diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-05-03 23:18:47 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-05-03 23:18:47 +0100 |
commit | 66b101901f29776486009d165221d03a57316a0e (patch) | |
tree | 1e142d6400f09b7d4f61bfab1260b9399b3d7628 /Wrappers/Matlab | |
parent | 9d0dd9704173a50226cb2d46c5418b8172b25f69 (diff) | |
download | regularization-66b101901f29776486009d165221d03a57316a0e.tar.gz regularization-66b101901f29776486009d165221d03a57316a0e.tar.bz2 regularization-66b101901f29776486009d165221d03a57316a0e.tar.xz regularization-66b101901f29776486009d165221d03a57316a0e.zip |
4th order diffusion added
Diffstat (limited to 'Wrappers/Matlab')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 16 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 21 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileCPU_mex.m | 5 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileGPU_mex.m | 12 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c | 76 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp | 76 |
6 files changed, 201 insertions, 5 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index c087433..ccd47f1 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -74,6 +74,22 @@ figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)'); % tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; % figure; imshow(u_diff_g(:,:,15), [0 1]); title('Diffusion denoised volume (GPU)'); %% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0025; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0025; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% figure; imshow(u_diff4_g(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); +%% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index d93f477..30ad79d 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -53,8 +53,8 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); %% fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 0.06; % regularisation for the diffusivity -sigmaPar = 0.04; % edge-preserving parameter +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter tau_param = 0.025; % time-marching constant tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); @@ -67,6 +67,23 @@ figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); % tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; % figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); %% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 800; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.005; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 800; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.005; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); +%% + %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise using the FGP-dTV model (CPU) \n'); diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index b232f33..19eb301 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -31,6 +31,9 @@ movefile('TNV.mex*',Pathmove); mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile('NonlDiff.mex*',Pathmove); +mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile('Diffusion_4thO.mex*',Pathmove); + mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile('TV_energy.mex*',Pathmove); @@ -41,7 +44,7 @@ movefile('NonlDiff_Inp.mex*',Pathmove); mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile('NonlocalMarching_Inpaint.mex*',Pathmove); -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* CCPiDefines.h +delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* fprintf('%s \n', 'Regularisers successfully compiled!'); diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m index 46d85a6..6b69c34 100644 --- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m @@ -42,5 +42,13 @@ movefile('FGP_dTV_GPU.mex*',Pathmove); mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu NonlDiff_GPU.cpp NonlDiff_GPU_core.o movefile('NonlDiff_GPU.mex*',Pathmove); -delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* CCPiDefines.h -fprintf('%s \n', 'All successfully compiled!');
\ No newline at end of file +!/usr/local/cuda/bin/nvcc -O0 -c Diffus_4thO_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ +mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o +movefile('Diffusion_4thO_GPU.mex*',Pathmove); + +delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* CCPiDefines.h +fprintf('%s \n', 'All successfully compiled!'); + +pathA2 = sprintf(['..' filesep '..' filesep], 1i); +cd(pathA2); +cd demos
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c new file mode 100644 index 0000000..81c0600 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c @@ -0,0 +1,76 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "Diffus4th_order_core.h" + +/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) + * The minimisation is performed using explicit scheme. + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. Edge-preserving parameter (sigma) [REQUIRED] + * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] + * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] + * + * Output: + * [1] Regularized image/volume + * + * This function is based on the paper by + * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter_numb, dimX, dimY, dimZ; + const int *dim_array; + float *Input, *Output=NULL, lambda, tau, sigma; + + dim_array = mxGetDimensions(prhs[0]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + Input = (float *) mxGetData(prhs[0]); + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ + iter_numb = 300; /* iterations number */ + tau = 0.01; /* marching step parameter */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); + if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ + if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /* output arrays*/ + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /* output image/volume */ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + Diffus4th_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); +}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp new file mode 100644 index 0000000..0edc067 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp @@ -0,0 +1,76 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "Diffus_4thO_GPU_core.h" + +/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) + * The minimisation is performed using explicit scheme. + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. Edge-preserving parameter (sigma) [REQUIRED] + * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] + * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] + * + * Output: + * [1] Regularized image/volume + * + * This function is based on the paper by + * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter_numb, dimX, dimY, dimZ; + const int *dim_array; + float *Input, *Output=NULL, lambda, tau, sigma; + + dim_array = mxGetDimensions(prhs[0]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + Input = (float *) mxGetData(prhs[0]); + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ + iter_numb = 300; /* iterations number */ + tau = 0.01; /* marching step parameter */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); + if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ + if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /* output arrays*/ + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /* output image/volume */ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + Diffus4th_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); +}
\ No newline at end of file |