summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorvais-ral <rlcr8@stfc.ac.uk>2019-02-12 09:43:26 +0000
committerGitHub <noreply@github.com>2019-02-12 09:43:26 +0000
commitbc475e38fef30aa19bdfe6f04e81c30cd3c9c9b5 (patch)
tree0d1c953c76b058838b80d91cae4ee0744dea2add /Readme.md
parent7f1612a9bff83959dcb7d62dd404b6dccf6f08a3 (diff)
downloadregularization-bc475e38fef30aa19bdfe6f04e81c30cd3c9c9b5.tar.gz
regularization-bc475e38fef30aa19bdfe6f04e81c30cd3c9c9b5.tar.bz2
regularization-bc475e38fef30aa19bdfe6f04e81c30cd3c9c9b5.tar.xz
regularization-bc475e38fef30aa19bdfe6f04e81c30cd3c9c9b5.zip
added conda badges
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md6
1 files changed, 3 insertions, 3 deletions
diff --git a/Readme.md b/Readme.md
index 4fc23d4..1db50aa 100644
--- a/Readme.md
+++ b/Readme.md
@@ -2,9 +2,9 @@
-| Master | Development |
-|--------|-------------|
-| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |
+| Master | Development | Anaconda binaries |
+|--------|-------------|-------------------|
+| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) | ![conda version](https://anaconda.org/ccpi/ccpi-regulariser/badges/version.svg) ![conda last release](https://anaconda.org/ccpi/ccpi-regulariser/badges/latest_release_date.svg) [![conda platforms](https://anaconda.org/ccpi/ccpi-regulariser/badges/platforms.svg) ![conda dowloads](https://anaconda.org/ccpi/ccpi-regulariser/badges/downloads.svg)](https://anaconda.org/ccpi/ccpi-regulariser) |
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**