diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-17 12:58:28 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-17 12:58:28 +0100 |
commit | d0a33e4f941539ba44a071cfab75d7bf9543990f (patch) | |
tree | ed825ba90ca17448ab07309435095f3612ffe703 /Wrappers | |
parent | 7e556922a60e052d24c1e467df13423904729357 (diff) | |
download | regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.gz regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.bz2 regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.xz regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.zip |
TNV module added
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 11 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileCPU_mex.m | 5 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c | 73 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/filters/regularisers.py | 7 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 53 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularisers.pyx | 26 |
6 files changed, 172 insertions, 3 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 129bedc..dab98dc 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -70,3 +70,14 @@ figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); % tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; % figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); %% +fprintf('Denoise using the TNV prior (CPU) \n'); +slices = 5; N = 512; +vol3D = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +end +vol3D(vol3D < 0) = 0; + +iter_tnv = 200; % number of TNV iterations +tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; +figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index c3c82ff..9892d73 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -17,7 +17,10 @@ movefile SB_TV.mex* ../installed/ mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile FGP_dTV.mex* ../installed/ -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* utils* CCPiDefines.h +mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile TNV.mex* ../installed/ + +delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* CCPiDefines.h fprintf('%s \n', 'All successfully compiled!'); diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c new file mode 100644 index 0000000..e0584c4 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c @@ -0,0 +1,73 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "TNV_core.h" +/* + * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] + * The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see + * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package + * + * Input Parameters: + * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume + * 2. lambda - regularisation parameter + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon - tolerance constant [OPTIONAL parameter] + * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] + * + * Output: + * 1. Filtered/regularized image + * + * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. + */ +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ; + const int *dim_array; + float *Input, *Output=NULL, lambda, epsil; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D + channels), Regularisation parameter, Regularization parameter, iterations number, tolerance"); + + Input = (float *) mxGetData(prhs[0]); /* noisy sequence of channels (2D + channels) */ + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + iter = 1000; /* default iterations number */ + epsil = 1.00e-05; /* default tolerance constant */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + if ((nrhs == 3) || (nrhs == 4)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if (nrhs == 4) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) mexErrMsgTxt("The input must be 3D: [X,Y,Channels]"); + if (number_of_dims == 3) { + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + /* running the function */ + TNV_CPU_main(Input, Output, lambda, iter, epsil, dimX, dimY, dimZ); + } +}
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py index 50c4374..81deea9 100644 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ b/Wrappers/Python/ccpi/filters/regularisers.py @@ -2,7 +2,7 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU +from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU def ROF_TV(inputData, regularisation_parameter, iterations, @@ -86,3 +86,8 @@ def FGP_dTV(inputData, refdata, regularisation_parameter, iterations, else: raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) +def TNV(inputData, regularisation_parameter, iterations, tolerance_param): + return TNV_CPU_pyx(inputData, + regularisation_parameter, + iterations, + tolerance_param) diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 0e4355b..e74fa58 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -242,6 +242,57 @@ imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") plt.title('{}'.format('CPU results')) +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("__________Total nuclear Variation__________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of TNV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +channelsNo = 5 +N = 512 +noisyVol = np.zeros((channelsNo,N,N),dtype='float32') +idealVol = np.zeros((channelsNo,N,N),dtype='float32') + +for i in range (slices): + noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + idealVol[i,:,:] = Im + +# set parameters +pars = {'algorithm' : TNV, \ + 'input' : noisyVol,\ + 'regularisation_parameter': 0.04, \ + 'number_of_iterations' : 200 ,\ + 'tolerance_constant':1e-05 + } + +print ("#############TNV CPU#################") +start_time = timeit.default_timer() +tnv_cpu = TNV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant']) + +rms = rmse(idealVol, tnv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray") +plt.title('{}'.format('CPU results')) + # Uncomment to test 3D regularisation performance #%% diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 417670d..898bb40 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -21,6 +21,7 @@ cimport numpy as np cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); +cdef extern float TNV_CPU_main(float *Input, float *u, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); @@ -249,3 +250,28 @@ def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, printM, dims[2], dims[1], dims[0]) return outputData + +#****************************************************************# +#*********************Total Nuclear Variation********************# +#****************************************************************# +def TNV_CPU_pyx(inputData, regularisation_parameter, iterationsNumb, tolerance_param): + if inputData.ndim == 2: + return + elif inputData.ndim == 3: + return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param) + +def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularisation_parameter, + int iterationsNumb, + float tolerance_param): + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + + # Run TNV iterations for 3D (X,Y,Channels) data + TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0]) + return outputData |