summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authordkazanc <dkazanc@hotmail.com>2019-02-27 11:39:05 +0000
committerdkazanc <dkazanc@hotmail.com>2019-02-27 11:39:05 +0000
commit2930421c6fe94faa81a3871ceebbc2cf154d2b97 (patch)
treef9c756324624b8f7bf2e5976442f51e6023394e7 /Wrappers
parent2d61438ff325b5a3ab26b6389042669a24276914 (diff)
downloadregularization-2930421c6fe94faa81a3871ceebbc2cf154d2b97.tar.gz
regularization-2930421c6fe94faa81a3871ceebbc2cf154d2b97.tar.bz2
regularization-2930421c6fe94faa81a3871ceebbc2cf154d2b97.tar.xz
regularization-2930421c6fe94faa81a3871ceebbc2cf154d2b97.zip
demo files updated
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py85
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py5
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py7
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py6
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Readme.md17
5 files changed, 69 insertions, 51 deletions
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
index dc4eff2..01491d9 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
@@ -3,10 +3,11 @@
"""
This demo scripts support the following publication:
"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
-proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Mark Basham,
-Martin J. Turner, Philip J. Withers and Alun Ashton; Software X, 2019
+proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,
+ Philip J. Withers; Software X, 2019
____________________________________________________________________________
* Reads real tomographic data (stored at Zenodo)
+--- https://doi.org/10.5281/zenodo.2578893
* Reconstructs using TomoRec software
* Saves reconstructed images
____________________________________________________________________________
@@ -14,6 +15,8 @@ ____________________________________________________________________________
1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox
2. TomoRec: conda install -c dkazanc tomorec
or install from https://github.com/dkazanc/TomoRec
+3. libtiff if one needs to save tiff images:
+ install pip install libtiff
@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk
GPLv3 license (ASTRA toolbox)
@@ -23,7 +26,6 @@ import matplotlib.pyplot as plt
import h5py
from tomorec.supp.suppTools import normaliser
import time
-from libtiff import TIFF
# load dendritic projection data
h5f = h5py.File('data/DendrData_3D.h5','r')
@@ -55,24 +57,38 @@ det_y_crop = [i for i in range(0,detectorHoriz-22)]
N_size = 950 # reconstruction domain
time_label = int(time.time())
#%%
-"""
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
from tomorec.methodsDIR import RecToolsDIR
RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
- DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only
+ DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only
AnglesVec = angles_rad, # array of angles in radians
ObjSize = N_size, # a scalar to define reconstructed object dimensions
device='gpu')
-FBPrec = RectoolsDIR.FBP(data_norm[20:220,:,det_y_crop])
+FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop])
-plt.figure()
-plt.imshow(FBPrec[0,:,:], vmin=0, vmax=0.005, cmap="gray")
-plt.title('FBP reconstruction')
+sliceSel = 50
+max_val = 0.003
+plt.figure()
+plt.subplot(131)
+plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")
+plt.title('FBP Reconstruction, axial view')
+plt.subplot(132)
+plt.imshow(FBPrec[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray")
+plt.title('FBP Reconstruction, coronal view')
+
+plt.subplot(133)
+plt.imshow(FBPrec[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray")
+plt.title('FBP Reconstruction, sagittal view')
+plt.show()
+
+# saving to tiffs (16bit)
+"""
+from libtiff import TIFF
FBPrec += np.abs(np.min(FBPrec))
multiplier = (int)(65535/(np.max(FBPrec)))
@@ -89,7 +105,7 @@ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
# initialise TomoRec ITERATIVE reconstruction class ONCE
from tomorec.methodsIR import RecToolsIR
RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
- DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only
+ DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only
AnglesVec = angles_rad, # array of angles in radians
ObjSize = N_size, # a scalar to define reconstructed object dimensions
datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip)
@@ -99,14 +115,14 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH #
device='gpu')
#%%
print ("Reconstructing with ADMM method using SB-TV penalty")
-RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop],
+RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
rho_const = 2000.0, \
iterationsADMM = 15, \
regularisation = 'SB_TV', \
regularisation_parameter = 0.00085,\
regularisation_iterations = 50)
-sliceSel = 5
+sliceSel = 50
max_val = 0.003
plt.figure()
plt.subplot(131)
@@ -122,29 +138,31 @@ plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray")
plt.title('3D ADMM-SB-TV Reconstruction, sagittal view')
plt.show()
-multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv)))
# saving to tiffs (16bit)
+"""
+from libtiff import TIFF
+multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv)))
for i in range(0,np.size(RecADMM_reg_sbtv,0)):
tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w')
tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier))
tiff.close()
-
+"""
# Saving recpnstructed data with a unique time label
np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv)
del RecADMM_reg_sbtv
#%%
print ("Reconstructing with ADMM method using ROF-LLT penalty")
-RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop],
+RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
rho_const = 2000.0, \
iterationsADMM = 15, \
regularisation = 'LLT_ROF', \
regularisation_parameter = 0.0009,\
regularisation_parameter2 = 0.0007,\
time_marching_parameter = 0.001,\
- regularisation_iterations = 450)
+ regularisation_iterations = 550)
-sliceSel = 5
+sliceSel = 50
max_val = 0.003
plt.figure()
plt.subplot(131)
@@ -160,38 +178,29 @@ plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val)
plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view')
plt.show()
-multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt)))
-
# saving to tiffs (16bit)
+"""
+from libtiff import TIFF
+multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt)))
for i in range(0,np.size(RecADMM_reg_rofllt,0)):
tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w')
tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier))
tiff.close()
-
+"""
# Saving recpnstructed data with a unique time label
np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt)
del RecADMM_reg_rofllt
#%%
-RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
- DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only
- AnglesVec = angles_rad, # array of angles in radians
- ObjSize = N_size, # a scalar to define reconstructed object dimensions
- datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip)
- nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE')
- OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets
- tolerance = 1e-08, # tolerance to stop outer iterations earlier
- device='gpu')
-
print ("Reconstructing with ADMM method using TGV penalty")
-RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:10,:,det_y_crop],
+RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
rho_const = 2000.0, \
iterationsADMM = 15, \
regularisation = 'TGV', \
regularisation_parameter = 0.01,\
- regularisation_iterations = 450)
+ regularisation_iterations = 500)
-sliceSel = 7
+sliceSel = 50
max_val = 0.003
plt.figure()
plt.subplot(131)
@@ -207,16 +216,16 @@ plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val)
plt.title('3D ADMM-TGV Reconstruction, sagittal view')
plt.show()
-multiplier = (int)(65535/(np.max(RecADMM_reg_tgv)))
-
# saving to tiffs (16bit)
+"""
+from libtiff import TIFF
+multiplier = (int)(65535/(np.max(RecADMM_reg_tgv)))
for i in range(0,np.size(RecADMM_reg_tgv,0)):
tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w')
tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier))
tiff.close()
-
-
+"""
# Saving recpnstructed data with a unique time label
-#np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv)
+np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv)
del RecADMM_reg_tgv
#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py
index c4f33ba..59ffc0e 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py
@@ -3,10 +3,11 @@
"""
This demo scripts support the following publication:
"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
-proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Mark Basham,
-Martin J. Turner, Philip J. Withers and Alun Ashton; Software X, 2019
+proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,
+ Philip J. Withers; Software X, 2019
____________________________________________________________________________
* Reads data which is previosly generated by TomoPhantom software (Zenodo link)
+--- https://doi.org/10.5281/zenodo.2578893
* Optimises for the regularisation parameters which later used in the script:
Demo_SimulData_Recon_SX.py
____________________________________________________________________________
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
index aa65cf3..93b0cef 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
@@ -3,10 +3,11 @@
"""
This demo scripts support the following publication:
"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
-proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Mark Basham,
-Martin J. Turner, Philip J. Withers and Alun Ashton; Software X, 2019
+proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,
+ Philip J. Withers; Software X, 2019
____________________________________________________________________________
* Reads data which is previously generated by TomoPhantom software (Zenodo link)
+--- https://doi.org/10.5281/zenodo.2578893
* Reconstruct using optimised regularisation parameters (see Demo_SimulData_ParOptimis_SX.py)
____________________________________________________________________________
>>>>> Dependencies: <<<<<
@@ -305,4 +306,4 @@ win = np.array([gaussian(11, 1.5)])
win2d = win * (win.T)
ssim_admm_tgv = Qtools.ssim(win2d)
print("Mean SSIM ADMM-TGV is {}".format(ssim_admm_tgv[0]))
-#%%
+#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py
index ce29f0c..cdf4325 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py
@@ -3,13 +3,13 @@
"""
This demo scripts support the following publication:
"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
-proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Mark Basham,
-Martin J. Turner, Philip J. Withers and Alun Ashton; Software X, 2019
+proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,
+ Philip J. Withers; Software X, 2019
____________________________________________________________________________
* Runs TomoPhantom software to simulate tomographic projection data with
some imaging errors and noise
* Saves the data into hdf file to be uploaded in reconstruction scripts
-____________________________________________________________________________
+__________________________________________________________________________
>>>>> Dependencies: <<<<<
1. TomoPhantom software for phantom and data generation
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Readme.md b/Wrappers/Python/demos/SoftwareX_supp/Readme.md
index fa77745..54e83f1 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Readme.md
+++ b/Wrappers/Python/demos/SoftwareX_supp/Readme.md
@@ -1,19 +1,26 @@
+
# SoftwareX publication [1] supporting files
## Decription:
-The scripts here support publication in SoftwareX journal [1] to ensure
-reproducibility of the research.
+The scripts here support publication in SoftwareX journal [1] to ensure reproducibility of the research. The scripts linked with data shared at Zenodo.
## Data:
+Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893)
## Dependencies:
+1. [ASTRA toolbox](https://github.com/astra-toolbox/astra-toolbox): `conda install -c astra-toolbox astra-toolbox`
+2. [TomoRec](https://github.com/dkazanc/TomoRec): `conda install -c dkazanc tomorec`
+3. [Tomophantom](https://github.com/dkazanc/TomoPhantom): `conda install tomophantom -c ccpi`
## Files description:
-
+- `Demo_SimulData_SX.py` - simulates 3D projection data using [Tomophantom](https://github.com/dkazanc/TomoPhantom) software. One can skip this module if the data is taken from [Zenodo](https://doi.org/10.5281/zenodo.2578893)
+- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped.
+- `Demo_SimulData_Recon_SX.py` - using established regularisation parameters, one runs iterative reconstruction
+- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed.
### References:
-[1] "CCPi-Regularisation Toolkit for computed tomographic image reconstruction with proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Mark Basham, Martin J. Turner, Philip J. Withers and Alun Ashton
-
+[1] "CCPi-Regularisation Toolkit for computed tomographic image reconstruction with proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner and Philip J. Withers; SoftwareX, 2019.
### Acknowledgments:
CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group, STFC SCD software developers and Diamond Light Source (DLS). Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com
+