summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-01-29 16:32:25 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-30 12:03:59 +0000
commit56a94d0e2bf32a5951482dc9dc3c4c4c652755fb (patch)
tree124a2494a45f09afc6e370a1911006db9de35f68 /Wrappers/Python
parenta5979934c10aee7beeae49f254c57adbbb2fa13c (diff)
downloadregularization-56a94d0e2bf32a5951482dc9dc3c4c4c652755fb.tar.gz
regularization-56a94d0e2bf32a5951482dc9dc3c4c4c652755fb.tar.bz2
regularization-56a94d0e2bf32a5951482dc9dc3c4c4c652755fb.tar.xz
regularization-56a94d0e2bf32a5951482dc9dc3c4c4c652755fb.zip
added demo directory
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/demo/test_cpu_regularizers.py442
1 files changed, 442 insertions, 0 deletions
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py
new file mode 100644
index 0000000..9713baa
--- /dev/null
+++ b/Wrappers/Python/demo/test_cpu_regularizers.py
@@ -0,0 +1,442 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug 4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+from enum import Enum
+import timeit
+from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
+ LLT_model, PatchBased_Regul ,\
+ TGV_PD
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE:
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+###############################################################################
+def printParametersToString(pars):
+ txt = r''
+ for key, value in pars.items():
+ if key== 'algorithm' :
+ txt += "{0} = {1}".format(key, value.__name__)
+ elif key == 'input':
+ txt += "{0} = {1}".format(key, np.shape(value))
+ else:
+ txt += "{0} = {1}".format(key, value)
+ txt += '\n'
+ return txt
+###############################################################################
+#
+# 2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+# assumes the script is launched from the test directory
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+Im = plt.imread(filename)
+Im = np.asarray(Im, dtype='float32')
+
+perc = 0.15
+u0 = Im + np.random.normal(loc = Im ,
+ scale = perc * Im ,
+ size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot
+fig = plt.figure()
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0#,cmap="gray"
+ )
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+start_time = timeit.default_timer()
+pars = {'algorithm' : SplitBregman_TV , \
+ 'input' : u0,
+ 'regularization_parameter':10. , \
+'number_of_iterations' :35 ,\
+'tolerance_constant':0.0001 , \
+'TV_penalty': 0
+}
+
+out = SplitBregman_TV (pars['input'], pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['TV_penalty'])
+splitbregman = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(splitbregman,\
+ #cmap="gray"
+ )
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+start_time = timeit.default_timer()
+pars = {'algorithm' : FGP_TV , \
+ 'input' : u0,
+ 'regularization_parameter':5e-4, \
+ 'number_of_iterations' :10 ,\
+ 'tolerance_constant':0.001,\
+ 'TV_penalty': 0
+}
+
+out = FGP_TV (pars['input'],
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['TV_penalty'])
+
+fgp = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+
+a=fig.add_subplot(2,3,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+imgplot = plt.imshow(fgp, \
+ #cmap="gray"
+ )
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+
+###################### LLT_model #########################################
+
+start_time = timeit.default_timer()
+
+pars = {'algorithm': LLT_model , \
+ 'input' : u0,
+ 'regularization_parameter': 25,\
+ 'time_step':0.0003, \
+ 'number_of_iterations' :300,\
+ 'tolerance_constant':0.001,\
+ 'restrictive_Z_smoothing': 0
+}
+out = LLT_model(pars['input'],
+ pars['regularization_parameter'],
+ pars['time_step'] ,
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['restrictive_Z_smoothing'] )
+
+llt = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,3,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(llt,\
+ #cmap="gray"
+ )
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+start_time = timeit.default_timer()
+
+pars = {'algorithm': PatchBased_Regul , \
+ 'input' : u0,
+ 'regularization_parameter': 0.05,\
+ 'searching_window_ratio':3, \
+ 'similarity_window_ratio':1,\
+ 'PB_filtering_parameter': 0.08
+}
+out = PatchBased_Regul(pars['input'],
+ pars['regularization_parameter'],
+ pars['searching_window_ratio'] ,
+ pars['similarity_window_ratio'] ,
+ pars['PB_filtering_parameter'])
+pbr = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+a=fig.add_subplot(2,3,5)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(pbr #,cmap="gray"
+ )
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+start_time = timeit.default_timer()
+
+pars = {'algorithm': TGV_PD , \
+ 'input' : u0,\
+ 'regularization_parameter':0.05,\
+ 'first_order_term': 1.3,\
+ 'second_order_term': 1, \
+ 'number_of_iterations': 550
+ }
+out = TGV_PD(pars['input'],
+ pars['regularization_parameter'],
+ pars['first_order_term'] ,
+ pars['second_order_term'] ,
+ pars['number_of_iterations'])
+tgv = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,3,6)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv #, cmap="gray")
+ )
+
+
+plt.show()
+
+################################################################################
+##
+## 3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+# reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+## #tolerance_constant=1e-4,
+## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+# number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+##input, regularization_parameter , time_step, number_of_iterations,
+## tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+# time_step=0.0003,
+# tolerance_constant=0.0001,
+# number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+# searching_window_ratio=3,
+# similarity_window_ratio=1,
+# PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+# first_order_term=1.3,
+# second_order_term=1,
+# number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])