summaryrefslogtreecommitdiffstats
path: root/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2019-11-25 23:18:25 +0000
committerDaniil Kazantsev <dkazanc@hotmail.com>2019-11-25 23:18:25 +0000
commit5e7b28053dfe06008657bcdb68462dc3d84b8a22 (patch)
treed772f9f7829189d4781cf34688f46359f4bb2192 /demos
parent26b13629922e56ae3337fce3df15387d28172681 (diff)
downloadregularization-5e7b28053dfe06008657bcdb68462dc3d84b8a22.tar.gz
regularization-5e7b28053dfe06008657bcdb68462dc3d84b8a22.tar.bz2
regularization-5e7b28053dfe06008657bcdb68462dc3d84b8a22.tar.xz
regularization-5e7b28053dfe06008657bcdb68462dc3d84b8a22.zip
added PD_TV_2D_CPU version
Diffstat (limited to 'demos')
-rw-r--r--demos/demo_cpu_regularisers.py51
1 files changed, 49 insertions, 2 deletions
diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py
index 8655623..d0bbe63 100644
--- a/demos/demo_cpu_regularisers.py
+++ b/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, PD_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th
from ccpi.filters.regularisers import PatchSelect, NLTV
from ccpi.supp.qualitymetrics import QualityTools
###############################################################################
@@ -129,7 +129,7 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm' : FGP_TV, \
'input' : u0,\
'regularisation_parameter':0.02, \
- 'number_of_iterations' :400 ,\
+ 'number_of_iterations' :1500 ,\
'tolerance_constant':1e-06,\
'methodTV': 0 ,\
'nonneg': 0}
@@ -161,6 +161,53 @@ plt.title('{}'.format('CPU results'))
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________PD-TV (2D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of PD-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : PD_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :1500 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 ,\
+ 'nonneg': 1,
+ 'lipschitz_const' : 12}
+
+print ("#############PD TV CPU####################")
+start_time = timeit.default_timer()
+(pd_cpu,info_vec_cpu) = PD_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['lipschitz_const'], 'cpu')
+
+Qtools = QualityTools(Im, pd_cpu)
+pars['rmse'] = Qtools.rmse()
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(pd_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (2D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")