summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-17 12:58:28 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-17 12:58:28 +0100
commitd0a33e4f941539ba44a071cfab75d7bf9543990f (patch)
treeed825ba90ca17448ab07309435095f3612ffe703 /Wrappers/Python/demos
parent7e556922a60e052d24c1e467df13423904729357 (diff)
downloadregularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.gz
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.bz2
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.xz
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.zip
TNV module added
Diffstat (limited to 'Wrappers/Python/demos')
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py53
1 files changed, 52 insertions, 1 deletions
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index 0e4355b..e74fa58 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -242,6 +242,57 @@ imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("__________Total nuclear Variation__________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(4)
+plt.suptitle('Performance of TNV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+channelsNo = 5
+N = 512
+noisyVol = np.zeros((channelsNo,N,N),dtype='float32')
+idealVol = np.zeros((channelsNo,N,N),dtype='float32')
+
+for i in range (slices):
+ noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ idealVol[i,:,:] = Im
+
+# set parameters
+pars = {'algorithm' : TNV, \
+ 'input' : noisyVol,\
+ 'regularisation_parameter': 0.04, \
+ 'number_of_iterations' : 200 ,\
+ 'tolerance_constant':1e-05
+ }
+
+print ("#############TNV CPU#################")
+start_time = timeit.default_timer()
+tnv_cpu = TNV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'])
+
+rms = rmse(idealVol, tnv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray")
+plt.title('{}'.format('CPU results'))
+
# Uncomment to test 3D regularisation performance
#%%