + tk = 1.0f; + tkp1 = 1.0f; + count = 1; + re_old = 0.0f; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + /* computing the gradient of the objective function */ + Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); + + /*Taking a step towards minus of the gradient*/ + Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); + + + + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); + + /* calculate norm */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 3) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + tk = tkp1; + + /* calculating the objective function value */ + if (ll == (iter - 1)) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP3 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npP3_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + np::ndarray npR3 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P3 = reinterpret_cast<float *>(npP3.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + P3_old = reinterpret_cast<float *>(npP3_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + R2 = reinterpret_cast<float *>(npR3.get_data()); + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + + /* computing the gradient of the objective function */ + Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + + /*Taking a step towards minus of the gradient*/ + Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + + /* projection step */ + Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); + + /* calculate norm - stopping rules*/ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + /* stop if the norm residual is less than the tolerance EPS */ + if (re < epsil) count++; + if (count > 3) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + copyIm(P3, P3_old, dimX, dimY, dimZ); + tk = tkp1; + + if (ll == (iter - 1)) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + + return result; +} + +bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) { + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old; + unsigned short *Map = NULL; + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + ///*Handling Matlab input data*/ + //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //tau = (float)mxGetScalar(prhs[2]); /* time-step */ + //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/ + //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */ + //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ + + U0 = reinterpret_cast<float *>(input.get_data()); + lambda = (float)d_lambda; + tau = (float)d_tau; + // iter is passed as parameter + epsil = (float)d_epsil; + // switcher is passed as parameter + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; + + if (number_of_dims == 2) { + /*2D case*/ + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + for (ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der2D(U, D1, D2, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + //printf("HO iterations stopped at iteration: %i\n", ll); + + result.append<np::ndarray>(npU); + } + else if (number_of_dims == 3) { + /*3D case*/ + dimZ = dim_array[2]; + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + if (switcher != 0) { + Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + }*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + np::ndarray npD3 = np::zeros(shape, dtype); + np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>()); + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + if (switcher != 0) { + //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + } + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + D3 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + + if (switcher == 1) { + /* apply restrictive smoothing */ + calcMap(U, Map, dimX, dimY, dimZ); + /*clear outliers */ + cleanMap(Map, dimX, dimY, dimZ); + } + for (ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der3D(U, D1, D2, D3, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + //printf("HO iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + if (switcher != 0) result.append<np::ndarray>(npMap); + + } + return result; +} + + +bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) { + // the result is in the following list + bp::list result; + + int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop; + //const int *dims; + float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda; + + numdims = input.get_nd(); + int dims[3]; + + dims[0] = input.shape(0); + dims[1] = input.shape(1); + if (numdims == 2) { + dims[2] = -1; + } + else { + dims[2] = input.shape(2); + } + /*numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]);*/ + + N = dims[0]; + M = dims[1]; + Z = dims[2]; + + //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); } + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); + + ///*Handling inputs*/ + //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */ + A = reinterpret_cast<float *>(input.get_data()); + //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */ + //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */ + //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ + //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */ + + //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); + //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0"); + + lambda = (float)d_lambda; + h = (float)d_h; + SearchW = SearchW_real + 2 * SimilW; + + /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */ + + + padXY = SearchW + 2 * SimilW; /* padding sizes */ + newsizeX = N + 2 * (padXY); /* the X size of the padded array */ + newsizeY = M + 2 * (padXY); /* the Y size of the padded array */ + newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */ + int N_dims[] = { newsizeX, newsizeY, newsizeZ }; + /******************************2D case ****************************/ + if (numdims == 2) { + ///*Handling output*/ + //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + ///**************************************************************************/ + + bp::tuple shape = bp::make_tuple(N, M); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + + shape = bp::make_tuple(newsizeX, newsizeY); + np::ndarray npAp = np::zeros(shape, dtype); + np::ndarray npBp = np::zeros(shape, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + + /*Perform padding of image A to the size of [newsizeX * newsizeY] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } + else + { + /******************************3D case ****************************/ + ///*Handling output*/ + //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + /**************************************************************************/ + bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]); + bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + np::ndarray npAp = np::zeros(shape_AB, dtype); + np::ndarray npBp = np::zeros(shape_AB, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } /*end else ndims*/ + + return result; +} + +bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) { + // the result is in the following list + bp::list result; + int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll; + //const int *dim_array; + float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + /*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + A = reinterpret_cast<float *>(input.get_data()); + + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/ + //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/ + //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/ + //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); + lambda = (float)d_lambda; + alpha1 = (float)d_alpha1; + alpha0 = (float)d_alpha0; + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; + + if (number_of_dims == 2) { + /*2D case*/ + dimZ = 1; + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npQ1 = np::zeros(shape, dtype); + np::ndarray npQ2 = np::zeros(shape, dtype); + np::ndarray npQ3 = np::zeros(shape, dtype); + np::ndarray npV1 = np::zeros(shape, dtype); + np::ndarray npV1_old = np::zeros(shape, dtype); + np::ndarray npV2 = np::zeros(shape, dtype); + np::ndarray npV2_old = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + Q1 = reinterpret_cast<float *>(npQ1.get_data()); + Q2 = reinterpret_cast<float *>(npQ2.get_data()); + Q3 = reinterpret_cast<float *>(npQ3.get_data()); + V1 = reinterpret_cast<float *>(npV1.get_data()); + V1_old = reinterpret_cast<float *>(npV1_old.get_data()); + V2 = reinterpret_cast<float *>(npV2.get_data()); + V2_old = reinterpret_cast<float *>(npV2_old.get_data()); + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /*dual variables*/ + /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + /*printf("%i \n", i);*/ + L2 = 12.0; /*Lipshitz constant*/ + tau = 1.0 / pow(L2, 0.5); + sigma = 1.0 / pow(L2, 0.5); + + /*Copy A to U*/ + copyIm(A, U, dimX, dimY, dimZ); + /* Here primal-dual iterations begin for 2D */ + for (ll = 0; ll < iter; ll++) { + + /* Calculate Dual Variable P */ + DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for P*/ + ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); + + /* Calculate Dual Variable Q */ + DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for Q*/ + ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); + + /*saving U into U_old*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*adjoint operation -> divergence and projection of P*/ + DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); + + /*get updated solution U*/ + newU(U, U_old, dimX, dimY, dimZ); + + /*saving V into V_old*/ + copyIm(V1, V1_old, dimX, dimY, dimZ); + copyIm(V2, V2_old, dimX, dimY, dimZ); + + /* upd V*/ + UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); + + /*get new V*/ + newU(V1, V1_old, dimX, dimY, dimZ); + newU(V2, V2_old, dimX, dimY, dimZ); + } /*end of iterations*/ + + result.append<np::ndarray>(npU); + } + + + + + return result; +} + +BOOST_PYTHON_MODULE(cpu_regularizers) +{ + np::initialize(); + + //To specify that this module is a package + bp::object package = bp::scope(); + package.attr("__path__") = "cpu_regularizers"; + + np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); + np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); + + def("SplitBregman_TV", SplitBregman_TV); + def("FGP_TV", FGP_TV); + def("LLT_model", LLT_model); + def("PatchBased_Regul", PatchBased_Regul); + def("TGV_PD", TGV_PD); +} diff --git a/src/Python/setup-fista.py.in b/src/Python/setup-fista.py.in new file mode 100644 index 0000000..c5c9f4d --- /dev/null +++ b/src/Python/setup-fista.py.in @@ -0,0 +1,27 @@ +from distutils.core import setup +#from setuptools import setup, find_packages +import os + +cil_version=os.environ['CIL_VERSION'] +if cil_version == '': + print("Please set the environmental variable CIL_VERSION") + sys.exit(1) + +setup( + name="ccpi-fista", + version=cil_version, + packages=['ccpi','ccpi.reconstruction'], + install_requires=['numpy'], + + zip_safe = False, + + # metadata for upload to PyPI + author="Edoardo Pasca", + author_email="edo.paskino@gmail.com", + description='CCPi Core Imaging Library - FISTA Reconstructor module', + license="Apache v2.0", + keywords="tomography interative reconstruction", + url="http://www.ccpi.ac.uk", # project home page, if any + + # could also include long_description, download_url, classifiers, etc. +) diff --git a/src/Python/setup.py b/src/Python/setup.py new file mode 100644 index 0000000..154f979 --- /dev/null +++ b/src/Python/setup.py @@ -0,0 +1,64 @@ +#!/usr/bin/env python + +import setuptools +from distutils.core import setup +from distutils.extension import Extension +from Cython.Distutils import build_ext + +import os +import sys +import numpy +import platform + +cil_version=os.environ['CIL_VERSION'] +if cil_version == '': + print("Please set the environmental variable CIL_VERSION") + sys.exit(1) + +library_include_path = "" +library_lib_path = "" +try: + library_include_path = os.environ['LIBRARY_INC'] + library_lib_path = os.environ['LIBRARY_LIB'] +except: + library_include_path = os.environ['PREFIX']+'/include' + pass + +extra_include_dirs = [numpy.get_include(), library_include_path] +extra_library_dirs = [library_include_path+"/../lib", "C:\\Apps\\Miniconda2\\envs\\cil27\\Library\\lib"] +extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] +extra_libraries = [] +if platform.system() == 'Windows': + extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] + extra_include_dirs += ["..\\..\\main_func\\regularizers_CPU\\","."] + if sys.version_info.major == 3 : + extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] + else: + extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] +else: + extra_include_dirs += ["../../main_func/regularizers_CPU","."] + if sys.version_info.major == 3: + extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] + else: + extra_libraries += ['boost_python', 'boost_numpy','gomp'] + +setup( + name='ccpi', + description='CCPi Core Imaging Library - FISTA Reconstruction Module', + version=cil_version, + cmdclass = {'build_ext': build_ext}, + ext_modules = [Extension("ccpi.imaging.cpu_regularizers", + sources=["fista_module.cpp", + "../../main_func/regularizers_CPU/FGP_TV_core.c", + "../../main_func/regularizers_CPU/SplitBregman_TV_core.c", + "../../main_func/regularizers_CPU/LLT_model_core.c", + "../../main_func/regularizers_CPU/PatchBased_Regul_core.c", + "../../main_func/regularizers_CPU/TGV_PD_core.c", + "../../main_func/regularizers_CPU/utils.c" + ], + include_dirs=extra_include_dirs, library_dirs=extra_library_dirs, extra_compile_args=extra_compile_args, libraries=extra_libraries ), + + ], + zip_safe = False, + packages = {'ccpi','ccpi.fistareconstruction'}, +) diff --git a/src/Python/setup.py.in b/src/Python/setup.py.in new file mode 100644 index 0000000..12e8af1 --- /dev/null +++ b/src/Python/setup.py.in @@ -0,0 +1,69 @@ +#!/usr/bin/env python + +import setuptools +from distutils.core import setup +from distutils.extension import Extension +from Cython.Distutils import build_ext + +import os +import sys +import numpy +import platform + +cil_version=@CIL_VERSION@ + +library_include_path = "" +library_lib_path = "" +try: + library_include_path = os.environ['LIBRARY_INC'] + library_lib_path = os.environ['LIBRARY_LIB'] +except: + library_include_path = os.environ['PREFIX']+'/include' + pass + +extra_include_dirs = [numpy.get_include(), library_include_path] +extra_library_dirs = [os.path.join(library_include_path, "..", "lib")] +extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] +extra_libraries = [] +extra_include_dirs += [os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_GPU") , + "@CMAKE_CURRENT_SOURCE_DIR@"] + +if platform.system() == 'Windows': + extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] + + if sys.version_info.major == 3 : + extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] + else: + extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] +else: + if sys.version_info.major == 3: + extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] + else: + extra_libraries += ['boost_python', 'boost_numpy','gomp'] + +setup( + name='ccpi', + description='CCPi Core Imaging Library - Image Regularizers', + version=cil_version, + cmdclass = {'build_ext': build_ext}, + ext_modules = [Extension("ccpi.imaging.cpu_regularizers", + sources=[os.path.join("@CMAKE_CURRENT_SOURCE_DIR@" , "fista_module.cpp" ), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "FGP_TV_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "SplitBregman_TV_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "LLT_model_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "PatchBased_Regul_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "TGV_PD_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "utils.c") + ], + include_dirs=extra_include_dirs, + library_dirs=extra_library_dirs, + extra_compile_args=extra_compile_args, + libraries=extra_libraries ), + + ], + zip_safe = False, + packages = {'ccpi','ccpi.imaging'}, +) + + diff --git a/src/Python/setup_test.py b/src/Python/setup_test.py new file mode 100644 index 0000000..7c86175 --- /dev/null +++ b/src/Python/setup_test.py @@ -0,0 +1,58 @@ +#!/usr/bin/env python + +import setuptools +from distutils.core import setup +from distutils.extension import Extension +from Cython.Distutils import build_ext + +import os +import sys +import numpy +import platform + +cil_version=os.environ['CIL_VERSION'] +if cil_version == '': + print("Please set the environmental variable CIL_VERSION") + sys.exit(1) + +library_include_path = "" +library_lib_path = "" +try: + library_include_path = os.environ['LIBRARY_INC'] + library_lib_path = os.environ['LIBRARY_LIB'] +except: + library_include_path = os.environ['PREFIX']+'/include' + pass + +extra_include_dirs = [numpy.get_include(), library_include_path] +extra_library_dirs = [library_include_path+"/../lib", "C:\\Apps\\Miniconda2\\envs\\cil27\\Library\\lib"] +extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] +extra_libraries = [] +if platform.system() == 'Windows': + extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB'] + #extra_include_dirs += ["..\\ContourTree\\", "..\\win32\\" , "..\\Core\\","."] + if sys.version_info.major == 3 : + extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] + else: + extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] +else: + #extra_include_dirs += ["../ContourTree/", "../Core/","."] + if sys.version_info.major == 3: + extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] + else: + extra_libraries += ['boost_python', 'boost_numpy','gomp'] + +setup( + name='ccpi', + description='CCPi Core Imaging Library - FISTA Reconstruction Module', + version=cil_version, + cmdclass = {'build_ext': build_ext}, + ext_modules = [Extension("prova", + sources=[ "Matlab2Python_utils.cpp", + ], + include_dirs=extra_include_dirs, library_dirs=extra_library_dirs, extra_compile_args=extra_compile_args, libraries=extra_libraries ), + + ], + zip_safe = False, + packages = {'ccpi','ccpi.reconstruction'}, +) diff --git a/src/Python/test.py b/src/Python/test.py new file mode 100644 index 0000000..db47380 --- /dev/null +++ b/src/Python/test.py @@ -0,0 +1,42 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Aug 3 14:08:09 2017 + +@author: ofn77899 +""" + +import prova +import numpy as np + +a = np.asarray([i for i in range(1*2*3)]) +a = a.reshape([1,2,3]) +print (a) +b = prova.mexFunction(a) +#print (b) +print (b[4].shape) +print (b[4]) +print (b[5]) + +def print_element(input): + print ("f: {0}".format(input)) + +prova.doSomething(a, print_element, None) + +c = [] +def append_to_list(input, shouldPrint=False): + c.append(input) + if shouldPrint: + print ("{0} appended to list {1}".format(input, c)) + +def element_wise_algebra(input, shouldPrint=True): + ret = input - 7 + if shouldPrint: + print ("element_wise {0}".format(ret)) + return ret + +prova.doSomething(a, append_to_list, None) +#print ("this is c: {0}".format(c)) + +b = prova.doSomething(a, None, element_wise_algebra) +#print (a) +print (b[5]) diff --git a/src/Python/test/astra_test.py b/src/Python/test/astra_test.py new file mode 100644 index 0000000..42c375a --- /dev/null +++ b/src/Python/test/astra_test.py @@ -0,0 +1,85 @@ +import astra +import numpy +import filefun + + +# read in the same data as the DemoRD2 +angles = filefun.dlmread("DemoRD2/angles.csv") +darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",") +flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",") + +if True: + Sino3D = numpy.load("DemoRD2/Sino3D.npy") +else: + sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",") + a = map (lambda x:x, numpy.shape(sino)) + a.append(20) + + Sino3D = numpy.zeros(tuple(a), dtype="float") + + for i in range(1,numpy.shape(Sino3D)[2]+1): + print("Read file DemoRD2/sino_%02d.csv" % i) + sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",") + Sino3D.T[i-1] = sino.T + +Weights3D = numpy.asarray(Sino3D, dtype="float") + +##angles_rad = angles*(pi/180); % conversion to radians +##size_det = size(data_raw3D,1); % detectors dim +##angSize = size(data_raw3D, 2); % angles dim +##slices_tot = size(data_raw3D, 3); % no of slices +##recon_size = 950; % reconstruction size + + +angles_rad = angles * numpy.pi /180. +size_det, angSize, slices_tot = numpy.shape(Sino3D) +size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)] +recon_size = 950 +Z_slices = 3; +det_row_count = Z_slices; + +#proj_geom = astra_create_proj_geom('parallel3d', 1, 1, +# det_row_count, size_det, angles_rad); + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX +proj_geom = astra.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + size_det, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices); + +sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float") + +#weights = ones(size(sino)); +weights = numpy.ones(numpy.shape(sino)) + +##################################################################### +## PowerMethod for Lipschitz constant + +N = vol_geom['GridColCount'] +x1 = numpy.random.rand(1,N,N) +#sqweight = sqrt(weights(:,:,1)); +sqweight = numpy.sqrt(weights.T[0]).T +##proj_geomT = proj_geom; +proj_geomT = proj_geom.copy() +##proj_geomT.DetectorRowCount = 1; +proj_geomT['DetectorRowCount'] = 1 +##vol_geomT = vol_geom; +vol_geomT = vol_geom.copy() +##vol_geomT.GridSliceCount = 1; +vol_geomT['GridSliceCount'] = 1 + +##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + +#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT); +sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT); + +##y = sqweight.*y; +##astra_mex_data3d('delete', sino_id); + + diff --git a/src/Python/test/readhd5.py b/src/Python/test/readhd5.py new file mode 100644 index 0000000..eff6c43 --- /dev/null +++ b/src/Python/test/readhd5.py @@ -0,0 +1,42 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +""" + +import h5py +import numpy + +def getEntry(nx, location): + for item in nx[location].keys(): + print (item) + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D')) +Weights3D = numpy.asarray(nx.get('/Weights3D')) +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad')) +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] + +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +#from ccpi.viewer.CILViewer2D import CILViewer2D +#v = CILViewer2D() +#v.setInputAsNumpy(Weights3D) +#v.startRenderLoop() + +import matplotlib.pyplot as plt +fig = plt.figure() + +a=fig.add_subplot(1,1,1) +a.set_title('noise') +imgplot = plt.imshow(Weights3D[0].T) +plt.show() diff --git a/src/Python/test/simple_astra_test.py b/src/Python/test/simple_astra_test.py new file mode 100644 index 0000000..905eeea --- /dev/null +++ b/src/Python/test/simple_astra_test.py @@ -0,0 +1,25 @@ +import astra +import numpy + +detectorSpacingX = 1.0 +detectorSpacingY = 1.0 +det_row_count = 128 +det_col_count = 128 + +angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +image_size_x = 64 +image_size_y = 64 +image_size_z = 32 + +vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z) + +x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x) +sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom) diff --git a/src/Python/test/test_reconstructor-os.py b/src/Python/test/test_reconstructor-os.py new file mode 100644 index 0000000..3f419cf --- /dev/null +++ b/src/Python/test/test_reconstructor-os.py @@ -0,0 +1,352 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt +from ccpi.imaging.Regularizer import Regularizer + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 12) +fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + + +#reg = Regularizer(Regularizer.Algorithm.FGP_TV) +#reg.setParameter(regularization_parameter=0.005, +# number_of_iterations=50) +reg = Regularizer(Regularizer.Algorithm.LLT_model) +reg.setParameter(regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) + + +## Ordered subset +if True: + subsets = 16 + fistaRecon.setParameter(subsets=subsets) + fistaRecon.createOrderedSubsets() + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if True: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if False: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ, weights , alpha_ring = fistaRecon.getParameter( + ['projector_geometry' , 'output_geometry', + 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha']) + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + ## additional for + proj_geomSUB = proj_geom.copy() + fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram'])) + residual2 = fistaRecon.residual2 + sino_updt_FULL = fistaRecon.residual.copy() + r_x = fistaRecon.r.copy() + + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): +## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required +## % one solution is to work with a full sinogram at times +## if ((i >= 3) && (lambdaR_L1 > 0)) +## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); +## astra_mex_data3d('delete', sino_id2); +## end + # With OS approach it becomes trickier to correlate independent subsets, + # hence additional work is required one solution is to work with a full + # sinogram at times + + r_old = fistaRecon.r.copy() + t_old = t + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + if (i > 1 and lambdaR_L1 > 0) : + for kkk in range(anglesNumb): + + residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt_FULL[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + + vec = fistaRecon.residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:] # 1 or 0? + r_x = fistaRecon.r_x + fistaRecon.r = (r_x - (1./L_const) * vec).copy() + + # subset loop + counterInd = 1 + geometry_type = fistaRecon.getParameter('projector_geometry')['type'] + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + + for kkk in range(SlicesZ): + sino_id, sinoT[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geomSUB, vol_geom) + sino_updt_Sub[kkk] = sinoT.T.copy() + + else: + sino_id, sino_updt_Sub = \ + astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', sino_id) + + for ss in range(fistaRecon.getParameter('subsets')): + print ("Subset {0}".format(ss)) + X_old = X.copy() + t_old = t + + # the number of projections per subset + numProjSub = fistaRecon.getParameter('os_bins')[ss] + CurrSubIndices = fistaRecon.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub] + #print ("Len CurrSubIndices {0}".format(numProjSub)) + mask = numpy.zeros(numpy.shape(angles), dtype=bool) + cc = 0 + for j in range(len(CurrSubIndices)): + mask[int(CurrSubIndices[j])] = True + proj_geomSUB['ProjectionAngles'] = angles[mask] + + shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) + shape[1] = numProjSub + sino_updt_Sub = numpy.zeros(shape) + + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + + for kkk in range(SlicesZ): + sino_id, sinoT = astra.creators.create_sino3d_gpu ( + X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) + sino_updt_Sub[kkk] = sinoT.T.copy() + + else: + # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8) + sino_id, sino_updt_Sub = \ + astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', sino_id) + + + + + ## RING REMOVAL + residual = fistaRecon.residual + + + if lambdaR_L1 > 0 : + print ("ring removal") + residualSub = numpy.zeros(shape) + ## for a chosen subset + ## for kkk = 1:numProjSub + ## indC = CurrSubIndeces(kkk); + ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram + ## end + for kkk in range(numProjSub): + #print ("ring removal indC ... {0}".format(kkk)) + indC = int(CurrSubIndices[kkk]) + residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ + (sino_updt_Sub[:,kkk,:].squeeze() - \ + sino[:,indC,:].squeeze() - alpha_ring * r_x) + # filling the full sinogram + sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() + + else: + #PWLS model + residualSub = weights[:,CurrSubIndices,:] * \ + ( sino_updt_Sub - sino[:,CurrSubIndices,:].squeeze() ) + objective[i] = 0.5 * numpy.linalg.norm(residualSub) + + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + # if geometry is 2D use slice-by-slice projection-backprojection + # routine + x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residualSub[kkk:kkk+1], + proj_geomSUB, vol_geom) + + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residualSub, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', x_id) + X = X_t - (1/L_const) * x_temp + + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("regularizer") + X = reg(input=X)[0] + + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + # updating r + r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old) + + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + + numpy.save("X_out_os.npy", X) + +else: + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 12) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) diff --git a/src/Python/test/test_reconstructor.py b/src/Python/test/test_reconstructor.py new file mode 100644 index 0000000..3342301 --- /dev/null +++ b/src/Python/test/test_reconstructor.py @@ -0,0 +1,309 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 12) +fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + +reg = Regularizer(Regularizer.Algorithm.LLT_model) +reg.setParameter(regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +fistaRecon.setParameter(regularizer = reg) + +## Ordered subset +if False: + subsets = 16 + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if False: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if False: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ = fistaRecon.getParameter(['projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): + X_old = X.copy() + t_old = t + r_old = fistaRecon.r.copy() + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + for kkk in range(SlicesZ): + sino_id, sino_updt[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geom, vol_geom) + astra.matlab.data3d('delete', sino_id) + else: + # for divergent 3D geometry (watch the GPU memory overflow in + # ASTRA versions < 1.8) + #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + sino_id, sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geom, vol_geom) + + ## RING REMOVAL + residual = fistaRecon.residual + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + r_x = fistaRecon.r_x + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + print ("ring removal") + for kkk in range(anglesNumb): + + residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + fistaRecon.r = (r_x - (1./L_const) * vec).copy() + objective[i] = (0.5 * (residual ** 2).sum()) +## % the ring removal part (Group-Huber fidelity) +## for kkk = 1:anglesNumb +## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* +## (squeeze(sino_updt(:,kkk,:)) - +## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); +## end +## vec = sum(residual,2); +## if (SlicesZ > 1) +## vec = squeeze(vec(:,1,:)); +## end +## r = r_x - (1./L_const).*vec; +## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output + + + + # Projection/Backprojection Routine + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + print ("Projection/Backprojection Routine") + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + + X = X_t - (1/L_const) * x_temp + astra.matlab.data3d('delete', sino_id) + astra.matlab.data3d('delete', x_id) + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("skipping regularizer") + + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + fistaRecon.r_x = fistaRecon.r + \ + (((t_old-1)/t) * (fistaRecon.r - r_old)) + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + +## if (lambdaR_L1 > 0) +## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector +## end +## +## t = (1 + sqrt(1 + 4*t^2))/2; % updating t +## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X +## +## if (lambdaR_L1 > 0) +## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r +## end +## +## if (show == 1) +## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); +## if (lambdaR_L1 > 0) +## figure(11); plot(r); title('Rings offset vector') +## end +## pause(0.01); +## end +## if (strcmp(X_ideal, 'none' ) == 0) +## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); +## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); +## else +## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); +## end +else: + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 12) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) + numpy.save("X_out.npy", X) diff --git a/src/Python/test/test_regularizers.py b/src/Python/test/test_regularizers.py new file mode 100644 index 0000000..27e4ed3 --- /dev/null +++ b/src/Python/test/test_regularizers.py @@ -0,0 +1,412 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 4 11:10:05 2017 + +@author: ofn77899 +""" + +#from ccpi.viewer.CILViewer2D import Converter +#import vtk + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer + +############################################################################### +#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 +#NRMSE a normalization of the root of the mean squared error +#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum +# intensity from the two images being compared, and respectively the same for +# minval. RMSE is given by the square root of MSE: +# sqrt[(sum(A - B) ** 2) / |A|], +# where |A| means the number of elements in A. By doing this, the maximum value +# given by RMSE is maxval. + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) +############################################################################### + +############################################################################### +# +# 2D Regularizers +# +############################################################################### +#Example: +# figure; +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + + + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0,cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme,cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, + number_of_iterations=50) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" +# +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') +##imgplot = plt.imshow(Im) +#perc = 0.05 +#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +## map the u0 u0->u0>0 +#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +#u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# +# +### plot +#fig3D = plt.figure() +##a=fig.add_subplot(3,3,1) +##a.set_title('Original') +##imgplot = plt.imshow(Im) +#sliceNo = 32 +# +#a=fig3D.add_subplot(2,3,1) +#a.set_title('noise') +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] +# +############################################################################### +## Call regularizer +# +######################## SplitBregman_TV ##################################### +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) +# +##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, +## #tolerance_constant=1e-4, +## TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### FGP_TV ######################################### +## u = FGP_TV(single(u0), 0.05, 100, 1e-04); +#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, +# number_of_iterations=200) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### LLT_model ######################################### +## * u0 = Im + .03*randn(size(Im)); % adding noise +## [Den] = LLT_model(single(u0), 10, 0.1, 1); +##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +##input, regularization_parameter , time_step, number_of_iterations, +## tolerance_constant, restrictive_Z_smoothing=0 +#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, +# time_step=0.0003, +# tolerance_constant=0.0001, +# number_of_iterations=300) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### PatchBased_Regul ######################################### +## Quick 2D denoising example in Matlab: +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +# +#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +# searching_window_ratio=3, +# similarity_window_ratio=1, +# PB_filtering_parameter=0.08) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# + +###################### TGV_PD ######################################### +# Quick 2D denoising example in Matlab: +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +# first_order_term=1.3, +# second_order_term=1, +# number_of_iterations=550) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/src/Python/test/test_regularizers_3d.py b/src/Python/test/test_regularizers_3d.py new file mode 100644 index 0000000..2d11a7e --- /dev/null +++ b/src/Python/test/test_regularizers_3d.py @@ -0,0 +1,425 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 4 11:10:05 2017 + +@author: ofn77899 +""" + +#from ccpi.viewer.CILViewer2D import Converter +#import vtk + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer + +############################################################################### +#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 +#NRMSE a normalization of the root of the mean squared error +#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum +# intensity from the two images being compared, and respectively the same for +# minval. RMSE is given by the square root of MSE: +# sqrt[(sum(A - B) ** 2) / |A|], +# where |A| means the number of elements in A. By doing this, the maximum value +# given by RMSE is maxval. + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) +############################################################################### + +############################################################################### +# +# 2D Regularizers +# +############################################################################### +#Example: +# figure; +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + +# create a 3D image by stacking N of this images + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u_n = Im + (perc* np.random.normal(size=np.shape(Im))) +y,z = np.shape(u_n) +u_n = np.reshape(u_n , (1,y,z)) + +u0 = u_n.copy() +for i in range (19): + u_n = Im + (perc* np.random.normal(size=np.shape(Im))) + u_n = np.reshape(u_n , (1,y,z)) + + u0 = np.vstack ( (u0, u_n) ) + +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +print ("Passed image shape {0}".format(np.shape(u0))) + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) +sliceno = 10 + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0[sliceno],cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme[sliceno],cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, + number_of_iterations=50) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" +# +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') +##imgplot = plt.imshow(Im) +#perc = 0.05 +#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +## map the u0 u0->u0>0 +#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +#u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# +# +### plot +#fig3D = plt.figure() +##a=fig.add_subplot(3,3,1) +##a.set_title('Original') +##imgplot = plt.imshow(Im) +#sliceNo = 32 +# +#a=fig3D.add_subplot(2,3,1) +#a.set_title('noise') +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] +# +############################################################################### +## Call regularizer +# +######################## SplitBregman_TV ##################################### +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) +# +##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, +## #tolerance_constant=1e-4, +## TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### FGP_TV ######################################### +## u = FGP_TV(single(u0), 0.05, 100, 1e-04); +#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, +# number_of_iterations=200) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### LLT_model ######################################### +## * u0 = Im + .03*randn(size(Im)); % adding noise +## [Den] = LLT_model(single(u0), 10, 0.1, 1); +##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +##input, regularization_parameter , time_step, number_of_iterations, +## tolerance_constant, restrictive_Z_smoothing=0 +#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, +# time_step=0.0003, +# tolerance_constant=0.0001, +# number_of_iterations=300) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### PatchBased_Regul ######################################### +## Quick 2D denoising example in Matlab: +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +# +#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +# searching_window_ratio=3, +# similarity_window_ratio=1, +# PB_filtering_parameter=0.08) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# + +###################### TGV_PD ######################################### +# Quick 2D denoising example in Matlab: +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +# first_order_term=1.3, +# second_order_term=1, +# number_of_iterations=550) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/src/Python/test_reconstructor.py b/src/Python/test_reconstructor.py new file mode 100644 index 0000000..07668ba --- /dev/null +++ b/src/Python/test_reconstructor.py @@ -0,0 +1,301 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.fista.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 12) +fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + +## Ordered subset +if False: + subsets = 16 + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if False: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if False: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ = fistaRecon.getParameter(['projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): + X_old = X.copy() + t_old = t + r_old = fistaRecon.r.copy() + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + for kkk in range(SlicesZ): + sino_id, sino_updt[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geom, vol_geom) + astra.matlab.data3d('delete', sino_id) + else: + # for divergent 3D geometry (watch the GPU memory overflow in + # ASTRA versions < 1.8) + #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + sino_id, sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geom, vol_geom) + + ## RING REMOVAL + residual = fistaRecon.residual + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + r_x = fistaRecon.r_x + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + print ("ring removal") + for kkk in range(anglesNumb): + + residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + fistaRecon.r = (r_x - (1./L_const) * vec).copy() + objective[i] = (0.5 * (residual ** 2).sum()) +## % the ring removal part (Group-Huber fidelity) +## for kkk = 1:anglesNumb +## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* +## (squeeze(sino_updt(:,kkk,:)) - +## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); +## end +## vec = sum(residual,2); +## if (SlicesZ > 1) +## vec = squeeze(vec(:,1,:)); +## end +## r = r_x - (1./L_const).*vec; +## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output + + + + # Projection/Backprojection Routine + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + print ("Projection/Backprojection Routine") + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + + X = X_t - (1/L_const) * x_temp + astra.matlab.data3d('delete', sino_id) + astra.matlab.data3d('delete', x_id) + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("skipping regularizer") + + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + fistaRecon.r_x = fistaRecon.r + \ + (((t_old-1)/t) * (fistaRecon.r - r_old)) + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + +## if (lambdaR_L1 > 0) +## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector +## end +## +## t = (1 + sqrt(1 + 4*t^2))/2; % updating t +## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X +## +## if (lambdaR_L1 > 0) +## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r +## end +## +## if (show == 1) +## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); +## if (lambdaR_L1 > 0) +## figure(11); plot(r); title('Rings offset vector') +## end +## pause(0.01); +## end +## if (strcmp(X_ideal, 'none' ) == 0) +## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); +## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); +## else +## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); +## end +else: + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 12) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) diff --git a/src/Python/test_regularizers.py b/src/Python/test_regularizers.py new file mode 100644 index 0000000..e76262c --- /dev/null +++ b/src/Python/test_regularizers.py @@ -0,0 +1,412 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 4 11:10:05 2017 + +@author: ofn77899 +""" + +#from ccpi.viewer.CILViewer2D import Converter +#import vtk + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer + +############################################################################### +#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 +#NRMSE a normalization of the root of the mean squared error +#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum +# intensity from the two images being compared, and respectively the same for +# minval. RMSE is given by the square root of MSE: +# sqrt[(sum(A - B) ** 2) / |A|], +# where |A| means the number of elements in A. By doing this, the maximum value +# given by RMSE is maxval. + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) +############################################################################### + +############################################################################### +# +# 2D Regularizers +# +############################################################################### +#Example: +# figure; +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + + + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0,cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme,cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, + number_of_iterations=200) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" +# +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') +##imgplot = plt.imshow(Im) +#perc = 0.05 +#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +## map the u0 u0->u0>0 +#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +#u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# +# +### plot +#fig3D = plt.figure() +##a=fig.add_subplot(3,3,1) +##a.set_title('Original') +##imgplot = plt.imshow(Im) +#sliceNo = 32 +# +#a=fig3D.add_subplot(2,3,1) +#a.set_title('noise') +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] +# +############################################################################### +## Call regularizer +# +######################## SplitBregman_TV ##################################### +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) +# +##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, +## #tolerance_constant=1e-4, +## TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### FGP_TV ######################################### +## u = FGP_TV(single(u0), 0.05, 100, 1e-04); +#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, +# number_of_iterations=200) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### LLT_model ######################################### +## * u0 = Im + .03*randn(size(Im)); % adding noise +## [Den] = LLT_model(single(u0), 10, 0.1, 1); +##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +##input, regularization_parameter , time_step, number_of_iterations, +## tolerance_constant, restrictive_Z_smoothing=0 +#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, +# time_step=0.0003, +# tolerance_constant=0.0001, +# number_of_iterations=300) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### PatchBased_Regul ######################################### +## Quick 2D denoising example in Matlab: +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +# +#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +# searching_window_ratio=3, +# similarity_window_ratio=1, +# PB_filtering_parameter=0.08) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# + +###################### TGV_PD ######################################### +# Quick 2D denoising example in Matlab: +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +# first_order_term=1.3, +# second_order_term=1, +# number_of_iterations=550) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) |