summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/test
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-09 20:13:53 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-09 20:13:53 +0100
commitf920d9e0373776493adc40e87b11b4f0939c2818 (patch)
treeb6f8cbf0da7eaf30cbd90132a3811c7f81921ed8 /Wrappers/Python/test
parent62635199f4e5a464a267ffce070ecec68bfdcfe8 (diff)
downloadregularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.gz
regularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.bz2
regularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.xz
regularization-f920d9e0373776493adc40e87b11b4f0939c2818.zip
demos updated
Diffstat (limited to 'Wrappers/Python/test')
-rw-r--r--Wrappers/Python/test/__pycache__/metrics.cpython-35.pycbin0 -> 823 bytes
-rw-r--r--Wrappers/Python/test/metrics.py20
-rw-r--r--Wrappers/Python/test/test_cpu_regularisers.py442
-rw-r--r--Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py219
-rw-r--r--Wrappers/Python/test/test_gpu_regularisers.py143
-rw-r--r--Wrappers/Python/test/test_regularisers_3d.py425
-rw-r--r--Wrappers/Python/test/view_result.py12
7 files changed, 0 insertions, 1261 deletions
diff --git a/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc b/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc
new file mode 100644
index 0000000..2196a53
--- /dev/null
+++ b/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc
Binary files differ
diff --git a/Wrappers/Python/test/metrics.py b/Wrappers/Python/test/metrics.py
deleted file mode 100644
index 53f68fb..0000000
--- a/Wrappers/Python/test/metrics.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Feb 21 13:34:32 2018
-# quality metrics
-@author: algol
-"""
-import numpy as np
-
-def nrmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-
-def rmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
- return rmse \ No newline at end of file
diff --git a/Wrappers/Python/test/test_cpu_regularisers.py b/Wrappers/Python/test/test_cpu_regularisers.py
deleted file mode 100644
index 9713baa..0000000
--- a/Wrappers/Python/test/test_cpu_regularisers.py
+++ /dev/null
@@ -1,442 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug 4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-from enum import Enum
-import timeit
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
- LLT_model, PatchBased_Regul ,\
- TGV_PD
-
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE:
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#
-# 2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-# assumes the script is launched from the test directory
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-perc = 0.15
-u0 = Im + np.random.normal(loc = Im ,
- scale = perc * Im ,
- size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot
-fig = plt.figure()
-
-a=fig.add_subplot(2,3,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0#,cmap="gray"
- )
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-start_time = timeit.default_timer()
-pars = {'algorithm' : SplitBregman_TV , \
- 'input' : u0,
- 'regularization_parameter':10. , \
-'number_of_iterations' :35 ,\
-'tolerance_constant':0.0001 , \
-'TV_penalty': 0
-}
-
-out = SplitBregman_TV (pars['input'], pars['regularization_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['TV_penalty'])
-splitbregman = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-
-a=fig.add_subplot(2,3,2)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(splitbregman,\
- #cmap="gray"
- )
-
-###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-start_time = timeit.default_timer()
-pars = {'algorithm' : FGP_TV , \
- 'input' : u0,
- 'regularization_parameter':5e-4, \
- 'number_of_iterations' :10 ,\
- 'tolerance_constant':0.001,\
- 'TV_penalty': 0
-}
-
-out = FGP_TV (pars['input'],
- pars['regularization_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['TV_penalty'])
-
-fgp = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-
-a=fig.add_subplot(2,3,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-imgplot = plt.imshow(fgp, \
- #cmap="gray"
- )
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-
-###################### LLT_model #########################################
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': LLT_model , \
- 'input' : u0,
- 'regularization_parameter': 25,\
- 'time_step':0.0003, \
- 'number_of_iterations' :300,\
- 'tolerance_constant':0.001,\
- 'restrictive_Z_smoothing': 0
-}
-out = LLT_model(pars['input'],
- pars['regularization_parameter'],
- pars['time_step'] ,
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['restrictive_Z_smoothing'] )
-
-llt = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(llt,\
- #cmap="gray"
- )
-
-
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:
-# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-start_time = timeit.default_timer()
-
-pars = {'algorithm': PatchBased_Regul , \
- 'input' : u0,
- 'regularization_parameter': 0.05,\
- 'searching_window_ratio':3, \
- 'similarity_window_ratio':1,\
- 'PB_filtering_parameter': 0.08
-}
-out = PatchBased_Regul(pars['input'],
- pars['regularization_parameter'],
- pars['searching_window_ratio'] ,
- pars['similarity_window_ratio'] ,
- pars['PB_filtering_parameter'])
-pbr = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-a=fig.add_subplot(2,3,5)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(pbr #,cmap="gray"
- )
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:
-# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': TGV_PD , \
- 'input' : u0,\
- 'regularization_parameter':0.05,\
- 'first_order_term': 1.3,\
- 'second_order_term': 1, \
- 'number_of_iterations': 550
- }
-out = TGV_PD(pars['input'],
- pars['regularization_parameter'],
- pars['first_order_term'] ,
- pars['second_order_term'] ,
- pars['number_of_iterations'])
-tgv = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,6)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv #, cmap="gray")
- )
-
-
-plt.show()
-
-################################################################################
-##
-## 3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255; % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-# reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,3,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-## #tolerance_constant=1e-4,
-## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-# tolerance_constant=1e-4,
-# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-# number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
-##input, regularization_parameter , time_step, number_of_iterations,
-## tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-# time_step=0.0003,
-# tolerance_constant=0.0001,
-# number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:
-## Im = double(imread('lena_gray_256.tif'))/255; % loading image
-## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-# searching_window_ratio=3,
-# similarity_window_ratio=1,
-# PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:
-# Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-# first_order_term=1.3,
-# second_order_term=1,
-# number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py
deleted file mode 100644
index 15e9042..0000000
--- a/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py
+++ /dev/null
@@ -1,219 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Testing CPU implementation against the GPU one
-
-@author: Daniil Kazantsev
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV
-
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-def rmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
- return rmse
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.075
-u0 = Im + np.random.normal(loc = Im ,
- scale = perc * Im ,
- size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(1)
-plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(rof_cpu - rof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(2)
-plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(fgp_cpu - fgp_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-
diff --git a/Wrappers/Python/test/test_gpu_regularisers.py b/Wrappers/Python/test/test_gpu_regularisers.py
deleted file mode 100644
index 2103c0e..0000000
--- a/Wrappers/Python/test/test_gpu_regularisers.py
+++ /dev/null
@@ -1,143 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Tue Jan 30 10:24:26 2018
-
-@author: ofn77899
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-from enum import Enum
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-def rmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
- return rmse
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.075
-u0 = Im + np.random.normal(loc = Im ,
- scale = perc * Im ,
- size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot
-fig = plt.figure()
-
-a=fig.add_subplot(2,4,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0,cmap="gray")
-
-
-
-## Rudin-Osher-Fatemi (ROF) TV regularisation
-start_time = timeit.default_timer()
-pars = {
-'algorithm' : ROF_TV , \
- 'input' : u0,
- 'regularisation_parameter': 0.04,\
- 'number_of_iterations':300,\
- 'time_marching_parameter': 0.0025
-
- }
-
-rof_tv = TV_ROF_GPU(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_tv)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_tv, cmap="gray")
-
-a=fig.add_subplot(2,4,8)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'rof_tv - u0', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow((rof_tv - u0)**2, vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-plt.show()
-
-## Fast-Gradient Projection TV regularisation
-"""
-start_time = timeit.default_timer()
-
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-
-a=fig.add_subplot(2,4,8)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'fgp_gpu - u0', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow((fgp_gpu - u0)**2, vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-plt.show()
-"""
diff --git a/Wrappers/Python/test/test_regularisers_3d.py b/Wrappers/Python/test/test_regularisers_3d.py
deleted file mode 100644
index 2d11a7e..0000000
--- a/Wrappers/Python/test/test_regularisers_3d.py
+++ /dev/null
@@ -1,425 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug 4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-#from ccpi.viewer.CILViewer2D import Converter
-#import vtk
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-from enum import Enum
-import timeit
-#from PIL import Image
-#from Regularizer import Regularizer
-from ccpi.imaging.Regularizer import Regularizer
-
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE:
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
- a, b = im1.shape
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-###############################################################################
-
-###############################################################################
-#
-# 2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-#reader = vtk.vtkTIFFReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-Im = plt.imread(filename)
-#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
-#img.show()
-Im = np.asarray(Im, dtype='float32')
-
-# create a 3D image by stacking N of this images
-
-
-#imgplot = plt.imshow(Im)
-perc = 0.05
-u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
-y,z = np.shape(u_n)
-u_n = np.reshape(u_n , (1,y,z))
-
-u0 = u_n.copy()
-for i in range (19):
- u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
- u_n = np.reshape(u_n , (1,y,z))
-
- u0 = np.vstack ( (u0, u_n) )
-
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-print ("Passed image shape {0}".format(np.shape(u0)))
-
-## plot
-fig = plt.figure()
-#a=fig.add_subplot(3,3,1)
-#a.set_title('Original')
-#imgplot = plt.imshow(Im)
-sliceno = 10
-
-a=fig.add_subplot(2,3,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0[sliceno],cmap="gray")
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-use_object = True
-if use_object:
- reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
- print (reg.pars)
- reg.setParameter(input=u0)
- reg.setParameter(regularization_parameter=10.)
- # or
- # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
- #tolerance_constant=1e-4,
- #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
- plotme = reg() [0]
- pars = reg.pars
- textstr = reg.printParametersToString()
-
- #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
- #tolerance_constant=1e-4,
- # TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-# tolerance_constant=1e-4,
-# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-
-else:
- out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
- pars = out2[2]
- reg_output.append(out2)
- plotme = reg_output[-1][0]
- textstr = out2[-1]
-
-a=fig.add_subplot(2,3,2)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(plotme[sliceno],cmap="gray")
-
-###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
- number_of_iterations=50)
-pars = out2[-2]
-
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,3)
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno])
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-###################### LLT_model #########################################
-# * u0 = Im + .03*randn(size(Im)); % adding noise
-# [Den] = LLT_model(single(u0), 10, 0.1, 1);
-#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
-#input, regularization_parameter , time_step, number_of_iterations,
-# tolerance_constant, restrictive_Z_smoothing=0
-out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
- time_step=0.0003,
- tolerance_constant=0.0001,
- number_of_iterations=300)
-pars = out2[-2]
-
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,4)
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:
-# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-
-out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
- searching_window_ratio=3,
- similarity_window_ratio=1,
- PB_filtering_parameter=0.08)
-pars = out2[-2]
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,5)
-
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:
-# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
- first_order_term=1.3,
- second_order_term=1,
- number_of_iterations=550)
-pars = out2[-2]
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,6)
-
-
-textstr = out2[-1]
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-plt.show()
-
-################################################################################
-##
-## 3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255; % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-# reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,3,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-## #tolerance_constant=1e-4,
-## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-# tolerance_constant=1e-4,
-# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-# number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
-##input, regularization_parameter , time_step, number_of_iterations,
-## tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-# time_step=0.0003,
-# tolerance_constant=0.0001,
-# number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:
-## Im = double(imread('lena_gray_256.tif'))/255; % loading image
-## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-# searching_window_ratio=3,
-# similarity_window_ratio=1,
-# PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:
-# Im = double(imread('lena_gray_256.tif'))/255; % loading image
-# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-# first_order_term=1.3,
-# second_order_term=1,
-# number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-# verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/view_result.py b/Wrappers/Python/test/view_result.py
deleted file mode 100644
index f89a90c..0000000
--- a/Wrappers/Python/test/view_result.py
+++ /dev/null
@@ -1,12 +0,0 @@
-import numpy
-from ccpi.viewer.CILViewer2D import *
-import sys
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName("X_out_os_s.mhd")
-#reader.Update()
-
-X = numpy.load(sys.argv[1])
-
-v = CILViewer2D()
-v.setInputAsNumpy(X)
-v.startRenderLoop()