summaryrefslogtreecommitdiffstats
path: root/main_func
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2017-08-03 00:26:46 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2017-08-03 00:26:46 +0100
commite412e73b172a99776d108d3b4c1f8662a20e9fce (patch)
tree031ba85030eb8b524baafb078b2d55b1e279ce44 /main_func
parentcbeb8a1174498751e38a3de8cd6fe55abae20192 (diff)
downloadregularization-e412e73b172a99776d108d3b4c1f8662a20e9fce.tar.gz
regularization-e412e73b172a99776d108d3b4c1f8662a20e9fce.tar.bz2
regularization-e412e73b172a99776d108d3b4c1f8662a20e9fce.tar.xz
regularization-e412e73b172a99776d108d3b4c1f8662a20e9fce.zip
2D or 3D regularization choices added
Diffstat (limited to 'main_func')
-rw-r--r--main_func/FISTA_REC.m114
1 files changed, 93 insertions, 21 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m
index 1e93719..43ed0cb 100644
--- a/main_func/FISTA_REC.m
+++ b/main_func/FISTA_REC.m
@@ -3,6 +3,7 @@ function [X, output] = FISTA_REC(params)
% <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
% ___Input___:
% params.[] file:
+%----------------General Parameters------------------------
% - .proj_geom (geometry of the projector) [required]
% - .vol_geom (geometry of the reconstructed object) [required]
% - .sino (vectorized in 2D or 3D sinogram) [required]
@@ -13,12 +14,19 @@ function [X, output] = FISTA_REC(params)
% - .ROI (Region-of-interest, only if X_ideal is given)
% - .initialize (a 'warm start' using SIRT method from ASTRA)
%----------------Regularization choices------------------------
-% - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
-% - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
-% - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
+% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
+% 4 .Regul_LambdaPatchBased (Patch-based nonlocal regularization parameter)
+% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
+% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
+% 4.3 .Regul_PB_h (PB penalty function threshold)
+% 5 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
% - .Regul_Iterations (iterations for the selected penalty, default 25)
-% - .Regul_tauLLT (time step parameter for LLT term)
+% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
+%----------------Ring removal------------------------
% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
%----------------Visualization parameters------------------------
@@ -150,8 +158,8 @@ if (isfield(params,'Regul_Iterations'))
else
IterationsRegul = 25;
end
-if (isfield(params,'Regul_LambdaHO'))
- lambdaHO = params.Regul_LambdaHO;
+if (isfield(params,'Regul_LambdaLLT'))
+ lambdaHO = params.Regul_LambdaLLT;
else
lambdaHO = 0;
end
@@ -165,6 +173,26 @@ if (isfield(params,'Regul_tauLLT'))
else
tauHO = 0.0001;
end
+if (isfield(params,'Regul_LambdaPatchBased'))
+ lambdaPB = params.Regul_LambdaPatchBased;
+else
+ lambdaPB = 0;
+end
+if (isfield(params,'Regul_PB_SearchW'))
+ SearchW = params.Regul_PB_SearchW;
+else
+ SearchW = 3; % default
+end
+if (isfield(params,'Regul_PB_SimilW'))
+ SimilW = params.Regul_PB_SimilW;
+else
+ SimilW = 1; % default
+end
+if (isfield(params,'Regul_PB_h'))
+ h_PB = params.Regul_PB_h;
+else
+ h_PB = 0.1; % default
+end
if (isfield(params,'Ring_LambdaR_L1'))
lambdaR_L1 = params.Ring_LambdaR_L1;
else
@@ -175,6 +203,14 @@ if (isfield(params,'Ring_Alpha'))
else
alpha_ring = 1;
end
+if (isfield(params,'Regul_Dimension'))
+ Dimension = params.Regul_Dimension;
+ if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
+ Dimension = '3D';
+ end
+else
+ Dimension = '3D';
+end
if (isfield(params,'show'))
show = params.show;
else
@@ -293,21 +329,57 @@ for i = 1:iterFISTA
astra_mex_data3d('delete', sino_id);
astra_mex_data3d('delete', id);
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso');
- objective(i) = objective(i) + f_val;
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent)
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0);
- X = 0.5.*(X + X2); % averaged combination of two solutions
- end
-
+ % regularization
+ if (lambdaFGP_TV > 0)
+ % FGP-TV regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV, IterationsRegul, tol, 'iso');
+ end
+ else
+ % 3D regularization
+ [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso');
+ end
+ objective(i) = objective(i) + f_val;
+ end
+ if (lambdaSB_TV > 0)
+ % Split Bregman regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent)
+ end
+ else
+ % 3D regularization
+ X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent)
+ end
+ end
+ if (lambdaHO > 0)
+ % Higher Order (LLT) regularization
+ X2 = zeros(N,N,SlicesZ,'single');
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO, tauHO, iterHO, 3.0e-05, 0);
+ end
+ else
+ % 3D regularization
+ X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0);
+ end
+ X = 0.5.*(X + X2); % averaged combination of two solutions
+ end
+ if (lambdaPB > 0)
+ % Patch-Based regularization (can be slow on CPU)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB);
+ end
+ else
+ X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB);
+ end
+ end
if (lambdaR_L1 > 0)