summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authoralgol <dkazanc@hotmail.com>2018-03-06 11:45:53 +0000
committeralgol <dkazanc@hotmail.com>2018-03-06 11:45:53 +0000
commit8d310478254f3cda63f3663729b416f425ad70b6 (patch)
tree63d5132feec37d5b99ca8f6879363d9dd88520a9 /Wrappers
parentccf9b61bba1004af783c6333d58ea9611c0f81f2 (diff)
downloadregularization-8d310478254f3cda63f3663729b416f425ad70b6.tar.gz
regularization-8d310478254f3cda63f3663729b416f425ad70b6.tar.bz2
regularization-8d310478254f3cda63f3663729b416f425ad70b6.tar.xz
regularization-8d310478254f3cda63f3663729b416f425ad70b6.zip
work on FGP intergration
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demo/test_cpu_regularizers.py17
-rw-r--r--Wrappers/Python/src/cpu_regularizers.pyx14
2 files changed, 14 insertions, 17 deletions
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py
index 53b8538..f1eb3c3 100644
--- a/Wrappers/Python/demo/test_cpu_regularizers.py
+++ b/Wrappers/Python/demo/test_cpu_regularizers.py
@@ -131,9 +131,9 @@ imgplot = plt.imshow(splitbregman,\
start_time = timeit.default_timer()
pars = {'algorithm' : TV_FGP_CPU , \
'input' : u0,
- 'regularization_parameter':0.05, \
- 'number_of_iterations' :200 ,\
- 'tolerance_constant':1e-5,\
+ 'regularization_parameter':0.07, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
'methodTV': 0 ,\
'nonneg': 0 ,\
'printingOut': 0
@@ -156,7 +156,7 @@ txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
print (txtstr)
-a=fig.add_subplot(2,4,3)
+a=fig.add_subplot(2,4,4)
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
@@ -168,8 +168,9 @@ imgplot = plt.imshow(fgp, \
a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-###################### LLT_model #########################################
+###################### LLT_model #########################################
+"""
start_time = timeit.default_timer()
pars = {'algorithm': LLT_model , \
@@ -204,7 +205,7 @@ a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(llt,\
cmap="gray"
)
-
+"""
# ###################### PatchBased_Regul #########################################
# # Quick 2D denoising example in Matlab:
@@ -292,8 +293,8 @@ pars = {'algorithm': TV_ROF_CPU , \
'number_of_iterations': 300
}
rof = TV_ROF_CPU(pars['input'],
- pars['number_of_iterations'],
- pars['regularization_parameter'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
pars['marching_step']
)
#tgv = out
diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx
index 2654831..d62ca59 100644
--- a/Wrappers/Python/src/cpu_regularizers.pyx
+++ b/Wrappers/Python/src/cpu_regularizers.pyx
@@ -21,14 +21,11 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb
- marching_step_parameter):
+def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb, marching_step_parameter):
if inputData.ndim == 2:
- return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb
- marching_step_parameter)
+ return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
elif inputData.ndim == 3:
- return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb
- marching_step_parameter)
+ return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularization_parameter,
@@ -47,10 +44,9 @@ def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
return outputData
def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- int iterations,
+ int iterationsNumb,
float regularization_parameter,
- float marching_step_parameter
- ):
+ float marching_step_parameter):
cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]