summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authordkazanc <dkazanc@hotmail.com>2018-03-07 10:26:56 +0000
committerGitHub <noreply@github.com>2018-03-07 10:26:56 +0000
commit3ed9b4129cdab5110e67a4705b3bd52fd9781f8b (patch)
tree2c158b86dff89d8b7f5622cbdce8d5600eaaab5e /Wrappers
parentb8e4e8d89432cfaa860835d873b52e4df40d92d5 (diff)
parentfbb7a12f7714978c251f02bf84ab9a66c762f428 (diff)
downloadregularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.gz
regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.bz2
regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.xz
regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.zip
Merge pull request #40 from vais-ral/GPU_test
ROF/FGP updated via Cython
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c142
-rw-r--r--Wrappers/Python/ccpi/filters/regularizers.py44
-rw-r--r--Wrappers/Python/demo/test_cpu_regularizers.py55
-rw-r--r--Wrappers/Python/setup-regularizers.py.in6
-rw-r--r--Wrappers/Python/src/cpu_regularizers.cpp291
-rw-r--r--Wrappers/Python/src/cpu_regularizers.pyx106
-rw-r--r--Wrappers/Python/src/gpu_regularizers.pyx151
-rw-r--r--Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py219
-rw-r--r--Wrappers/Python/test/test_gpu_regularizers.py113
9 files changed, 598 insertions, 529 deletions
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
index 30cea1a..7cc861a 100644
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
@@ -53,9 +53,9 @@ void mexFunction(
int nrhs, const mxArray *prhs[])
{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+ int number_of_dims, iter, dimX, dimY, dimZ, methTV;
const int *dim_array;
- float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
+ float *Input, *Output, lambda, epsil;
number_of_dims = mxGetNumberOfDimensions(prhs[0]);
dim_array = mxGetDimensions(prhs[0]);
@@ -63,9 +63,9 @@ void mexFunction(
/*Handling Matlab input data*/
if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 50; /* default iterations number */
+ iter = 300; /* default iterations number */
epsil = 0.0001; /* default tolerance constant */
methTV = 0; /* default isotropic TV penalty */
@@ -78,139 +78,17 @@ void mexFunction(
if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
mxFree(penalty_type);
}
- /*output function value (last iteration) */
- plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
- float *funcvalA = (float *) mxGetData(plhs[1]);
if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
/*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- tk = 1.0f;
- tkp1=1.0f;
- count = 0;
- re_old = 0.0f;
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
if (number_of_dims == 2) {
dimZ = 1; /*2D case*/
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
-
- /* projection step */
- Proj_func2D(P1, P2, methTV, dimX, dimY);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
-
- /* calculate norm */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- /* calculating the objective function value */
- if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
- if (number_of_dims == 3) {
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
- /* projection step */
- Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 3) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- break;}
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- copyIm(P3, P3_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, 0, 0, dimX, dimY, dimZ);
+ }
+ if (number_of_dims == 3) {
+ }
}
diff --git a/Wrappers/Python/ccpi/filters/regularizers.py b/Wrappers/Python/ccpi/filters/regularizers.py
new file mode 100644
index 0000000..d6dfa8c
--- /dev/null
+++ b/Wrappers/Python/ccpi/filters/regularizers.py
@@ -0,0 +1,44 @@
+"""
+script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
+"""
+
+from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU, TV_FGP_CPU
+from ccpi.filters.gpu_regularizers import TV_ROF_GPU, TV_FGP_GPU
+
+def ROF_TV(inputData, regularization_parameter, iterations,
+ time_marching_parameter,device='cpu'):
+ if device == 'cpu':
+ return TV_ROF_CPU(inputData,
+ regularization_parameter,
+ iterations,
+ time_marching_parameter)
+ elif device == 'gpu':
+ return TV_ROF_GPU(inputData,
+ regularization_parameter,
+ iterations,
+ time_marching_parameter)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
+
+def FGP_TV(inputData, regularization_parameter,iterations,
+ tolerance_param, methodTV, nonneg, printM, device='cpu'):
+ if device == 'cpu':
+ return TV_FGP_CPU(inputData,
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM)
+ elif device == 'gpu':
+ return TV_FGP_GPU(inputData,
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device)) \ No newline at end of file
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py
index 5908c3c..76b9de7 100644
--- a/Wrappers/Python/demo/test_cpu_regularizers.py
+++ b/Wrappers/Python/demo/test_cpu_regularizers.py
@@ -11,11 +11,8 @@ import numpy as np
import os
from enum import Enum
import timeit
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
- LLT_model, PatchBased_Regul ,\
- TGV_PD
-from ccpi.filters.cpu_regularizers_cython import ROF_TV
-
+from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul, TGV_PD
+from ccpi.filters.regularizers import ROF_TV, FGP_TV
###############################################################################
#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
#NRMSE a normalization of the root of the mean squared error
@@ -112,12 +109,10 @@ rms = rmse(Im, splitbregman)
pars['rmse'] = rms
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
+print (txtstr)
a=fig.add_subplot(2,4,2)
-
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
@@ -128,23 +123,26 @@ imgplot = plt.imshow(splitbregman,\
)
###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+
start_time = timeit.default_timer()
pars = {'algorithm' : FGP_TV , \
- 'input' : u0,
- 'regularization_parameter':0.05, \
- 'number_of_iterations' :200 ,\
- 'tolerance_constant':1e-4,\
- 'TV_penalty': 0
-}
+ 'input' : u0,\
+ 'regularization_parameter':0.07, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
-out = FGP_TV (pars['input'],
+fgp = FGP_TV(pars['input'],
pars['regularization_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['TV_penalty'])
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'], 'cpu')
-fgp = out[0]
rms = rmse(Im, fgp)
pars['rmse'] = rms
@@ -165,8 +163,8 @@ imgplot = plt.imshow(fgp, \
a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-###################### LLT_model #########################################
+###################### LLT_model #########################################
start_time = timeit.default_timer()
pars = {'algorithm': LLT_model , \
@@ -201,8 +199,6 @@ a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(llt,\
cmap="gray"
)
-
-
# ###################### PatchBased_Regul #########################################
# # Quick 2D denoising example in Matlab:
# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
@@ -284,16 +280,15 @@ start_time = timeit.default_timer()
pars = {'algorithm': ROF_TV , \
'input' : u0,\
- 'regularization_parameter':1,\
- 'marching_step': 0.003,\
+ 'regularization_parameter':0.07,\
+ 'marching_step': 0.0025,\
'number_of_iterations': 300
}
rof = ROF_TV(pars['input'],
- pars['number_of_iterations'],
- pars['regularization_parameter'],
- pars['marching_step']
- )
-#tgv = out
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['marching_step'], 'cpu')
+
rms = rmse(Im, rof)
pars['rmse'] = rms
@@ -307,9 +302,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv, cmap="gray")
-
-
+imgplot = plt.imshow(rof, cmap="gray")
plt.show()
diff --git a/Wrappers/Python/setup-regularizers.py.in b/Wrappers/Python/setup-regularizers.py.in
index a125261..8655a2e 100644
--- a/Wrappers/Python/setup-regularizers.py.in
+++ b/Wrappers/Python/setup-regularizers.py.in
@@ -34,7 +34,9 @@ extra_libraries = ['cilreg']
extra_include_dirs += [os.path.join(".." , ".." , "Core"),
os.path.join(".." , ".." , "Core", "regularizers_CPU"),
- os.path.join(".." , ".." , "Core", "regularizers_GPU") ,
+ os.path.join(".." , ".." , "Core", "regularizers_GPU" , "Diffus_HO" ) ,
+ os.path.join(".." , ".." , "Core", "regularizers_GPU" , "NL_Regul" ) ,
+ os.path.join(".." , ".." , "Core", "regularizers_GPU" , "TV_ROF" ) ,
"."]
if platform.system() == 'Windows':
@@ -81,4 +83,4 @@ setup(
)
-@SETUP_GPU_WRAPPERS@ \ No newline at end of file
+@SETUP_GPU_WRAPPERS@
diff --git a/Wrappers/Python/src/cpu_regularizers.cpp b/Wrappers/Python/src/cpu_regularizers.cpp
index e311570..3529ebd 100644
--- a/Wrappers/Python/src/cpu_regularizers.cpp
+++ b/Wrappers/Python/src/cpu_regularizers.cpp
@@ -27,7 +27,6 @@ limitations under the License.
#include "boost/tuple/tuple.hpp"
#include "SplitBregman_TV_core.h"
-#include "FGP_TV_core.h"
#include "LLT_model_core.h"
#include "PatchBased_Regul_core.h"
#include "TGV_PD_core.h"
@@ -303,292 +302,6 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
}
-
-
-bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
-
- // the result is in the following list
- bp::list result;
-
- int number_of_dims, dimX, dimY, dimZ, ll, j, count;
- float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL;
- float lambda, tk, tkp1, re, re1, re_old, epsil, funcval;
-
- //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- //dim_array = mxGetDimensions(prhs[0]);
-
- number_of_dims = input.get_nd();
- int dim_array[3];
-
- dim_array[0] = input.shape(0);
- dim_array[1] = input.shape(1);
- if (number_of_dims == 2) {
- dim_array[2] = -1;
- }
- else {
- dim_array[2] = input.shape(2);
- }
- // Parameter handling is be done in Python
- ///*Handling Matlab input data*/
- //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- ///*Handling Matlab input data*/
- //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
- A = reinterpret_cast<float *>(input.get_data());
-
- //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
- lambda = (float)d_mu;
-
- //iter = 35; /* default iterations number */
-
- //epsil = 0.0001; /* default tolerance constant */
- epsil = (float)d_epsil;
- //methTV = 0; /* default isotropic TV penalty */
- //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */
- //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
- //if (nrhs == 5) {
- // char *penalty_type;
- // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- // mxFree(penalty_type);
- //}
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
-
- //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
- bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]);
- np::dtype dtype = np::dtype::get_builtin<float>();
- np::ndarray out1 = np::zeros(shape1, dtype);
-
- //float *funcvalA = (float *)mxGetData(plhs[1]);
- float * funcvalA = reinterpret_cast<float *>(out1.get_data());
- //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- tk = 1.0f;
- tkp1 = 1.0f;
- count = 1;
- re_old = 0.0f;
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
-
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
-
- np::ndarray npD = np::zeros(shape, dtype);
- np::ndarray npD_old = np::zeros(shape, dtype);
- np::ndarray npP1 = np::zeros(shape, dtype);
- np::ndarray npP2 = np::zeros(shape, dtype);
- np::ndarray npP1_old = np::zeros(shape, dtype);
- np::ndarray npP2_old = np::zeros(shape, dtype);
- np::ndarray npR1 = np::zeros(shape, dtype);
- np::ndarray npR2 = np::zeros(shape, dtype);
-
- D = reinterpret_cast<float *>(npD.get_data());
- D_old = reinterpret_cast<float *>(npD_old.get_data());
- P1 = reinterpret_cast<float *>(npP1.get_data());
- P2 = reinterpret_cast<float *>(npP2.get_data());
- P1_old = reinterpret_cast<float *>(npP1_old.get_data());
- P2_old = reinterpret_cast<float *>(npP2_old.get_data());
- R1 = reinterpret_cast<float *>(npR1.get_data());
- R2 = reinterpret_cast<float *>(npR2.get_data());
-
- /* begin iterations */
- for (ll = 0; ll<iter; ll++) {
- /* computing the gradient of the objective function */
- Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
-
- /* projection step */
- Proj_func2D(P1, P2, methTV, dimX, dimY);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
-
- /* calculate norm */
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j], 2);
- re1 += pow(D[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) {
- Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- break;
- }
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- break;
- }
- }
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- /* calculating the objective function value */
- if (ll == (iter - 1)) {
- Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- }
- }
- //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- result.append<np::ndarray>(npD);
- result.append<np::ndarray>(out1);
- result.append<int>(ll);
- }
- if (number_of_dims == 3) {
- /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
- bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
- np::dtype dtype = np::dtype::get_builtin<float>();
-
- np::ndarray npD = np::zeros(shape, dtype);
- np::ndarray npD_old = np::zeros(shape, dtype);
- np::ndarray npP1 = np::zeros(shape, dtype);
- np::ndarray npP2 = np::zeros(shape, dtype);
- np::ndarray npP3 = np::zeros(shape, dtype);
- np::ndarray npP1_old = np::zeros(shape, dtype);
- np::ndarray npP2_old = np::zeros(shape, dtype);
- np::ndarray npP3_old = np::zeros(shape, dtype);
- np::ndarray npR1 = np::zeros(shape, dtype);
- np::ndarray npR2 = np::zeros(shape, dtype);
- np::ndarray npR3 = np::zeros(shape, dtype);
-
- D = reinterpret_cast<float *>(npD.get_data());
- D_old = reinterpret_cast<float *>(npD_old.get_data());
- P1 = reinterpret_cast<float *>(npP1.get_data());
- P2 = reinterpret_cast<float *>(npP2.get_data());
- P3 = reinterpret_cast<float *>(npP3.get_data());
- P1_old = reinterpret_cast<float *>(npP1_old.get_data());
- P2_old = reinterpret_cast<float *>(npP2_old.get_data());
- P3_old = reinterpret_cast<float *>(npP3_old.get_data());
- R1 = reinterpret_cast<float *>(npR1.get_data());
- R2 = reinterpret_cast<float *>(npR2.get_data());
- R3 = reinterpret_cast<float *>(npR3.get_data());
- /* begin iterations */
- for (ll = 0; ll<iter; ll++) {
- /* computing the gradient of the objective function */
- Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
- /* projection step */
- Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j], 2);
- re1 += pow(D[j], 2);
- }
- re = sqrt(re) / sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 3) {
- Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- break;
- }
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- break;
- }
- }
-
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- copyIm(P3, P3_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- if (ll == (iter - 1)) {
- Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
- funcval = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
- //funcvalA[0] = sqrt(funcval);
- float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv, sizeof(float));
- }
-
- }
- //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- result.append<np::ndarray>(npD);
- result.append<np::ndarray>(out1);
- result.append<int>(ll);
- }
-
- return result;
-}
-
bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {
// the result is in the following list
bp::list result;
@@ -1022,9 +735,6 @@ bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_al
result.append<np::ndarray>(npU);
}
-
-
-
return result;
}
@@ -1040,7 +750,6 @@ BOOST_PYTHON_MODULE(cpu_regularizers_boost)
np::dtype dt2 = np::dtype::get_builtin<uint16_t>();
def("SplitBregman_TV", SplitBregman_TV);
- def("FGP_TV", FGP_TV);
def("LLT_model", LLT_model);
def("PatchBased_Regul", PatchBased_Regul);
def("TGV_PD", TGV_PD);
diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx
index e7ff78c..60e8627 100644
--- a/Wrappers/Python/src/cpu_regularizers.pyx
+++ b/Wrappers/Python/src/cpu_regularizers.pyx
@@ -11,62 +11,108 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-Author: Edoardo Pasca
+Author: Edoardo Pasca, Daniil Kazantsev
"""
import cython
import numpy as np
cimport numpy as np
-cdef extern float TV_ROF(float *A, float *B, int dimX, int dimY, int dimZ,
- int iterationsNumb, float tau, float flambda);
+cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
+cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
+def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb, marching_step_parameter):
+ if inputData.ndim == 2:
+ return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
+ elif inputData.ndim == 3:
+ return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
+
+def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularization_parameter,
+ int iterationsNumb,
+ float marching_step_parameter):
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Run ROF iterations for 2D data
+ TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
+
+ return outputData
+
+def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ int iterationsNumb,
+ float regularization_parameter,
+ float marching_step_parameter):
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Run ROF iterations for 3D data
+ TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
-def ROF_TV(inputData, iterations, regularization_parameter,
- marching_step_parameter):
+ return outputData
+
+def TV_FGP_CPU(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
if inputData.ndim == 2:
- return ROF_TV_2D(inputData, iterations, regularization_parameter,
- marching_step_parameter)
+ return TV_FGP_2D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
elif inputData.ndim == 3:
- return ROF_TV_3D(inputData, iterations, regularization_parameter,
- marching_step_parameter)
+ return TV_FGP_3D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
-def ROF_TV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int iterations,
+def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularization_parameter,
- float marching_step_parameter
- ):
+ int iterationsNumb,
+ float tolerance_param,
+ int methodTV,
+ int nonneg,
+ int printM):
cdef long dims[2]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
#/* Run ROF iterations for 2D data */
- TV_ROF(&inputData[0,0], &B[0,0], dims[0], dims[1], 1, iterations,
- marching_step_parameter, regularization_parameter)
+ TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter,
+ iterationsNumb,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1)
- return B
-
+ return outputData
-def ROF_TV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- int iterations,
+def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
float regularization_parameter,
- float marching_step_parameter
- ):
- cdef long dims[2]
+ int iterationsNumb,
+ float tolerance_param,
+ int methodTV,
+ int nonneg,
+ int printM):
+ cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
#/* Run ROF iterations for 3D data */
- TV_ROF(&inputData[0,0, 0], &B[0,0, 0], dims[0], dims[1], dims[2], iterations,
- marching_step_parameter, regularization_parameter)
-
- return B
-
+ TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter,
+ iterationsNumb,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], dims[2])
+ return outputData
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx
index 5a5d274..f96156a 100644
--- a/Wrappers/Python/src/gpu_regularizers.pyx
+++ b/Wrappers/Python/src/gpu_regularizers.pyx
@@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-Author: Edoardo Pasca
+Author: Edoardo Pasca, Daniil Kazantsev
"""
import cython
@@ -25,12 +25,16 @@ cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec,
int N, int M, int Z, int dimension,
int SearchW, int SimilW,
int SearchW_real, float denh2, float lambdaf);
-cdef extern void TV_ROF_GPU(float* A, float* B, int N, int M, int Z, int iter, float tau, float lambdaf);
+cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
+cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+
+# padding function
cdef extern float pad_crop(float *A, float *Ap,
int OldSizeX, int OldSizeY, int OldSizeZ,
int NewSizeX, int NewSizeY, int NewSizeZ,
int padXY, int switchpad_crop);
-
+
+#Diffusion 4th order regularizer
def Diff4thHajiaboli(inputData,
edge_preserv_parameter,
iterations,
@@ -48,7 +52,7 @@ def Diff4thHajiaboli(inputData,
iterations,
time_marching_parameter,
regularization_parameter)
-
+# patch-based nonlocal regularization
def NML(inputData,
SearchW_real,
SimilW,
@@ -66,23 +70,48 @@ def NML(inputData,
SimilW,
h,
lambdaf)
-
-def ROF_TV_GPU(inputData,
+
+# Total-variation Rudin-Osher-Fatemi (ROF)
+def TV_ROF_GPU(inputData,
+ regularization_parameter,
iterations,
- time_marching_parameter,
- regularization_parameter):
+ time_marching_parameter):
if inputData.ndim == 2:
return ROFTV2D(inputData,
- iterations,
- time_marching_parameter,
- regularization_parameter)
+ regularization_parameter,
+ iterations,
+ time_marching_parameter)
elif inputData.ndim == 3:
return ROFTV3D(inputData,
+ regularization_parameter,
iterations,
- time_marching_parameter,
- regularization_parameter)
-
-
+ time_marching_parameter)
+
+# Total-variation Fast-Gradient-Projection (FGP)
+def TV_FGP_GPU(inputData,
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM):
+ if inputData.ndim == 2:
+ return FGPTV2D(inputData,
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM)
+ elif inputData.ndim == 3:
+ return FGPTV3D(inputData,
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM)
+#****************************************************************#
def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float edge_preserv_parameter,
int iterations,
@@ -329,48 +358,106 @@ def NML3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
switchpad_crop)
return B
-
+
+# Total-variation ROF
def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularization_parameter,
int iterations,
- float time_marching_parameter,
- float regularization_parameter):
+ float time_marching_parameter):
cdef long dims[2]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
- &inputData[0,0], &B[0,0],
- dims[0], dims[1], 0,
+ TV_ROF_GPU_main(
+ &inputData[0,0], &outputData[0,0],
+ regularization_parameter,
iterations ,
time_marching_parameter,
- regularization_parameter);
+ dims[0], dims[1], 1);
- return B
+ return outputData
def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularization_parameter,
int iterations,
- float time_marching_parameter,
- float regularization_parameter):
+ float time_marching_parameter):
cdef long dims[3]
dims[0] = inputData.shape[0]
dims[1] = inputData.shape[1]
dims[2] = inputData.shape[2]
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
- &inputData[0,0,0], &B[0,0,0],
- dims[0], dims[1], dims[2],
+ TV_ROF_GPU_main(
+ &inputData[0,0,0], &outputData[0,0,0],
+ regularization_parameter,
iterations ,
time_marching_parameter,
- regularization_parameter);
+ dims[0], dims[1], dims[2]);
- return B
+ return outputData
+
+# Total-variation Fast-Gradient-Projection (FGP)
+def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularization_parameter,
+ int iterations,
+ float tolerance_param,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Running CUDA code here
+ TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],
+ regularization_parameter,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1);
+
+ return outputData
+
+def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularization_parameter,
+ int iterations,
+ float tolerance_param,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ TV_FGP_GPU_main(
+ &inputData[0,0,0], &outputData[0,0,0],
+ regularization_parameter ,
+ iterations,
+ tolerance_param,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], dims[2]);
+
+ return outputData
diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py
new file mode 100644
index 0000000..63be1a0
--- /dev/null
+++ b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py
@@ -0,0 +1,219 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Testing CPU implementation against the GPU one
+
+@author: Daniil Kazantsev
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularizers import ROF_TV, FGP_TV
+
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+def rmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
+ return rmse
+
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.075
+u0 = Im + np.random.normal(loc = Im ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________ROF-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(1)
+plt.suptitle('Comparison of ROF-TV regularizer using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+ 'input' : u0,\
+ 'regularization_parameter':0.04,\
+ 'number_of_iterations': 1200,\
+ 'time_marching_parameter': 0.0025
+ }
+print ("#############ROF TV CPU####################")
+start_time = timeit.default_timer()
+rof_cpu = ROF_TV(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+rms = rmse(Im, rof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############ROF TV GPU##################")
+start_time = timeit.default_timer()
+rof_gpu = ROF_TV(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, rof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = ROF_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(rof_cpu - rof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(2)
+plt.suptitle('Comparison of FGP-TV regularizer using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+ 'input' : u0,\
+ 'regularization_parameter':0.04, \
+ 'number_of_iterations' :1200 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV CPU####################")
+start_time = timeit.default_timer()
+fgp_cpu = FGP_TV(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, fgp_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############FGP TV GPU##################")
+start_time = timeit.default_timer()
+fgp_gpu = FGP_TV(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(fgp_cpu - fgp_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+
+
diff --git a/Wrappers/Python/test/test_gpu_regularizers.py b/Wrappers/Python/test/test_gpu_regularizers.py
index 735a25d..640b3f9 100644
--- a/Wrappers/Python/test/test_gpu_regularizers.py
+++ b/Wrappers/Python/test/test_gpu_regularizers.py
@@ -6,14 +6,13 @@ Created on Tue Jan 30 10:24:26 2018
@author: ofn77899
"""
-
-
import matplotlib.pyplot as plt
import numpy as np
import os
from enum import Enum
import timeit
from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML
+from ccpi.filters.regularizers import ROF_TV, FGP_TV
###############################################################################
def printParametersToString(pars):
txt = r''
@@ -52,14 +51,15 @@ u0 = f(u0).astype('float32')
## plot
fig = plt.figure()
-a=fig.add_subplot(2,3,1)
+a=fig.add_subplot(2,4,1)
a.set_title('noise')
imgplot = plt.imshow(u0,cmap="gray")
## Diff4thHajiaboli
start_time = timeit.default_timer()
-pars = {'algorithm' : Diff4thHajiaboli , \
+pars = {
+'algorithm' : Diff4thHajiaboli , \
'input' : u0,
'edge_preserv_parameter':0.1 , \
'number_of_iterations' :250 ,\
@@ -78,7 +78,7 @@ pars['rmse'] = rms
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
print (txtstr)
-a=fig.add_subplot(2,3,2)
+a=fig.add_subplot(2,4,2)
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
@@ -87,14 +87,15 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(d4h, cmap="gray")
-a=fig.add_subplot(2,3,5)
+a=fig.add_subplot(2,4,6)
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
a.text(0.05, 0.95, 'd4h - u0', transform=a.transAxes, fontsize=12,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow((d4h - u0)**2, cmap="gray")
+imgplot = plt.imshow((d4h - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
## Patch Based Regul NML
@@ -109,6 +110,7 @@ pars = {'algorithm' : NML , \
}
"""
pars = {
+'algorithm' : NML , \
'input' : u0,
'regularization_parameter': 0.01,\
'searching_window_ratio':3, \
@@ -126,7 +128,7 @@ pars['rmse'] = rms
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
print (txtstr)
-a=fig.add_subplot(2,3,3)
+a=fig.add_subplot(2,4,3)
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
@@ -135,14 +137,103 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(nml, cmap="gray")
-a=fig.add_subplot(2,3,6)
+a=fig.add_subplot(2,4,7)
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
a.text(0.05, 0.95, 'nml - u0', transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow((nml - u0)**2, cmap="gray")
+imgplot = plt.imshow((nml - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-plt.show()
+
+## Rudin-Osher-Fatemi (ROF) TV regularization
+start_time = timeit.default_timer()
+pars = {
+'algorithm' : ROF_TV , \
+ 'input' : u0,
+ 'regularization_parameter': 0.04,\
+ 'number_of_iterations':300,\
+ 'time_marching_parameter': 0.0025
+
+ }
+
+rof_tv = TV_ROF_GPU(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, rof_tv)
+pars['rmse'] = rms
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,4,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_tv, cmap="gray")
+
+a=fig.add_subplot(2,4,8)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, 'rof_tv - u0', transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow((rof_tv - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
+plt.show()
+
+## Fast-Gradient Projection TV regularization
+"""
+start_time = timeit.default_timer()
+
+pars = {'algorithm' : FGP_TV, \
+ 'input' : u0,\
+ 'regularization_parameter':0.04, \
+ 'number_of_iterations' :1200 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+fgp_gpu = FGP_TV(pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,4,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+
+a=fig.add_subplot(2,4,8)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, 'fgp_gpu - u0', transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow((fgp_gpu - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
+plt.show()
+"""