diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-04-16 15:29:57 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-04-16 15:29:57 +0100 |
commit | 3d17b516f269921f5c8fb4eb54cec49f732e27d5 (patch) | |
tree | b6dd09825750854bf6c87cee8e544c2278ac5586 /Wrappers/Matlab/demos | |
parent | 7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69 (diff) | |
parent | 57727584760e6b1a980071587e1f1e8910c7d6a3 (diff) | |
download | regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.gz regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.bz2 regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.tar.xz regularization-3d17b516f269921f5c8fb4eb54cec49f732e27d5.zip |
Merge pull request #50 from vais-ral/SB_TV
Split Bregman method
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 34 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 33 |
2 files changed, 43 insertions, 24 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index dc49d9c..fb55097 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -14,35 +14,47 @@ end vol3D(vol3D < 0) = 0; figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); + +lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); -lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 300; % number of ROF iterations -tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); -% lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 300; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)'); %% fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance -tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 300; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)'); %% +fprintf('Denoise a volume using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)'); +%% + +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); % create another volume (reference) with slightly less amount of noise @@ -53,11 +65,10 @@ end vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)'); %% fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); @@ -70,10 +81,9 @@ end vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)'); %%
\ No newline at end of file diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 145f2ff..129bedc 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -8,45 +8,55 @@ Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; figure; imshow(u0, [0 1]); title('Noisy image'); +lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise using the ROF-TV model (CPU) \n'); -lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 2000; % number of ROF iterations -tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; +tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% % fprintf('Denoise using the ROF-TV model (GPU) \n'); -% lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 2000; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; +% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance -tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% +fprintf('Denoise using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-06; % tolerance +tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-06; % tolerance +% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % + fprintf('Denoise using the FGP-dTV model (CPU) \n'); % create another image (reference) with slightly less amount of noise u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-dTV model (GPU) \n'); @@ -54,10 +64,9 @@ figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); % u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; % % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) % -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-06; % tolerance % eta = 0.2; % Reference image gradient smoothing constant -% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; % figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); %% |