diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2017-10-18 16:54:39 +0100 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2017-10-18 16:54:39 +0100 |
commit | c7f0f2268f94b62d2e2deee736939ad75d3dc1b1 (patch) | |
tree | acda9c75e46f59ecd6edd221e32cad07f43f7968 /src | |
parent | c097c34a59f80a6d4475a1f783b772fa42a44862 (diff) | |
download | regularization-c7f0f2268f94b62d2e2deee736939ad75d3dc1b1.tar.gz regularization-c7f0f2268f94b62d2e2deee736939ad75d3dc1b1.tar.bz2 regularization-c7f0f2268f94b62d2e2deee736939ad75d3dc1b1.tar.xz regularization-c7f0f2268f94b62d2e2deee736939ad75d3dc1b1.zip |
added to repository
Diffstat (limited to 'src')
-rw-r--r-- | src/Python/test_reconstructor-os.py | 379 |
1 files changed, 379 insertions, 0 deletions
diff --git a/src/Python/test_reconstructor-os.py b/src/Python/test_reconstructor-os.py new file mode 100644 index 0000000..6f3721f --- /dev/null +++ b/src/Python/test_reconstructor-os.py @@ -0,0 +1,379 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.fista.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 12) +fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + +## Ordered subset +if True: + subsets = 16 + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if True: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if False: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ = fistaRecon.getParameter(['projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + ## additional for + proj_geomSUB = proj_geom.copy() + fistaRecon.residual2 = numpy.zeros(numpy.shape(self.pars['input_sinogram'])) + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): +## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required +## % one solution is to work with a full sinogram at times +## if ((i >= 3) && (lambdaR_L1 > 0)) +## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); +## astra_mex_data3d('delete', sino_id2); +## end + # With OS approach it becomes trickier to correlate independent subsets, + # hence additional work is required one solution is to work with a full + # sinogram at times + + ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + if (lambdaR_L1 > 0) : + sino_id2, sino_updt2 = astra.creators.create_sino3d_gpu( + X, proj_geom, vol_geom) + astra.matlab.data3d('delete', sino_id2) + + # subset loop + counterInd = 1 + for ss in range(fistaRecon.getParameter('subsets')): + print ("Subset {0}".format(ss)) + X_old = X.copy() + t_old = t + r_old = fistaRecon.r.copy() + + # the number of projections per subset + numProjSub = fistaRecon.getParameter('os_bins')[ss] + CurrSubIndices = fistaRecon.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub-1] + proj_geomSUB['ProjectionAngles'] = angles[CurrSubIndeces] + +## if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ +## fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ +## fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : +## # if the geometry is parallel use slice-by-slice +## # projection-backprojection routine +## #sino_updt = zeros(size(sino),'single'); +## proj_geomT = proj_geom.copy() +## proj_geomT['DetectorRowCount'] = 1 +## vol_geomT = vol_geom.copy() +## vol_geomT['GridSliceCount'] = 1; +## sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) +## for kkk in range(SlicesZ): +## sino_id, sino_updt[kkk] = \ +## astra.creators.create_sino3d_gpu( +## X_t[kkk:kkk+1], proj_geom, vol_geom) +## astra.matlab.data3d('delete', sino_id) +## else: +## # for divergent 3D geometry (watch the GPU memory overflow in +## # ASTRA versions < 1.8) +## #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); +## sino_id, sino_updt = astra.creators.create_sino3d_gpu( +## X_t, proj_geom, vol_geom) + + ## RING REMOVAL + residual = fistaRecon.residual + residual2 = fistaRecon.residual2 + + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + r_x = fistaRecon.r_x + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + print ("ring removal") +## % the ring removal part (Group-Huber fidelity) +## % first 2 iterations do additional work reconstructing whole dataset to ensure +## % the stablility +## if (i < 3) +## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); +## astra_mex_data3d('delete', sino_id2); +## else +## [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); +## end + +## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + if i < 3: + pass + else: + sino_id, sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geomSUB, vol_geom) +## sino_id, sino_updt = astra.creators.create_sino3d_gpu( +## X, proj_geom, vol_geom) +## astra.matlab.data3d('delete', sino_id) + + for kkk in range(anglesNumb): + + residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt2[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) + shape[1] = numProjSub + fistaRecon.residual = numpy.zeros(shape) + if fistaRecon.residual.__hash__() != residual.__hash__(): + residual = fistaRecon.residual +## for kkk = 1:numProjSub +## indC = CurrSubIndeces(kkk); +## if (i < 3) +## residual(:,kkk,:) = squeeze(residual2(:,indC,:)); +## else +## residual(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); +## end +## end + for kk in range(numProjSub): + indC = fistaRecon.getParameter('os_indices')[kkk] + if i < 3: + residual[:,kkk,:] = residual2[:,indC,:].squeeze() + else: + residual(:,kkk,:) = \ + weights[:,indC,:].squeeze() * sino_updt[:,kkk,:].squeeze() - \ + sino[:,indC,:].squeeze() - alpha_ring * fistaRecon.r_x + #squeeze(weights(:,indC,:)).* \ + # (squeeze(sino_updt(:,kkk,:)) - \ + #(squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + + + + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + fistaRecon.r = (r_x - (1./L_const) * vec).copy() + objective[i] = (0.5 * (residual ** 2).sum()) +## % the ring removal part (Group-Huber fidelity) +## for kkk = 1:anglesNumb +## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* +## (squeeze(sino_updt(:,kkk,:)) - +## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); +## end +## vec = sum(residual,2); +## if (SlicesZ > 1) +## vec = squeeze(vec(:,1,:)); +## end +## r = r_x - (1./L_const).*vec; +## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output + + + + # Projection/Backprojection Routine + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + print ("Projection/Backprojection Routine") + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + + X = X_t - (1/L_const) * x_temp + astra.matlab.data3d('delete', sino_id) + astra.matlab.data3d('delete', x_id) + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("skipping regularizer") + + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + fistaRecon.r_x = fistaRecon.r + \ + (((t_old-1)/t) * (fistaRecon.r - r_old)) + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + +## if (lambdaR_L1 > 0) +## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector +## end +## +## t = (1 + sqrt(1 + 4*t^2))/2; % updating t +## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X +## +## if (lambdaR_L1 > 0) +## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r +## end +## +## if (show == 1) +## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); +## if (lambdaR_L1 > 0) +## figure(11); plot(r); title('Rings offset vector') +## end +## pause(0.01); +## end +## if (strcmp(X_ideal, 'none' ) == 0) +## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); +## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); +## else +## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); +## end +else: + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 12) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) |