summaryrefslogtreecommitdiffstats
path: root/demos
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-22 06:44:53 -0500
committerTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-22 06:44:53 -0500
commit4505a79103e98adb33bfb4c10391319e56ae7031 (patch)
tree391e8ac544dc152bd9da8295a2446449764db6df /demos
parentc8a60f57df5a019b2b7295933dc0299d88f1e35c (diff)
downloadregularization-4505a79103e98adb33bfb4c10391319e56ae7031.tar.gz
regularization-4505a79103e98adb33bfb4c10391319e56ae7031.tar.bz2
regularization-4505a79103e98adb33bfb4c10391319e56ae7031.tar.xz
regularization-4505a79103e98adb33bfb4c10391319e56ae7031.zip
UPDATE: docs -> demos and update paths in m and py demos
Diffstat (limited to 'demos')
-rw-r--r--demos/data/SinoInpaint.matbin0 -> 3335061 bytes
-rw-r--r--demos/data/lena_gray_512.tifbin0 -> 262598 bytes
-rw-r--r--demos/demoMatlab_3Ddenoise.m178
-rw-r--r--demos/demoMatlab_denoise.m189
-rw-r--r--demos/demoMatlab_inpaint.m35
-rw-r--r--demos/demo_cpu_inpainters.py192
-rw-r--r--demos/demo_cpu_regularisers.py572
-rw-r--r--demos/demo_cpu_regularisers3D.py458
-rw-r--r--demos/demo_cpu_vs_gpu_regularisers.py790
-rw-r--r--demos/demo_gpu_regularisers.py518
-rw-r--r--demos/demo_gpu_regularisers3D.py460
-rw-r--r--demos/images/TV_vs_NLTV.jpgbin0 -> 111273 bytes
-rw-r--r--demos/images/probl.pdfbin0 -> 62326 bytes
-rw-r--r--demos/images/probl.pngbin0 -> 38161 bytes
-rw-r--r--demos/images/reg_penalties.jpgbin0 -> 237455 bytes
-rw-r--r--demos/qualitymetrics.py18
16 files changed, 3410 insertions, 0 deletions
diff --git a/demos/data/SinoInpaint.mat b/demos/data/SinoInpaint.mat
new file mode 100644
index 0000000..d748fb4
--- /dev/null
+++ b/demos/data/SinoInpaint.mat
Binary files differ
diff --git a/demos/data/lena_gray_512.tif b/demos/data/lena_gray_512.tif
new file mode 100644
index 0000000..f80cafc
--- /dev/null
+++ b/demos/data/lena_gray_512.tif
Binary files differ
diff --git a/demos/demoMatlab_3Ddenoise.m b/demos/demoMatlab_3Ddenoise.m
new file mode 100644
index 0000000..cdd3117
--- /dev/null
+++ b/demos/demoMatlab_3Ddenoise.m
@@ -0,0 +1,178 @@
+% Volume (3D) denoising demo using CCPi-RGL
+clear; close all
+Path1 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'mex_compile' filesep 'installed'], 1i);
+Path2 = sprintf(['data' filesep], 1i);
+Path3 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'supp'], 1i);
+addpath(Path1);
+addpath(Path2);
+addpath(Path3);
+
+N = 512;
+slices = 7;
+vol3D = zeros(N,N,slices, 'single');
+Ideal3D = zeros(N,N,slices, 'single');
+Im = double(imread('lena_gray_512.tif'))/255; % loading image
+for i = 1:slices
+vol3D(:,:,i) = Im + .05*randn(size(Im));
+Ideal3D(:,:,i) = Im;
+end
+vol3D(vol3D < 0) = 0;
+figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
+
+
+lambda_reg = 0.03; % regularsation parameter for all methods
+%%
+fprintf('Denoise a volume using the ROF-TV model (CPU) \n');
+tau_rof = 0.0025; % time-marching constant
+iter_rof = 300; % number of ROF iterations
+tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
+energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
+rmse_rof = (RMSE(Ideal3D(:),u_rof(:)));
+fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);
+figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
+% tau_rof = 0.0025; % time-marching constant
+% iter_rof = 300; % number of ROF iterations
+% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
+% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);
+% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
+iter_fgp = 300; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
+energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
+rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);
+figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
+% iter_fgp = 300; % number of FGP iterations
+% epsil_tol = 1.0e-05; % tolerance
+% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
+% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));
+% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG);
+% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using the SB-TV model (CPU) \n');
+iter_sb = 150; % number of SB iterations
+epsil_tol = 1.0e-05; % tolerance
+tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
+energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
+rmse_sb = (RMSE(Ideal3D(:),u_sb(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb);
+figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
+% iter_sb = 150; % number of SB iterations
+% epsil_tol = 1.0e-05; % tolerance
+% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
+% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));
+% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG);
+% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+iter_LLT = 300; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+% iter_LLT = 300; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
+iter_diff = 300; % number of diffusion iterations
+lambda_regDiff = 0.025; % regularisation for the diffusivity
+sigmaPar = 0.015; % edge-preserving parameter
+tau_param = 0.025; % time-marching constant
+tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+rmse_diff = (RMSE(Ideal3D(:),u_diff(:)));
+fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n');
+% iter_diff = 300; % number of diffusion iterations
+% lambda_regDiff = 0.025; % regularisation for the diffusivity
+% sigmaPar = 0.015; % edge-preserving parameter
+% tau_param = 0.025; % time-marching constant
+% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)');
+%%
+fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
+iter_diff = 300; % number of diffusion iterations
+lambda_regDiff = 3.5; % regularisation for the diffusivity
+sigmaPar = 0.02; % edge-preserving parameter
+tau_param = 0.0015; % time-marching constant
+tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:)));
+fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
+%%
+% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
+% iter_diff = 300; % number of diffusion iterations
+% lambda_regDiff = 3.5; % regularisation for the diffusivity
+% sigmaPar = 0.02; % edge-preserving parameter
+% tau_param = 0.0015; % time-marching constant
+% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
+%%
+fprintf('Denoise using the TGV model (CPU) \n');
+lambda_TGV = 0.03; % regularisation parameter
+alpha1 = 1.0; % parameter to control the first-order term
+alpha0 = 2.0; % parameter to control the second-order term
+iter_TGV = 500; % number of Primal-Dual iterations for TGV
+tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+rmseTGV = RMSE(Ideal3D(:),u_tgv(:));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
+figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)');
+%%
+%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
+fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
+
+% create another volume (reference) with slightly less amount of noise
+vol3D_ref = zeros(N,N,slices, 'single');
+for i = 1:slices
+vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
+end
+vol3D_ref(vol3D_ref < 0) = 0;
+% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+iter_fgp = 300; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)');
+%%
+fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
+
+% create another volume (reference) with slightly less amount of noise
+vol3D_ref = zeros(N,N,slices, 'single');
+for i = 1:slices
+vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
+end
+vol3D_ref(vol3D_ref < 0) = 0;
+% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+iter_fgp = 300; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)');
+%%
diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m
new file mode 100644
index 0000000..2031853
--- /dev/null
+++ b/demos/demoMatlab_denoise.m
@@ -0,0 +1,189 @@
+% Image (2D) denoising demo using CCPi-RGL
+clear; close all
+fsep = '/';
+
+Path1 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i);
+Path2 = sprintf([ data' fsep], 1i);
+Path3 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'supp'], 1i);
+addpath(Path1); addpath(Path2); addpath(Path3);
+
+Im = double(imread('lena_gray_512.tif'))/255; % loading image
+u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+figure; imshow(u0, [0 1]); title('Noisy image');
+
+lambda_reg = 0.03; % regularsation parameter for all methods
+%%
+fprintf('Denoise using the ROF-TV model (CPU) \n');
+tau_rof = 0.0025; % time-marching constant
+iter_rof = 750; % number of ROF iterations
+tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
+energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
+rmseROF = (RMSE(u_rof(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
+figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
+%%
+% fprintf('Denoise using the ROF-TV model (GPU) \n');
+% tau_rof = 0.0025; % time-marching constant
+% iter_rof = 750; % number of ROF iterations
+% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc;
+% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
+%%
+fprintf('Denoise using the FGP-TV model (CPU) \n');
+iter_fgp = 1000; % number of FGP iterations
+epsil_tol = 1.0e-06; % tolerance
+tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
+energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
+rmseFGP = (RMSE(u_fgp(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
+figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
+
+%%
+% fprintf('Denoise using the FGP-TV model (GPU) \n');
+% iter_fgp = 1000; % number of FGP iterations
+% epsil_tol = 1.0e-05; % tolerance
+% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
+% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
+%%
+fprintf('Denoise using the SB-TV model (CPU) \n');
+iter_sb = 150; % number of SB iterations
+epsil_tol = 1.0e-06; % tolerance
+tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
+energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
+rmseSB = (RMSE(u_sb(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
+figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
+%%
+% fprintf('Denoise using the SB-TV model (GPU) \n');
+% iter_sb = 150; % number of SB iterations
+% epsil_tol = 1.0e-06; % tolerance
+% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
+% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
+%%
+fprintf('Denoise using the TGV model (CPU) \n');
+lambda_TGV = 0.045; % regularisation parameter
+alpha1 = 1.0; % parameter to control the first-order term
+alpha0 = 2.0; % parameter to control the second-order term
+iter_TGV = 2000; % number of Primal-Dual iterations for TGV
+tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+rmseTGV = (RMSE(u_tgv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
+figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
+%%
+% fprintf('Denoise using the TGV model (GPU) \n');
+% lambda_TGV = 0.045; % regularisation parameter
+% alpha1 = 1.0; % parameter to control the first-order term
+% alpha0 = 2.0; % parameter to control the second-order term
+% iter_TGV = 2000; % number of Primal-Dual iterations for TGV
+% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
+% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
+%%
+fprintf('Denoise using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+iter_LLT = 1; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
+figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
+%%
+% fprintf('Denoise using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+% iter_LLT = 500; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
+% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
+%%
+fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
+iter_diff = 800; % number of diffusion iterations
+lambda_regDiff = 0.025; % regularisation for the diffusivity
+sigmaPar = 0.015; % edge-preserving parameter
+tau_param = 0.025; % time-marching constant
+tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+rmseDiffus = (RMSE(u_diff(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
+figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
+%%
+% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
+% iter_diff = 800; % number of diffusion iterations
+% lambda_regDiff = 0.025; % regularisation for the diffusivity
+% sigmaPar = 0.015; % edge-preserving parameter
+% tau_param = 0.025; % time-marching constant
+% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
+%%
+fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
+iter_diff = 800; % number of diffusion iterations
+lambda_regDiff = 3.5; % regularisation for the diffusivity
+sigmaPar = 0.02; % edge-preserving parameter
+tau_param = 0.0015; % time-marching constant
+tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
+figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
+%%
+% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
+% iter_diff = 800; % number of diffusion iterations
+% lambda_regDiff = 3.5; % regularisation for the diffusivity
+% sigmaPar = 0.02; % edge-preserving parameter
+% tau_param = 0.0015; % time-marching constant
+% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)');
+%%
+fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n');
+SearchingWindow = 7;
+PatchWindow = 2;
+NeighboursNumber = 20; % the number of neibours to include
+h = 0.23; % edge related parameter for NLM
+tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc;
+%%
+fprintf('Denoise using Non-local Total Variation (CPU) \n');
+iter_nltv = 3; % number of nltv iterations
+lambda_nltv = 0.05; % regularisation parameter for nltv
+tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc;
+rmse_nltv = (RMSE(u_nltv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv);
+figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)');
+%%
+%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
+
+fprintf('Denoise using the FGP-dTV model (CPU) \n');
+% create another image (reference) with slightly less amount of noise
+u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
+% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+iter_fgp = 1000; % number of FGP iterations
+epsil_tol = 1.0e-06; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
+figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
+%%
+% fprintf('Denoise using the FGP-dTV model (GPU) \n');
+% % create another image (reference) with slightly less amount of noise
+% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
+% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+%
+% iter_fgp = 1000; % number of FGP iterations
+% epsil_tol = 1.0e-06; % tolerance
+% eta = 0.2; % Reference image gradient smoothing constant
+% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
+%%
+fprintf('Denoise using the TNV prior (CPU) \n');
+slices = 5; N = 512;
+vol3D = zeros(N,N,slices, 'single');
+for i = 1:slices
+vol3D(:,:,i) = Im + .05*randn(size(Im));
+end
+vol3D(vol3D < 0) = 0;
+
+iter_tnv = 200; % number of TNV iterations
+tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc;
+figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)');
diff --git a/demos/demoMatlab_inpaint.m b/demos/demoMatlab_inpaint.m
new file mode 100644
index 0000000..a85f2b9
--- /dev/null
+++ b/demos/demoMatlab_inpaint.m
@@ -0,0 +1,35 @@
+% Image (2D) inpainting demo using CCPi-RGL
+clear; close all
+Path1 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'mex_compile' filesep 'installed'], 1i);
+Path2 = sprintf(['data' filesep], 1i);
+addpath(Path1);
+addpath(Path2);
+
+load('SinoInpaint.mat');
+Sinogram = Sinogram./max(Sinogram(:));
+Sino_mask = Sinogram.*(1-single(Mask));
+figure;
+subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram');
+subplot(1,2,2); imshow(Mask, [0 1]); title('Mask');
+%%
+fprintf('Inpaint using Linear-Diffusion model (CPU) \n');
+iter_diff = 5000; % number of diffusion iterations
+lambda_regDiff = 6000; % regularisation for the diffusivity
+sigmaPar = 0.0; % edge-preserving parameter
+tau_param = 0.000075; % time-marching constant
+tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)');
+%%
+fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n');
+iter_diff = 1500; % number of diffusion iterations
+lambda_regDiff = 80; % regularisation for the diffusivity
+sigmaPar = 0.00009; % edge-preserving parameter
+tau_param = 0.000008; % time-marching constant
+tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)');
+%%
+fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n');
+Increment = 1; % linear increment for the searching window
+tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc;
+figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)');
+%% \ No newline at end of file
diff --git a/demos/demo_cpu_inpainters.py b/demos/demo_cpu_inpainters.py
new file mode 100644
index 0000000..d07e74a
--- /dev/null
+++ b/demos/demo_cpu_inpainters.py
@@ -0,0 +1,192 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Demonstration of CPU inpainters
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from scipy import io
+from ccpi.filters.regularisers import NDF_INP, NVM_INP
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'maskData':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+
+# read sinogram and the mask
+filename = os.path.join("data" ,"SinoInpaint.mat")
+sino = io.loadmat(filename)
+sino_full = sino.get('Sinogram')
+Mask = sino.get('Mask')
+[angles_dim,detectors_dim] = sino_full.shape
+sino_full = sino_full/np.max(sino_full)
+#apply mask to sinogram
+sino_cut = sino_full*(1-Mask)
+#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32')
+#sino_cut_new = sino_cut.copy(order='c')
+#sino_cut_new[:] = sino_cut[:]
+sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32);
+#mask = np.zeros((angles_dim,detectors_dim),'uint8')
+#mask =Mask.copy(order='c')
+#mask[:] = Mask[:]
+mask = np.ascontiguousarray(Mask, dtype=np.uint8);
+
+plt.figure(1)
+plt.subplot(121)
+plt.imshow(sino_cut_new,vmin=0.0, vmax=1)
+plt.title('Missing Data sinogram')
+plt.subplot(122)
+plt.imshow(mask)
+plt.title('Mask')
+plt.show()
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Inpainting using linear diffusion (2D)__")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(2)
+plt.suptitle('Performance of linear inpainting using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Missing data sinogram')
+imgplot = plt.imshow(sino_cut_new,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF_INP, \
+ 'input' : sino_cut_new,\
+ 'maskData' : mask,\
+ 'regularisation_parameter':5000,\
+ 'edge_parameter':0,\
+ 'number_of_iterations' :5000 ,\
+ 'time_marching_parameter':0.000075,\
+ 'penalty_type':0
+ }
+
+start_time = timeit.default_timer()
+ndf_inp_linear = NDF_INP(pars['input'],
+ pars['maskData'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'])
+
+rms = rmse(sino_full, ndf_inp_linear)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_inp_linear, cmap="gray")
+plt.title('{}'.format('Linear diffusion inpainting results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_Inpainting using nonlinear diffusion (2D)_")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(3)
+plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Missing data sinogram')
+imgplot = plt.imshow(sino_cut_new,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF_INP, \
+ 'input' : sino_cut_new,\
+ 'maskData' : mask,\
+ 'regularisation_parameter':80,\
+ 'edge_parameter':0.00009,\
+ 'number_of_iterations' :1500 ,\
+ 'time_marching_parameter':0.000008,\
+ 'penalty_type':1
+ }
+
+start_time = timeit.default_timer()
+ndf_inp_nonlinear = NDF_INP(pars['input'],
+ pars['maskData'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'])
+
+rms = rmse(sino_full, ndf_inp_nonlinear)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray")
+plt.title('{}'.format('Nonlinear diffusion inpainting results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("Inpainting using nonlocal vertical marching")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(4)
+plt.suptitle('Performance of NVM inpainting using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Missing data sinogram')
+imgplot = plt.imshow(sino_cut,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NVM_INP, \
+ 'input' : sino_cut_new,\
+ 'maskData' : mask,\
+ 'SW_increment': 1,\
+ 'number_of_iterations' : 150
+ }
+
+start_time = timeit.default_timer()
+(nvm_inp, mask_upd) = NVM_INP(pars['input'],
+ pars['maskData'],
+ pars['SW_increment'],
+ pars['number_of_iterations'])
+
+rms = rmse(sino_full, nvm_inp)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(nvm_inp, cmap="gray")
+plt.title('{}'.format('Nonlocal Vertical Marching inpainting results'))
+#%%
diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py
new file mode 100644
index 0000000..373502b
--- /dev/null
+++ b/demos/demo_cpu_regularisers.py
@@ -0,0 +1,572 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Demonstration of CPU regularisers
+
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th
+from ccpi.filters.regularisers import PatchSelect, NLTV
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'refdata':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+#%%
+filename = os.path.join( "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255.0
+perc = 0.05
+u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+(N,M) = np.shape(u0)
+# map the u0 u0->u0>0
+# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
+
+# change dims to check that modules work with non-squared images
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
+u_ref = u_ref2
+del u_ref2
+
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
+u0 = u02
+del u02
+
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
+Im = Im2
+del Im2
+"""
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________ROF-TV (2D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of ROF-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04,\
+ 'number_of_iterations': 1200,\
+ 'time_marching_parameter': 0.0025
+ }
+print ("#############ROF TV CPU####################")
+start_time = timeit.default_timer()
+rof_cpu = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+rms = rmse(Im, rof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-TV (2D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV CPU####################")
+start_time = timeit.default_timer()
+fgp_cpu = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, fgp_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________SB-TV (2D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of SB-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : SB_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :150 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############SB TV CPU####################")
+start_time = timeit.default_timer()
+sb_cpu = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, sb_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____Total Generalised Variation (2D)______")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1350 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+
+rms = rmse(Im, tgv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("________________NDF (2D)___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of NDF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.025, \
+ 'edge_parameter':0.015,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.025,\
+ 'penalty_type':1
+ }
+
+print ("#############NDF CPU################")
+start_time = timeit.default_timer()
+ndf_cpu = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'],'cpu')
+
+rms = rmse(Im, ndf_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Anisotropic Diffusion 4th Order (2D)____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of Diff4th regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : Diff4th, \
+ 'input' : u0,\
+ 'regularisation_parameter':3.5, \
+ 'edge_parameter':0.02,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.0015
+ }
+
+print ("#############Diff4th CPU################")
+start_time = timeit.default_timer()
+diff4_cpu = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, diff4_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Nonlocal patches pre-calculation____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+start_time = timeit.default_timer()
+# set parameters
+pars = {'algorithm' : PatchSelect, \
+ 'input' : u0,\
+ 'searchwindow': 7, \
+ 'patchwindow': 2,\
+ 'neighbours' : 15 ,\
+ 'edge_parameter':0.18}
+
+H_i, H_j, Weights = PatchSelect(pars['input'],
+ pars['searchwindow'],
+ pars['patchwindow'],
+ pars['neighbours'],
+ pars['edge_parameter'],'cpu')
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+"""
+plt.figure()
+plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
+plt.show()
+"""
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Nonlocal Total Variation penalty____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of NLTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+pars2 = {'algorithm' : NLTV, \
+ 'input' : u0,\
+ 'H_i': H_i, \
+ 'H_j': H_j,\
+ 'H_k' : 0,\
+ 'Weights' : Weights,\
+ 'regularisation_parameter': 0.04,\
+ 'iterations': 3
+ }
+start_time = timeit.default_timer()
+nltv_cpu = NLTV(pars2['input'],
+ pars2['H_i'],
+ pars2['H_j'],
+ pars2['H_k'],
+ pars2['Weights'],
+ pars2['regularisation_parameter'],
+ pars2['iterations'])
+
+rms = rmse(Im, nltv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(nltv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____________FGP-dTV (2D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dtv_cpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+rms = rmse(Im, fgp_dtv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("__________Total nuclear Variation__________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TNV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+channelsNo = 5
+noisyVol = np.zeros((channelsNo,N,M),dtype='float32')
+idealVol = np.zeros((channelsNo,N,M),dtype='float32')
+
+for i in range (channelsNo):
+ noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ idealVol[i,:,:] = Im
+
+# set parameters
+pars = {'algorithm' : TNV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter': 0.04, \
+ 'number_of_iterations' : 200 ,\
+ 'tolerance_constant':1e-05
+ }
+
+print ("#############TNV CPU#################")
+start_time = timeit.default_timer()
+tnv_cpu = TNV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'])
+
+rms = rmse(idealVol, tnv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray")
+plt.title('{}'.format('CPU results'))
diff --git a/demos/demo_cpu_regularisers3D.py b/demos/demo_cpu_regularisers3D.py
new file mode 100644
index 0000000..56baf13
--- /dev/null
+++ b/demos/demo_cpu_regularisers3D.py
@@ -0,0 +1,458 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Demonstration of 3D CPU regularisers
+
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'refdata':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+#%%
+filename = os.path.join( "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.05
+u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+(N,M) = np.shape(u0)
+# map the u0 u0->u0>0
+# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
+
+# change dims to check that modules work with non-squared images
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
+u_ref = u_ref2
+del u_ref2
+
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
+u0 = u02
+del u02
+
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
+Im = Im2
+del Im2
+"""
+slices = 15
+
+noisyVol = np.zeros((slices,N,M),dtype='float32')
+noisyRef = np.zeros((slices,N,M),dtype='float32')
+idealVol = np.zeros((slices,N,M),dtype='float32')
+
+for i in range (slices):
+ noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
+ idealVol[i,:,:] = Im
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________ROF-TV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of ROF-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy 15th slice of a volume')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04,\
+ 'number_of_iterations': 500,\
+ 'time_marching_parameter': 0.0025
+ }
+print ("#############ROF TV CPU####################")
+start_time = timeit.default_timer()
+rof_cpu3D = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+rms = rmse(idealVol, rof_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-TV (3D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV CPU####################")
+start_time = timeit.default_timer()
+fgp_cpu3D = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(idealVol, fgp_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________SB-TV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of SB-TV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : SB_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :150 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############SB TV CPU####################")
+start_time = timeit.default_timer()
+sb_cpu3D = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'cpu')
+
+rms = rmse(idealVol, sb_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using SB-TV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(idealVol, lltrof_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________TGV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu3D = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+
+rms = rmse(idealVol, tgv_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using TGV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("________________NDF (3D)___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of NDF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy volume')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.025, \
+ 'edge_parameter':0.015,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.025,\
+ 'penalty_type': 1
+ }
+
+print ("#############NDF CPU################")
+start_time = timeit.default_timer()
+ndf_cpu3D = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'])
+
+rms = rmse(idealVol, ndf_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using NDF iterations'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Anisotropic Diffusion 4th Order (2D)____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of Diff4th regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy volume')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : Diff4th, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':3.5, \
+ 'edge_parameter':0.02,\
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter':0.0015
+ }
+
+print ("#############Diff4th CPU################")
+start_time = timeit.default_timer()
+diff4th_cpu3D = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'])
+
+rms = rmse(idealVol, diff4th_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-dTV (3D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV,\
+ 'input' : noisyVol,\
+ 'refdata' : noisyRef,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dTV_cpu3D = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(idealVol, fgp_dTV_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV'))
+#%%
diff --git a/demos/demo_cpu_vs_gpu_regularisers.py b/demos/demo_cpu_vs_gpu_regularisers.py
new file mode 100644
index 0000000..5ce8da4
--- /dev/null
+++ b/demos/demo_cpu_vs_gpu_regularisers.py
@@ -0,0 +1,790 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Demonstration of CPU implementation against the GPU one
+
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from ccpi.filters.regularisers import PatchSelect
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'refdata':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+
+filename = os.path.join("data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.05
+u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+
+# map the u0 u0->u0>0
+# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________ROF-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04,\
+ 'number_of_iterations': 4500,\
+ 'time_marching_parameter': 0.00002
+ }
+print ("#############ROF TV CPU####################")
+start_time = timeit.default_timer()
+rof_cpu = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+rms = rmse(Im, rof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############ROF TV GPU##################")
+start_time = timeit.default_timer()
+rof_gpu = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, rof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = ROF_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(rof_cpu - rof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :1200 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV CPU####################")
+start_time = timeit.default_timer()
+fgp_cpu = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, fgp_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############FGP TV GPU##################")
+start_time = timeit.default_timer()
+fgp_gpu = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(fgp_cpu))
+diff_im = abs(fgp_cpu - fgp_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________SB-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : SB_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :150 ,\
+ 'tolerance_constant':1e-05,\
+ 'methodTV': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############SB-TV CPU####################")
+start_time = timeit.default_timer()
+sb_cpu = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, sb_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############SB TV GPU##################")
+start_time = timeit.default_timer()
+sb_gpu = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, sb_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = SB_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(sb_cpu))
+diff_im = abs(sb_cpu - sb_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________TGV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :400 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+rms = rmse(Im, tgv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############TGV GPU##################")
+start_time = timeit.default_timer()
+tgv_gpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+rms = rmse(Im, tgv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = TGV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(tgv_gpu))
+diff_im = abs(tgv_cpu - tgv_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________LLT-ROF bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :4500 ,\
+ 'time_marching_parameter' :0.00002 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = LLT_ROF
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(lltrof_gpu))
+diff_im = abs(lltrof_cpu - lltrof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________NDF bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.06, \
+ 'edge_parameter':0.04,\
+ 'number_of_iterations' :1000 ,\
+ 'time_marching_parameter':0.025,\
+ 'penalty_type': 1
+ }
+
+print ("#############NDF CPU####################")
+start_time = timeit.default_timer()
+ndf_cpu = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'],'cpu')
+
+rms = rmse(Im, ndf_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############NDF GPU##################")
+start_time = timeit.default_timer()
+ndf_gpu = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'],'gpu')
+
+rms = rmse(Im, ndf_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = NDF
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(ndf_cpu))
+diff_im = abs(ndf_cpu - ndf_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Anisotropic Diffusion 4th Order (2D)____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : Diff4th, \
+ 'input' : u0,\
+ 'regularisation_parameter':3.5, \
+ 'edge_parameter':0.02,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.001
+ }
+
+print ("#############Diff4th CPU####################")
+start_time = timeit.default_timer()
+diff4th_cpu = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, diff4th_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4th_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############Diff4th GPU##################")
+start_time = timeit.default_timer()
+diff4th_gpu = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'], 'gpu')
+
+rms = rmse(Im, diff4th_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = Diff4th
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4th_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(diff4th_cpu))
+diff_im = abs(diff4th_cpu - diff4th_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-dTV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :1000 ,\
+ 'tolerance_constant':1e-07,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dtv_cpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, fgp_dtv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############FGP dTV GPU##################")
+start_time = timeit.default_timer()
+fgp_dtv_gpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+rms = rmse(Im, fgp_dtv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_dTV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(fgp_dtv_cpu))
+diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____Non-local regularisation bench_________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of Nonlocal TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+pars = {'algorithm' : PatchSelect, \
+ 'input' : u0,\
+ 'searchwindow': 7, \
+ 'patchwindow': 2,\
+ 'neighbours' : 15 ,\
+ 'edge_parameter':0.18}
+
+print ("############## Nonlocal Patches on CPU##################")
+start_time = timeit.default_timer()
+H_i, H_j, WeightsCPU = PatchSelect(pars['input'],
+ pars['searchwindow'],
+ pars['patchwindow'],
+ pars['neighbours'],
+ pars['edge_parameter'],'cpu')
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+print ("############## Nonlocal Patches on GPU##################")
+start_time = timeit.default_timer()
+start_time = timeit.default_timer()
+H_i, H_j, WeightsGPU = PatchSelect(pars['input'],
+ pars['searchwindow'],
+ pars['patchwindow'],
+ pars['neighbours'],
+ pars['edge_parameter'],'gpu')
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(u0))
+diff_im = abs(WeightsCPU[0,:,:] - WeightsGPU[0,:,:])
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,2,2)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%% \ No newline at end of file
diff --git a/demos/demo_gpu_regularisers.py b/demos/demo_gpu_regularisers.py
new file mode 100644
index 0000000..bc9baf2
--- /dev/null
+++ b/demos/demo_gpu_regularisers.py
@@ -0,0 +1,518 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Demonstration of GPU regularisers
+
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from ccpi.filters.regularisers import PatchSelect, NLTV
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'refdata':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+#%%
+filename = os.path.join( "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.05
+u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+(N,M) = np.shape(u0)
+# map the u0 u0->u0>0
+# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
+u_ref = u_ref2
+del u_ref2
+
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
+u0 = u02
+del u02
+
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
+Im = Im2
+del Im2
+"""
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________ROF-TV regulariser_____________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of the ROF-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04,\
+ 'number_of_iterations': 1200,\
+ 'time_marching_parameter': 0.0025
+ }
+print ("##############ROF TV GPU##################")
+start_time = timeit.default_timer()
+rof_gpu = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, rof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = ROF_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-TV regulariser_____________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of the FGP-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :1200 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("##############FGP TV GPU##################")
+start_time = timeit.default_timer()
+fgp_gpu = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________SB-TV regulariser______________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of the SB-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : SB_TV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :150 ,\
+ 'tolerance_constant':1e-06,\
+ 'methodTV': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("##############SB TV GPU##################")
+start_time = timeit.default_timer()
+sb_gpu = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, sb_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = SB_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____Total Generalised Variation (2D)______")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :1250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_gpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+
+rms = rmse(Im, tgv_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________NDF regulariser_____________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of the NDF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.025, \
+ 'edge_parameter':0.015,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.025,\
+ 'penalty_type': 1
+ }
+
+print ("##############NDF GPU##################")
+start_time = timeit.default_timer()
+ndf_gpu = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'],'gpu')
+
+rms = rmse(Im, ndf_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = NDF
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Anisotropic Diffusion 4th Order (2D)____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of Diff4th regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : Diff4th, \
+ 'input' : u0,\
+ 'regularisation_parameter':3.5, \
+ 'edge_parameter':0.02,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.0015
+ }
+
+print ("#############DIFF4th CPU################")
+start_time = timeit.default_timer()
+diff4_gpu = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, diff4_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Nonlocal patches pre-calculation____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+start_time = timeit.default_timer()
+# set parameters
+pars = {'algorithm' : PatchSelect, \
+ 'input' : u0,\
+ 'searchwindow': 7, \
+ 'patchwindow': 2,\
+ 'neighbours' : 15 ,\
+ 'edge_parameter':0.18}
+
+H_i, H_j, Weights = PatchSelect(pars['input'],
+ pars['searchwindow'],
+ pars['patchwindow'],
+ pars['neighbours'],
+ pars['edge_parameter'],'gpu')
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+"""
+plt.figure()
+plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
+plt.show()
+"""
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Nonlocal Total Variation penalty____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of NLTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+pars2 = {'algorithm' : NLTV, \
+ 'input' : u0,\
+ 'H_i': H_i, \
+ 'H_j': H_j,\
+ 'H_k' : 0,\
+ 'Weights' : Weights,\
+ 'regularisation_parameter': 0.02,\
+ 'iterations': 3
+ }
+start_time = timeit.default_timer()
+nltv_cpu = NLTV(pars2['input'],
+ pars2['H_i'],
+ pars2['H_j'],
+ pars2['H_k'],
+ pars2['Weights'],
+ pars2['regularisation_parameter'],
+ pars2['iterations'])
+
+rms = rmse(Im, nltv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(nltv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-dTV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of the FGP-dTV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("##############FGP dTV GPU##################")
+start_time = timeit.default_timer()
+fgp_dtv_gpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_dtv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_dTV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
diff --git a/demos/demo_gpu_regularisers3D.py b/demos/demo_gpu_regularisers3D.py
new file mode 100644
index 0000000..2f49cb9
--- /dev/null
+++ b/demos/demo_gpu_regularisers3D.py
@@ -0,0 +1,460 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Demonstration of GPU regularisers
+
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
+from qualitymetrics import rmse
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ elif key == 'refdata':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+#%%
+filename = os.path.join( "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.05
+u0 = Im + np.random.normal(loc = 0 ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+(N,M) = np.shape(u0)
+# map the u0 u0->u0>0
+# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
+"""
+M = M-100
+u_ref2 = np.zeros([N,M],dtype='float32')
+u_ref2[:,0:M] = u_ref[:,0:M]
+u_ref = u_ref2
+del u_ref2
+
+u02 = np.zeros([N,M],dtype='float32')
+u02[:,0:M] = u0[:,0:M]
+u0 = u02
+del u02
+
+Im2 = np.zeros([N,M],dtype='float32')
+Im2[:,0:M] = Im[:,0:M]
+Im = Im2
+del Im2
+"""
+
+
+slices = 20
+
+filename = os.path.join( "data" ,"lena_gray_512.tif")
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.05
+
+noisyVol = np.zeros((slices,N,N),dtype='float32')
+noisyRef = np.zeros((slices,N,N),dtype='float32')
+idealVol = np.zeros((slices,N,N),dtype='float32')
+
+for i in range (slices):
+ noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
+ idealVol[i,:,:] = Im
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________ROF-TV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of ROF-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy 15th slice of a volume')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04,\
+ 'number_of_iterations': 500,\
+ 'time_marching_parameter': 0.0025
+ }
+print ("#############ROF TV GPU####################")
+start_time = timeit.default_timer()
+rof_gpu3D = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+rms = rmse(idealVol, rof_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using ROF-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-TV (3D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV GPU####################")
+start_time = timeit.default_timer()
+fgp_gpu3D = FGP_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(idealVol, fgp_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________SB-TV (3D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of SB-TV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : SB_TV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :100 ,\
+ 'tolerance_constant':1e-05,\
+ 'methodTV': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############SB TV GPU####################")
+start_time = timeit.default_timer()
+sb_gpu3D = SB_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(idealVol, sb_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using SB-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(idealVol, lltrof_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________TGV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':2.0,\
+ 'number_of_iterations' :600 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV GPU####################")
+start_time = timeit.default_timer()
+tgv_gpu3D = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+
+rms = rmse(idealVol, tgv_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using TGV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________NDF-TV (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of NDF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NDF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':0.025, \
+ 'edge_parameter':0.015,\
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter':0.025,\
+ 'penalty_type': 1
+ }
+
+print ("#############NDF GPU####################")
+start_time = timeit.default_timer()
+ndf_gpu3D = NDF(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['penalty_type'],'gpu')
+
+rms = rmse(idealVol, ndf_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using NDF'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("___Anisotropic Diffusion 4th Order (3D)____")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of DIFF4th regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : Diff4th, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter':3.5, \
+ 'edge_parameter':0.02,\
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter':0.0015
+ }
+
+print ("#############DIFF4th CPU################")
+start_time = timeit.default_timer()
+diff4_gpu3D = Diff4th(pars['input'],
+ pars['regularisation_parameter'],
+ pars['edge_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(idealVol, diff4_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-dTV (3D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : noisyVol,\
+ 'refdata' : noisyRef,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV GPU####################")
+start_time = timeit.default_timer()
+fgp_dTV_gpu3D = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(idealVol, fgp_dTV_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV'))
+#%%
diff --git a/demos/images/TV_vs_NLTV.jpg b/demos/images/TV_vs_NLTV.jpg
new file mode 100644
index 0000000..e976512
--- /dev/null
+++ b/demos/images/TV_vs_NLTV.jpg
Binary files differ
diff --git a/demos/images/probl.pdf b/demos/images/probl.pdf
new file mode 100644
index 0000000..6a06021
--- /dev/null
+++ b/demos/images/probl.pdf
Binary files differ
diff --git a/demos/images/probl.png b/demos/images/probl.png
new file mode 100644
index 0000000..af0e852
--- /dev/null
+++ b/demos/images/probl.png
Binary files differ
diff --git a/demos/images/reg_penalties.jpg b/demos/images/reg_penalties.jpg
new file mode 100644
index 0000000..923d5c4
--- /dev/null
+++ b/demos/images/reg_penalties.jpg
Binary files differ
diff --git a/demos/qualitymetrics.py b/demos/qualitymetrics.py
new file mode 100644
index 0000000..850829e
--- /dev/null
+++ b/demos/qualitymetrics.py
@@ -0,0 +1,18 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Feb 21 13:34:32 2018
+# quality metrics
+@authors: Daniil Kazantsev, Edoardo Pasca
+"""
+import numpy as np
+
+def nrmse(im1, im2):
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+
+def rmse(im1, im2):
+ rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
+ return rmse