diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-09 09:38:35 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-09 09:38:35 +0100 |
commit | bb86cf3cb44fa66a2def258d346ebb68fe14ed61 (patch) | |
tree | 8b2ee60f2e5d3a1d7bfd05b2f7b6c24bc5715249 /Wrappers/Matlab/demos | |
parent | 2e9d7e5df33c3c042b2a55ae4c9fe23b15f95019 (diff) | |
download | regularization-bb86cf3cb44fa66a2def258d346ebb68fe14ed61.tar.gz regularization-bb86cf3cb44fa66a2def258d346ebb68fe14ed61.tar.bz2 regularization-bb86cf3cb44fa66a2def258d346ebb68fe14ed61.tar.xz regularization-bb86cf3cb44fa66a2def258d346ebb68fe14ed61.zip |
fixes a memory leak in FGP-TV(CPU)#43, matlab CPU/GPU wrappers and demos
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 38 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m~ | 31 |
2 files changed, 69 insertions, 0 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m new file mode 100644 index 0000000..7258e5e --- /dev/null +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -0,0 +1,38 @@ +% Image (2D) denoising demo using CCPi-RGL + +addpath('../mex_compile/installed'); +addpath('../../../data/'); + +Im = double(imread('lena_gray_256.tif'))/255; % loading image +u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +figure; imshow(u0, [0 1]); title('Noisy image'); + +%% +fprintf('Denoise using ROF-TV model (CPU) \n'); +lambda_rof = 0.03; % regularization parameter +tau_rof = 0.0025; % time-marching constant +iter_rof = 2000; % number of ROF iterations +tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; +figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); +%% +% fprintf('Denoise using ROF-TV model (GPU) \n'); +% lambda_rof = 0.03; % regularization parameter +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 2000; % number of ROF iterations +% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; +% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); +%% +fprintf('Denoise using FGP-TV model (CPU) \n'); +lambda_fgp = 0.03; % regularization parameter +iter_fgp = 1000; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); +%% +% fprintf('Denoise using FGP-TV model (GPU) \n'); +% lambda_fgp = 0.03; % regularization parameter +% iter_fgp = 1000; % number of FGP iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); +%%
\ No newline at end of file diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m~ b/Wrappers/Matlab/demos/demoMatlab_denoise.m~ new file mode 100644 index 0000000..3f4403e --- /dev/null +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m~ @@ -0,0 +1,31 @@ +% Image (2D) denoising demo using CCPi-RGL + +addpath('../mex_compile/installed'); +addpath('../../../data/'); + +Im = double(imread('lena_gray_256.tif'))/255; % loading image +u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +figure; imshow(u0, [0 1]); title('Noisy image'); + +%% +fprintf('Denoise using ROF-TV model (CPU) \n'); +lambda_rof = 0.02; % regularization parameter +tau_rof = 0.0025; % time-marching constant +iter_rof = 2000; % number of ROF iterations +tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; +figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); +%% +% fprintf('Denoise using ROF-TV model (GPU) \n'); +% lambda_rof = 0.02; % regularization parameter +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 2000; % number of ROF iterations +% tic; u_rof = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; +% figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (GPU)'); +%% +fprintf('Denoise using FGP-TV model (CPU) \n'); +lambda_fgp = 0.02; % regularization parameter +iter_fgp = 2000; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); +%%
\ No newline at end of file |