summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-09 13:41:06 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-09 13:41:06 +0100
commitb9fafd363d1d181a4a8b42ea4038924097207913 (patch)
treecdc7c4469e210a52cb416b2747ca2d954da073cc /Wrappers/Python/src
parenta5b5872b76bf00023a7e7cee97e028003ccbc45e (diff)
downloadregularization-b9fafd363d1d181a4a8b42ea4038924097207913.tar.gz
regularization-b9fafd363d1d181a4a8b42ea4038924097207913.tar.bz2
regularization-b9fafd363d1d181a4a8b42ea4038924097207913.tar.xz
regularization-b9fafd363d1d181a4a8b42ea4038924097207913.zip
major renaming and new 3D demos for Matlab
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx (renamed from Wrappers/Python/src/cpu_regularizers.pyx)28
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx (renamed from Wrappers/Python/src/gpu_regularizers.pyx)28
2 files changed, 28 insertions, 28 deletions
diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index f993e54..248bad1 100644
--- a/Wrappers/Python/src/cpu_regularizers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -25,14 +25,14 @@ cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar,
#****************************************************************#
#********************** Total-variation ROF *********************#
#****************************************************************#
-def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb, marching_step_parameter):
+def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter):
if inputData.ndim == 2:
- return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
+ return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
elif inputData.ndim == 3:
- return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
+ return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterationsNumb,
float marching_step_parameter):
cdef long dims[2]
@@ -43,13 +43,13 @@ def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
np.zeros([dims[0],dims[1]], dtype='float32')
# Run ROF iterations for 2D data
- TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
+ TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
return outputData
def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
int iterationsNumb,
- float regularization_parameter,
+ float regularisation_parameter,
float marching_step_parameter):
cdef long dims[3]
dims[0] = inputData.shape[0]
@@ -60,7 +60,7 @@ def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Run ROF iterations for 3D data
- TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
+ TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
return outputData
@@ -68,14 +68,14 @@ def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
#********************** Total-variation FGP *********************#
#****************************************************************#
#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def TV_FGP_CPU(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
+def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
if inputData.ndim == 2:
- return TV_FGP_2D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
+ return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
elif inputData.ndim == 3:
- return TV_FGP_3D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
+ return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterationsNumb,
float tolerance_param,
int methodTV,
@@ -90,7 +90,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
np.zeros([dims[0],dims[1]], dtype='float32')
#/* Run ROF iterations for 2D data */
- TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter,
+ TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
methodTV,
@@ -101,7 +101,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
return outputData
def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterationsNumb,
float tolerance_param,
int methodTV,
@@ -116,7 +116,7 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
#/* Run ROF iterations for 3D data */
- TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter,
+ TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
methodTV,
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index a44bd1d..7ebd011 100644
--- a/Wrappers/Python/src/gpu_regularizers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -23,23 +23,23 @@ cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, i
# Total-variation Rudin-Osher-Fatemi (ROF)
def TV_ROF_GPU(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
time_marching_parameter):
if inputData.ndim == 2:
return ROFTV2D(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
time_marching_parameter)
elif inputData.ndim == 3:
return ROFTV3D(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
time_marching_parameter)
# Total-variation Fast-Gradient-Projection (FGP)
def TV_FGP_GPU(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
tolerance_param,
methodTV,
@@ -47,7 +47,7 @@ def TV_FGP_GPU(inputData,
printM):
if inputData.ndim == 2:
return FGPTV2D(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
tolerance_param,
methodTV,
@@ -55,7 +55,7 @@ def TV_FGP_GPU(inputData,
printM)
elif inputData.ndim == 3:
return FGPTV3D(inputData,
- regularization_parameter,
+ regularisation_parameter,
iterations,
tolerance_param,
methodTV,
@@ -66,7 +66,7 @@ def TV_FGP_GPU(inputData,
#********************** Total-variation ROF *********************#
#****************************************************************#
def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterations,
float time_marching_parameter):
@@ -80,7 +80,7 @@ def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
# Running CUDA code here
TV_ROF_GPU_main(
&inputData[0,0], &outputData[0,0],
- regularization_parameter,
+ regularisation_parameter,
iterations ,
time_marching_parameter,
dims[0], dims[1], 1);
@@ -88,7 +88,7 @@ def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
return outputData
def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterations,
float time_marching_parameter):
@@ -103,7 +103,7 @@ def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
# Running CUDA code here
TV_ROF_GPU_main(
&inputData[0,0,0], &outputData[0,0,0],
- regularization_parameter,
+ regularisation_parameter,
iterations ,
time_marching_parameter,
dims[0], dims[1], dims[2]);
@@ -114,7 +114,7 @@ def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
#****************************************************************#
#******** Total-variation Fast-Gradient-Projection (FGP)*********#
def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterations,
float tolerance_param,
int methodTV,
@@ -130,7 +130,7 @@ def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
# Running CUDA code here
TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],
- regularization_parameter,
+ regularisation_parameter,
iterations,
tolerance_param,
methodTV,
@@ -141,7 +141,7 @@ def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
return outputData
def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularization_parameter,
+ float regularisation_parameter,
int iterations,
float tolerance_param,
int methodTV,
@@ -159,7 +159,7 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
# Running CUDA code here
TV_FGP_GPU_main(
&inputData[0,0,0], &outputData[0,0,0],
- regularization_parameter ,
+ regularisation_parameter ,
iterations,
tolerance_param,
methodTV,