summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-03-06 11:16:41 +0000
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-03-06 11:16:41 +0000
commitccf9b61bba1004af783c6333d58ea9611c0f81f2 (patch)
tree90616e9fe22fec663af14df05af4f0ad3a273a8b /Wrappers
parent74ff5b5f319b2f7ea3e078c62041ec8a1bb28335 (diff)
downloadregularization-ccf9b61bba1004af783c6333d58ea9611c0f81f2.tar.gz
regularization-ccf9b61bba1004af783c6333d58ea9611c0f81f2.tar.bz2
regularization-ccf9b61bba1004af783c6333d58ea9611c0f81f2.tar.xz
regularization-ccf9b61bba1004af783c6333d58ea9611c0f81f2.zip
ROF_FGP_unified syntax
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/src/cpu_regularizers.pyx59
1 files changed, 27 insertions, 32 deletions
diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx
index 448da31..2654831 100644
--- a/Wrappers/Python/src/cpu_regularizers.pyx
+++ b/Wrappers/Python/src/cpu_regularizers.pyx
@@ -11,73 +11,68 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-Author: Edoardo Pasca
+Author: Edoardo Pasca, Daniil Kazantsev
"""
import cython
import numpy as np
cimport numpy as np
-cdef extern float TV_ROF_CPU_main(float *Input, float *Output, int dimX, int dimY, int dimZ, int iterationsNumb, float tau, float flambda);
-cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
+cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
+cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-# Can we use the same name here in "def" as the C function?
-def TV_ROF_CPU(inputData, iterations, regularization_parameter,
+def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb
marching_step_parameter):
if inputData.ndim == 2:
- return TV_ROF_2D(inputData, iterations, regularization_parameter,
+ return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb
marching_step_parameter)
elif inputData.ndim == 3:
- return TV_ROF_3D(inputData, iterations, regularization_parameter,
+ return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb
marching_step_parameter)
def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int iterations,
float regularization_parameter,
- float marching_step_parameter
- ):
-
+ int iterationsNumb,
+ float marching_step_parameter):
cdef long dims[2]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
- #/* Run ROF iterations for 2D data */
- TV_ROF_CPU_main(&inputData[0,0], &B[0,0], dims[0], dims[1], 1, iterations,
- marching_step_parameter, regularization_parameter)
+ # Run ROF iterations for 2D data
+ TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
- return B
+ return outputData
def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
int iterations,
float regularization_parameter,
float marching_step_parameter
):
- cdef long dims[2]
+ cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
- #/* Run ROF iterations for 3D data */
- TV_ROF_CPU_main(&inputData[0,0,0], &B[0,0,0], dims[0], dims[1], dims[2], iterations,
- marching_step_parameter, regularization_parameter)
+ # Run ROF iterations for 3D data
+ TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
- return B
+ return outputData
-def TV_FGP_CPU(inputData, regularization_parameter, iterations, tolerance_param, methodTV, nonneg, printM):
+def TV_FGP_CPU(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
if inputData.ndim == 2:
- return TV_FGP_2D(inputData, regularization_parameter, iterations, tolerance_param, methodTV, nonneg, printM)
+ return TV_FGP_2D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
elif inputData.ndim == 3:
- return TV_FGP_3D(inputData, regularization_parameter, iterations, tolerance_param, methodTV, nonneg, printM)
+ return TV_FGP_3D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularization_parameter,
- int iterations,
+ int iterationsNumb,
float tolerance_param,
int methodTV,
int nonneg,
@@ -92,7 +87,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
#/* Run ROF iterations for 2D data */
TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter,
- iterations,
+ iterationsNumb,
tolerance_param,
methodTV,
nonneg,
@@ -103,22 +98,22 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
float regularization_parameter,
- int iterations,
+ int iterationsNumb,
float tolerance_param,
int methodTV,
int nonneg,
int printM):
- cdef long dims[2]
+ cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
#/* Run ROF iterations for 3D data */
- TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0, 0], regularization_parameter,
- iterations,
+ TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter,
+ iterationsNumb,
tolerance_param,
methodTV,
nonneg,