diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-09 20:13:53 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-09 20:13:53 +0100 |
commit | f920d9e0373776493adc40e87b11b4f0939c2818 (patch) | |
tree | b6f8cbf0da7eaf30cbd90132a3811c7f81921ed8 /Wrappers/Python/demos | |
parent | 62635199f4e5a464a267ffce070ecec68bfdcfe8 (diff) | |
download | regularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.gz regularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.bz2 regularization-f920d9e0373776493adc40e87b11b4f0939c2818.tar.xz regularization-f920d9e0373776493adc40e87b11b4f0939c2818.zip |
demos updated
Diffstat (limited to 'Wrappers/Python/demos')
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 243 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py | 215 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers.py | 247 | ||||
-rw-r--r-- | Wrappers/Python/demos/qualitymetrics.py | 20 |
4 files changed, 725 insertions, 0 deletions
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py new file mode 100644 index 0000000..84d86c0 --- /dev/null +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of CPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (2D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(1) +plt.suptitle('Performance of ROF-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 1200,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(Im, rof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Performance of FGP-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +# Uncomment to test 3D regularisation performance +""" +N = 512 +slices = 20 + +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 + +noisyVol = np.zeros((N,N,slices),dtype='float32') +idealVol = np.zeros((N,N,slices),dtype='float32') + +for i in range (slices): + noisyVol[:,:,i] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + idealVol[:,:,i] = Im + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of ROF-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy 15th slice of a volume') +imgplot = plt.imshow(noisyVol[:,:,10],cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 500,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(idealVol, rof_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu3D[:,:,10], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using ROF-TV')) + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of FGP-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[:,:,10],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu3D = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(idealVol, fgp_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu3D[:,:,10], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using FGP-TV')) +"""
\ No newline at end of file diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py new file mode 100644 index 0000000..cfe2e7d --- /dev/null +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -0,0 +1,215 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of CPU implementation against the GPU one + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________ROF-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(1) +plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 1200,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(Im, rof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############ROF TV GPU##################") +start_time = timeit.default_timer() +rof_gpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, rof_gpu) +pars['rmse'] = rms +pars['algorithm'] = ROF_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(rof_cpu)) +diff_im = abs(rof_cpu - rof_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############FGP TV GPU##################") +start_time = timeit.default_timer() +fgp_gpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(rof_cpu)) +diff_im = abs(fgp_cpu - fgp_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + + diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py new file mode 100644 index 0000000..fd7b32c --- /dev/null +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -0,0 +1,247 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of GPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________ROF-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(1) +plt.suptitle('Performance of the ROF-TV regulariser using the GPU') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 1200,\ + 'time_marching_parameter': 0.0025 + } +print ("##############ROF TV GPU##################") +start_time = timeit.default_timer() +rof_gpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, rof_gpu) +pars['rmse'] = rms +pars['algorithm'] = ROF_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Performance of the FGP-TV regulariser using the GPU') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("##############FGP TV GPU##################") +start_time = timeit.default_timer() +fgp_gpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +# Uncomment to test 3D regularisation performance +""" +N = 512 +slices = 20 + +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 + +noisyVol = np.zeros((N,N,slices),dtype='float32') +idealVol = np.zeros((N,N,slices),dtype='float32') + +for i in range (slices): + noisyVol[:,:,i] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + idealVol[:,:,i] = Im + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of ROF-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy 15th slice of a volume') +imgplot = plt.imshow(noisyVol[:,:,10],cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 500,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_gpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') +rms = rmse(idealVol, rof_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu3D[:,:,10], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using ROF-TV')) + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of FGP-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[:,:,10],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_gpu3D = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + + +rms = rmse(idealVol, fgp_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu3D[:,:,10], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using FGP-TV')) + +""" + + diff --git a/Wrappers/Python/demos/qualitymetrics.py b/Wrappers/Python/demos/qualitymetrics.py new file mode 100644 index 0000000..32fa479 --- /dev/null +++ b/Wrappers/Python/demos/qualitymetrics.py @@ -0,0 +1,20 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Feb 21 13:34:32 2018 +# quality metrics +@authors: Daniil Kazantsev, Edoardo Pasca +""" +import numpy as np + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) + +def rmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b)) + return rmse |