summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-20 12:38:38 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-20 12:38:38 +0100
commita9d773b384c6391dbb9913deeafa3e79e108b790 (patch)
treeae385b55e798206715a9399b7a3c16cc9ddd0a26 /Wrappers/Matlab/demos
parentc5d537b582894484f497e11bb883ff596efff268 (diff)
downloadregularization-a9d773b384c6391dbb9913deeafa3e79e108b790.tar.gz
regularization-a9d773b384c6391dbb9913deeafa3e79e108b790.tar.bz2
regularization-a9d773b384c6391dbb9913deeafa3e79e108b790.tar.xz
regularization-a9d773b384c6391dbb9913deeafa3e79e108b790.zip
some corrections to energy estimation
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m6
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m6
2 files changed, 6 insertions, 6 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index 84889d7..5a54d18 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -21,7 +21,7 @@ fprintf('Denoise a volume using the ROF-TV model (CPU) \n');
tau_rof = 0.0025; % time-marching constant
iter_rof = 300; % number of ROF iterations
tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg); % get energy function value
+energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
@@ -34,7 +34,7 @@ fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg); % get energy function value
+energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
@@ -47,7 +47,7 @@ fprintf('Denoise a volume using the SB-TV model (CPU) \n');
iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg); % get energy function value
+energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 526d21c..151a604 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -14,7 +14,7 @@ fprintf('Denoise using the ROF-TV model (CPU) \n');
tau_rof = 0.0025; % time-marching constant
iter_rof = 750; % number of ROF iterations
tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg); % get energy function value
+energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
%%
% fprintf('Denoise using the ROF-TV model (GPU) \n');
@@ -27,7 +27,7 @@ fprintf('Denoise using the FGP-TV model (CPU) \n');
iter_fgp = 1000; % number of FGP iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg); % get energy function value
+energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
%%
@@ -41,7 +41,7 @@ fprintf('Denoise using the SB-TV model (CPU) \n');
iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg); % get energy function value
+energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
%%
% fprintf('Denoise using the SB-TV model (GPU) \n');