diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2019-02-27 11:43:25 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-02-27 11:43:25 +0000 |
commit | 22c732b7061ae5c479b1db9eae18e9b24b58143a (patch) | |
tree | f9c756324624b8f7bf2e5976442f51e6023394e7 /Wrappers/Python | |
parent | 9b4058fbf779221ed7d37bfc6e7c838b294c5965 (diff) | |
parent | 2930421c6fe94faa81a3871ceebbc2cf154d2b97 (diff) | |
download | regularization-22c732b7061ae5c479b1db9eae18e9b24b58143a.tar.gz regularization-22c732b7061ae5c479b1db9eae18e9b24b58143a.tar.bz2 regularization-22c732b7061ae5c479b1db9eae18e9b24b58143a.tar.xz regularization-22c732b7061ae5c479b1db9eae18e9b24b58143a.zip |
Merge pull request #105 from vais-ral/softwareX
Software X supporting files
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 231 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py | 161 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py | 309 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py | 117 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Readme.md | 26 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 | bin | 0 -> 2408 bytes | |||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 | bin | 0 -> 2408 bytes | |||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 | bin | 0 -> 2408 bytes |
8 files changed, 844 insertions, 0 deletions
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py new file mode 100644 index 0000000..01491d9 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -0,0 +1,231 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads real tomographic data (stored at Zenodo) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstructs using TomoRec software +* Saves reconstructed images +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec +3. libtiff if one needs to save tiff images: + install pip install libtiff + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +import numpy as np +import matplotlib.pyplot as plt +import h5py +from tomorec.supp.suppTools import normaliser +import time + +# load dendritic projection data +h5f = h5py.File('data/DendrData_3D.h5','r') +dataRaw = h5f['dataRaw'][:] +flats = h5f['flats'][:] +darks = h5f['darks'][:] +angles_rad = h5f['angles_rad'][:] +h5f.close() +#%% +# normalise the data [detectorsVert, Projections, detectorsHoriz] +data_norm = normaliser(dataRaw, flats, darks, log='log') +del dataRaw, darks, flats + +intens_max = 2.3 +plt.figure() +plt.subplot(131) +plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(data_norm[300,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() + +detectorHoriz = np.size(data_norm,2) +det_y_crop = [i for i in range(0,detectorHoriz-22)] +N_size = 950 # reconstruction domain +time_label = int(time.time()) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +from tomorec.methodsDIR import RecToolsDIR + +RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device='gpu') + +FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop]) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(FBPrec[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(FBPrec[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +FBPrec += np.abs(np.min(FBPrec)) +multiplier = (int)(65535/(np.max(FBPrec))) + +# saving to tiffs (16bit) +for i in range(0,np.size(FBPrec,0)): + tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier)) + tiff.close() +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = 0.00085,\ + regularisation_iterations = 50) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, sagittal view') +plt.show() + + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv))) +for i in range(0,np.size(RecADMM_reg_sbtv,0)): + tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv) +del RecADMM_reg_sbtv +#%% +print ("Reconstructing with ADMM method using ROF-LLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = 0.0009,\ + regularisation_parameter2 = 0.0007,\ + time_marching_parameter = 0.001,\ + regularisation_iterations = 550) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt))) +for i in range(0,np.size(RecADMM_reg_rofllt,0)): + tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier)) + tiff.close() +""" + +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt) +del RecADMM_reg_rofllt +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = 0.01,\ + regularisation_iterations = 500) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_tgv))) +for i in range(0,np.size(RecADMM_reg_tgv,0)): + tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) +del RecADMM_reg_tgv +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py new file mode 100644 index 0000000..59ffc0e --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py @@ -0,0 +1,161 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previosly generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Optimises for the regularisation parameters which later used in the script: +Demo_SimulData_Recon_SX.py +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +sliceSel = 128 +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +intens_max = 240 +plt.figure() +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +param_space = 30 +reg_param_sb_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_sbtv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using SB-TV penalty") +for i in range(0,param_space): + RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = reg_param_sb_vec[i],\ + regularisation_iterations = 50) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_sbtv) + erros_vec_sbtv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-SB-TV is {}".format(reg_param_sb_vec[i],erros_vec_sbtv[i])) + +plt.figure() +plt.plot(erros_vec_sbtv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_sbtv.h5', 'w') +h5f.create_dataset('reg_param_sb_vec', data=reg_param_sb_vec) +h5f.create_dataset('erros_vec_sbtv', data=erros_vec_sbtv) +h5f.close() +#%% +param_space = 30 +reg_param_rofllt_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_rofllt = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using ROF-LLT penalty") +for i in range(0,param_space): + RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = reg_param_rofllt_vec[i],\ + regularisation_parameter2 = 0.005,\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_rofllt) + erros_vec_rofllt[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-ROF-LLT is {}".format(reg_param_rofllt_vec[i],erros_vec_rofllt[i])) + +plt.figure() +plt.plot(erros_vec_rofllt) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_rofllt.h5', 'w') +h5f.create_dataset('reg_param_rofllt_vec', data=reg_param_rofllt_vec) +h5f.create_dataset('erros_vec_rofllt', data=erros_vec_rofllt) +h5f.close() +#%% +param_space = 30 +reg_param_tgv_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_tgv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using TGV penalty") +for i in range(0,param_space): + RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = reg_param_tgv_vec[i],\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_tgv) + erros_vec_tgv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-TGV is {}".format(reg_param_tgv_vec[i],erros_vec_tgv[i])) + +plt.figure() +plt.plot(erros_vec_tgv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_tgv.h5', 'w') +h5f.create_dataset('reg_param_tgv_vec', data=reg_param_tgv_vec) +h5f.create_dataset('erros_vec_tgv', data=erros_vec_tgv) +h5f.close() +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py new file mode 100644 index 0000000..93b0cef --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -0,0 +1,309 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previously generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstruct using optimised regularisation parameters (see Demo_SimulData_ParOptimis_SX.py) +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools +from scipy.signal import gaussian + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +# loading optmisation parameters (the result of running Demo_SimulData_ParOptimis_SX) +h5f = h5py.File('optim_param/Optim_admm_sbtv.h5','r') +reg_param_sb_vec = h5f['reg_param_sb_vec'][:] +erros_vec_sbtv = h5f['erros_vec_sbtv'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_rofllt.h5','r') +reg_param_rofllt_vec = h5f['reg_param_rofllt_vec'][:] +erros_vec_rofllt = h5f['erros_vec_rofllt'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_tgv.h5','r') +reg_param_tgv_vec = h5f['reg_param_tgv_vec'][:] +erros_vec_tgv = h5f['erros_vec_tgv'][:] +h5f.close() + +index_minSBTV = min(xrange(len(erros_vec_sbtv)), key=erros_vec_sbtv.__getitem__) +index_minROFLLT = min(xrange(len(erros_vec_rofllt)), key=erros_vec_rofllt.__getitem__) +index_minTGV = min(xrange(len(erros_vec_tgv)), key=erros_vec_tgv.__getitem__) +# assign optimal regularisation parameters: +optimReg_sbtv = reg_param_sb_vec[index_minSBTV] +optimReg_rofllt = reg_param_rofllt_vec[index_minROFLLT] +optimReg_tgv = reg_param_tgv_vec[index_minTGV] +#%% +# plot loaded data +sliceSel = 128 +#plt.figure() +fig, (ax1, ax2) = plt.subplots(figsize=(15, 5), ncols=2) +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(121) +one = plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1, interpolation='none', cmap="PuOr") +fig.colorbar(one, ax=ax1) +plt.title('3D Phantom, axial (X-Y) view') +plt.subplot(122) +two = plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1,interpolation='none', cmap="PuOr") +fig.colorbar(two, ax=ax2) +plt.title('3D Phantom, coronal (Y-Z) view') +""" +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1, cmap="PuOr") +plt.title('3D Phantom, sagittal view') + +""" +plt.show() +#%% +intens_max = 220 +plt.figure() +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('2D Projection (X-Z) view', fontsize=19) +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Projection angle', fontsize=16) +plt.title('Sinogram (X-Y) view', fontsize=19) +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('Projection angle', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('Vertical (Y-Z) view', fontsize=19) +plt.show() +#plt.savefig('projdata.pdf', format='pdf', dpi=1200) +#%% +# initialise TomoRec DIRECT reconstruction class ONCE +from tomorec.methodsDIR import RecToolsDIR +RectoolsDIR = RecToolsDIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device = 'gpu') +#%% +print ("Reconstruction using FBP from TomoRec") +recFBP= RectoolsDIR.FBP(projdata_norm) # FBP reconstruction +#%% +x0, y0 = 0, 127 # These are in _pixel_ coordinates!! +x1, y1 = 255, 127 + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,5)) +gs1 = gridspec.GridSpec(1, 3) +gs1.update(wspace=0.1, hspace=0.05) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.imshow(recFBP[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax1.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.colorbar(ax=ax1) +plt.title('FBP Reconstruction, axial (X-Y) view', fontsize=19) +ax1.set_aspect('equal') +ax3 = plt.subplot(gs1[1]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(recFBP[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax2 = plt.subplot(gs1[2]) +plt.imshow(recFBP[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('FBP Reconstruction, coronal (Y-Z) view', fontsize=19) +ax2.set_aspect('equal') +plt.show() +#plt.savefig('FBP_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, recFBP) +RMSE_fbp = Qtools.rmse() +print("Root Mean Square Error for FBP is {}".format(RMSE_fbp)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, recFBP[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_fbp = Qtools.ssim(win2d) +print("Mean SSIM for FBP is {}".format(ssim_fbp[0])) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'SB_TV', \ + regularisation_parameter = optimReg_sbtv,\ + regularisation_iterations = 50) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_sb_vec, erros_vec_sbtv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-SBTV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_sbtv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-SBTV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +plt.savefig('SBTV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_sbtv) +RMSE_admm_sbtv = Qtools.rmse() +print("Root Mean Square Error for ADMM-SB-TV is {}".format(RMSE_admm_sbtv)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_sbtv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_sbtv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-SBTV is {}".format(ssim_admm_sbtv[0])) +#%% +print ("Reconstructing with ADMM method using ROFLLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = optimReg_rofllt,\ + regularisation_parameter2 = 0.0085,\ + regularisation_iterations = 600) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_rofllt_vec, erros_vec_rofllt, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-ROFLLT (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_rofllt[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-ROFLLT (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('ROFLLT_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_rofllt) +RMSE_admm_rofllt = Qtools.rmse() +print("Root Mean Square Error for ADMM-ROF-LLT is {}".format(RMSE_admm_rofllt)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_rofllt[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_rifllt = Qtools.ssim(win2d) +print("Mean SSIM ADMM-ROFLLT is {}".format(ssim_admm_rifllt[0])) +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'TGV', \ + regularisation_parameter = optimReg_tgv,\ + regularisation_iterations = 600) +#%% +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_tgv_vec, erros_vec_tgv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-TGV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_tgv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-TGV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('TGV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_tgv) +RMSE_admm_tgv = Qtools.rmse() +print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv)) + +# SSIM measure +#Create a 2d gaussian for the window parameter +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_tgv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_tgv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-TGV is {}".format(ssim_admm_tgv[0])) +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py new file mode 100644 index 0000000..cdf4325 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py @@ -0,0 +1,117 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Runs TomoPhantom software to simulate tomographic projection data with +some imaging errors and noise +* Saves the data into hdf file to be uploaded in reconstruction scripts +__________________________________________________________________________ + +>>>>> Dependencies: <<<<< +1. TomoPhantom software for phantom and data generation + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +Apache 2.0 license +""" +import timeit +import os +import matplotlib.pyplot as plt +import numpy as np +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.flatsgen import flats +from tomophantom.supp.normraw import normaliser_sim + +print ("Building 3D phantom using TomoPhantom software") +tic=timeit.default_timer() +model = 16 # select a model number from the library +N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) +toc=timeit.default_timer() +Run_time = toc - tic +print("Phantom has been built in {} seconds".format(Run_time)) + +sliceSel = int(0.5*N_size) +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +# Projection geometry related parameters: +Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) +Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) +angles_num = int(0.35*np.pi*N_size); # angles number +angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees +angles_rad = angles*(np.pi/180.0) +#%% +print ("Building 3D analytical projection data with TomoPhantom") +projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("Simulate flat fields, add noise and normalise projections...") +flatsnum = 20 # generate 20 flat fields +flatsSIM = flats(Vert_det, Horiz_det, maxheight = 0.1, maxthickness = 3, sigma_noise = 0.2, sigmasmooth = 3, flatsnum=flatsnum) + +plt.figure() +plt.imshow(flatsSIM[0,:,:],vmin=0, vmax=1) +plt.title('A selected simulated flat-field') +#%% +# Apply normalisation of data and add noise +flux_intensity = 60000 # controls the level of noise +sigma_flats = 0.01 # contro the level of noise in flats (higher creates more ring artifacts) +projData3D_norm = normaliser_sim(projData3D_analyt, flatsSIM, sigma_flats, flux_intensity) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +import h5py +import time +time_label = int(time.time()) +# Saving generated data with a unique time label +h5f = h5py.File('TomoSim_data'+str(time_label)+'.h5', 'w') +h5f.create_dataset('phantom', data=phantom_tm) +h5f.create_dataset('projdata_norm', data=projData3D_norm) +h5f.create_dataset('proj_angles', data=angles_rad) +h5f.close() +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Readme.md b/Wrappers/Python/demos/SoftwareX_supp/Readme.md new file mode 100644 index 0000000..54e83f1 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Readme.md @@ -0,0 +1,26 @@ + +# SoftwareX publication [1] supporting files + +## Decription: +The scripts here support publication in SoftwareX journal [1] to ensure reproducibility of the research. The scripts linked with data shared at Zenodo. + +## Data: +Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893) + +## Dependencies: +1. [ASTRA toolbox](https://github.com/astra-toolbox/astra-toolbox): `conda install -c astra-toolbox astra-toolbox` +2. [TomoRec](https://github.com/dkazanc/TomoRec): `conda install -c dkazanc tomorec` +3. [Tomophantom](https://github.com/dkazanc/TomoPhantom): `conda install tomophantom -c ccpi` + +## Files description: +- `Demo_SimulData_SX.py` - simulates 3D projection data using [Tomophantom](https://github.com/dkazanc/TomoPhantom) software. One can skip this module if the data is taken from [Zenodo](https://doi.org/10.5281/zenodo.2578893) +- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped. +- `Demo_SimulData_Recon_SX.py` - using established regularisation parameters, one runs iterative reconstruction +- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed. + +### References: +[1] "CCPi-Regularisation Toolkit for computed tomographic image reconstruction with proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner and Philip J. Withers; SoftwareX, 2019. + +### Acknowledgments: +CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group, STFC SCD software developers and Diamond Light Source (DLS). Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com + diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 Binary files differnew file mode 100644 index 0000000..63bc4fd --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 Binary files differnew file mode 100644 index 0000000..03c0c14 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 Binary files differnew file mode 100644 index 0000000..056d915 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 |