diff options
author | dkazanc <dkazanc@hotmail.com> | 2019-02-19 17:52:37 +0000 |
---|---|---|
committer | dkazanc <dkazanc@hotmail.com> | 2019-02-19 17:52:37 +0000 |
commit | 53d5508915709245d0573e0335de83fc24313b5a (patch) | |
tree | ca5aa5e759cbd829949397a4be277c24e6c2639f /Wrappers/Matlab/demos | |
parent | 634659c7ac1ffdff563cbf1e211393c2426cdb3d (diff) | |
download | regularization-53d5508915709245d0573e0335de83fc24313b5a.tar.gz regularization-53d5508915709245d0573e0335de83fc24313b5a.tar.bz2 regularization-53d5508915709245d0573e0335de83fc24313b5a.tar.xz regularization-53d5508915709245d0573e0335de83fc24313b5a.zip |
bug fixes, demos updates
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 16 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 16 |
2 files changed, 21 insertions, 11 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 0c331a4..ac8e1ba 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -8,7 +8,7 @@ addpath(Path2); addpath(Path3); N = 512; -slices = 7; +slices = 15; vol3D = zeros(N,N,slices, 'single'); Ideal3D = zeros(N,N,slices, 'single'); Im = double(imread('lena_gray_512.tif'))/255; % loading image @@ -17,9 +17,7 @@ vol3D(:,:,i) = Im + .05*randn(size(Im)); Ideal3D(:,:,i) = Im; end vol3D(vol3D < 0) = 0; -figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); - - +figure; imshow(vol3D(:,:,7), [0 1]); title('Noisy image'); lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); @@ -143,6 +141,16 @@ rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); %% +% fprintf('Denoise using the TGV model (GPU) \n'); +% lambda_TGV = 0.03; % regularisation parameter +% alpha1 = 1.0; % parameter to control the first-order term +% alpha0 = 2.0; % parameter to control the second-order term +% iter_TGV = 500; % number of Primal-Dual iterations for TGV +% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +% rmseTGV = RMSE(Ideal3D(:),u_tgv_gpu(:)); +% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +% figure; imshow(u_tgv_gpu(:,:,3), [0 1]); title('TGV denoised volume (GPU)'); +%% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 14d3096..62e5834 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -5,7 +5,9 @@ fsep = '/'; Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i); Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i); Path3 = sprintf(['..' fsep 'supp'], 1i); -addpath(Path1); addpath(Path2); addpath(Path3); +addpath(Path1); +addpath(Path2); +addpath(Path3); Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; @@ -29,7 +31,7 @@ figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -iter_fgp = 1000; % number of FGP iterations +iter_fgp = 1300; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value @@ -39,8 +41,8 @@ figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance +% iter_fgp = 1300; % number of FGP iterations +% epsil_tol = 1.0e-06; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% @@ -63,17 +65,17 @@ fprintf('Denoise using the TGV model (CPU) \n'); lambda_TGV = 0.045; % regularisation parameter alpha1 = 1.0; % parameter to control the first-order term alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 2000; % number of Primal-Dual iterations for TGV +iter_TGV = 1500; % number of Primal-Dual iterations for TGV tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; rmseTGV = (RMSE(u_tgv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); -%% + % fprintf('Denoise using the TGV model (GPU) \n'); % lambda_TGV = 0.045; % regularisation parameter % alpha1 = 1.0; % parameter to control the first-order term % alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 2000; % number of Primal-Dual iterations for TGV +% iter_TGV = 1500; % number of Primal-Dual iterations for TGV % tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; % rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); |